

 © 2018, IJCSE All Rights Reserved 1162

International Journal of Computer Sciences and Engineering Open Access

 Review Paper Vol.-6, Issue-6, June 2018 E-ISSN: 2347-2693

A Model Driven Approach for Risk Reduction in Insulin Pump

Vishal Bhatt
1
, Kapil Kumar Gupta

2
, Nitin Goel

3

1,2,3

 CSE Department, Shri Ramswaroop Memorial University, Barabanki, UP, India

*Corresponding Author: kapilkumargupta2007@gmail.com

Available online at: www.ijcseonline.org

Accepted: 11/Jun/2018, Published: 30/Jun/2018

Abstract—This paper presents our effort of using model-driven engineering to establish insulin pump software based on the

generic PCA reference model. The reference model was first translated into a network of timed automata using the UPPAAL

tool. We applied the TIMES tool to automatically generate platform-independent code as its preliminary implementation. The

code is then interface with pump hardware, software and deployed onto a real PCA pump. Experiments show that the code

worked correctly and effectively with the real pump. To check the compatibility and rules violation we have also developed a

test stub to check the consistency between the proposed model and the code through conformance testing. Challenges faced

and their resolution during our work is also discussed in this paper.

Keywords— Model based engineering, Code Synthesis, Insulin Pump, TIMES Tool.

I. INTRODUCTION

Diabetes, which is caused by the unbalance of incretion and

the kidney also cannot bear the glucose in blood, is an

endocrinopathy with a diabetic from his birth to death. In

fact, the most terrible thing is not diabetes itself, but the

syndrome, via which the harm of diabetes is incarnated.

Insulin has taken a most important place in the treatment for

the disease just from the discovery of insulin and has been

used for diabetes since 1921. The injection of insulin via a

common injector is the only way of treatment in the past.

However this method brings a great deal of pain to patients.

During 1960s a concept of uninterrupted injection appeared

and replaced the traditional injection approach. In 1970s, the

concept was advanced by simulating the exudation of insulin

from pancreas. Moreover, an insulin pump was also

proposed and developed in our study. With the PZT insulin

pump integrated with a silicon micro needle array [1], an

intelligent insulin pump was invented. Painless injection;

automatic injection has been realized with this equipment.

The control of insulin dosage in the traditional pump

appears in our proposed pump, a RF module is added so that

a communication can be established. The RF module can

accept a signal, sent out by a glucose meter, which denotes

blood sugar. A MCU (micro-control unit) in the pump will

process the signal and provide a result to the insulin pump.

Then pump will adjust the insulin dosage according to the

result.

An integrated, forming a closed-loop control system. MDA

is proposed in this background. This theory divides the

system into three parts by implementation l e v e l : PIM,

PSM and CODE. PIM is the abstract of system logic,

which doesn’t include information about implementation

technology. PSM is a model of given platform. CODE

is implementation code, which is generated by MDA

tool or auto program creating software based on PSM.

Using MDA method, the system could be realized,

integrated, maintained and tested easily. In the process of

transforming the PIM into PSM with transformation

tool, the validity of PIM is checked by ―model

checker‖ firstly, that make sure the PIM’s grammatical

and semantic is correct and no contradiction or ambiguity.

Then, the corresponding relation of UML graph element

is checked, the suitable PSM template is selected

according to different platform, the PSM that is expressed

by XML is generated referring to the format and

content of PSM template. In the process of transforming

the PSM into CODE with transformation tool, the

code according to different platform is generated

referring to the format and content of CODE template.

Source Model + Transformation rules = Target Model

mailto:kapilkumargupta2007@gmail.com

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1163

II. THE INSULIN MODEL

The insulin pump is a medical device used for the

administration of insulin in the treatment of diabetes

mellitus, also known as continuous subcutaneous insulin

infusion therapy. The device includes:

 the pump itself (including controls, processing

module, and batteries)

 a disposable reservoir for insulin (inside the pump)

 a disposable infusion set, including a cannula for

subcutaneous insertion (under the skin) and a

tubing system to interface the insulin reservoir to

the cannula.

An insulin pump is an alternative to multiple daily injections

of insulin by insulin syringe or an insulin pen and allows for

intensive insulin therapy when used in conjunction with

blood glucose monitoring and carb counting.

To use an insulin pump, the reservoir must first be filled

with insulin. Some pumps use prefilled cartridges that are

replaced when empty. Most, however, are filled with the

insulin prescribed for the user.

Setting up includes:

1. Opening a new (sterile) empty pump reservoir;

2. Withdrawing the plunger;

3. Inserting the needle into a vial of insulin;

4. Injecting the air from the reservoir into the vial to

prevent a vacuum forming in the vial as insulin is

withdrawn;

5. Drawing insulin into the reservoir with the plunger,

and then removing the needle;

6. Squirting out any air bubbles from the reservoir,

and then removing the plunger;

7. Attaching the reservoir to the infusion set tubing;

8. Installing the assembly into the pump and priming

the tubing (pushing insulin and any air bubbles

through the tubing). This is done with the pump

disconnected from the body to prevent accidental

insulin delivery;

9. Attaching to the infusion site (and priming the

cannula if a new set has been inserted).

The system includes a micro-pump, a drug reservoir, a

MCU, a RF module and a silicon needle array shows the

schematic structure. There are two work modes of pancreas.

One is the basic mode that pancreas secretes insulin

uninterrupted with little dose, the other is added mode that

insulin dosage is added before each dinner. And a program

has been made to simulate the both modes. When the system

works on the free inject model. RF receiver obtains much

significant information, such as time and the concentration

of blood sugar. MCU will count the daily dosage in time and

make the system work. All the information will be stored in

the EEPROM, which will be provided to doctors later on.[2]

With the Micro-Electro-Mechanical-Systems, a silicon

micro needle array has been designed and manufactured.

According to the anatomical features of skin, a suitable

length in micro-needle array is 150-25um.

The insulin pump consists of the piezoelectric pump, silicon

needles array and RF module. It can be conveniently

operated from a remote control glucose-meter through a

secured RF communication. The application of this insulin

pump demonstrates the improved system, convenience and

painlessness to the patients.[3]

III. OUR APPROACH

We pursued a model-driven approach in the development of

the insulin prototype, which relies on formal modeling and

analysis tools. Through this approach, we expect to find any

incompleteness in the insulin model or any of its violations,

and further to automatically generate code from the verified

model. In this section, we introduce how the insulin model

is used in developing the insulin prototype.

A UPPAAL model was constructed using a manual

translation process. Along with functional and architecture

requirements, they are manually translated into temporal

logic formulae using the UPPAAL query language. The

UPPAAL model was then formally verified, by using the

UPPAAL model checker, to assure that it satisfies all the

formalized requirements. Once the UPPAAL model was

assured, we used the TIMES tool to synthesize it into C

code. An advantage of using the TIMES tool is that it

guarantees behavioral consistency between the synthesized

code and the UPPAAL model. The TIMES tool generates

either BrickOS platform code or platform independent code.

We chose to generate platform-independent code, and then

customized it for our particular target platform. We

introduced glue code that invokes platform-dependent

http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Diabetes_mellitus
http://en.wikipedia.org/wiki/Diabetes_mellitus
http://en.wikipedia.org/wiki/Subcutaneous_tissue
http://en.wikipedia.org/wiki/Infusion_set
http://en.wikipedia.org/wiki/Cannula
http://en.wikipedia.org/wiki/Syringe#Standard_U-100_insulin_syringes
http://en.wikipedia.org/wiki/Insulin_pen
http://en.wikipedia.org/wiki/Intensive_insulin_therapy
http://en.wikipedia.org/wiki/Blood_glucose_monitoring

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1164

system calls to interface with the platform-independent code

on our target platform.

Test sequence

e

Model

Trace

External Channel

clock source

Test Sequence

 Trace

Manual

Translation

 Insulin

Requirement

 UPPAAL

Queries

Formal

Verification

Verification

Result (Yes/No)

Manual

Translation

 Insulin Model

 UPPAAL Model

 Code

Synthesis

Perform

Independent

Code

 Manual

Implementa

tion

Glue-code

Code-

interfacing

Compilation

Validation Result

Implementation

Validation

Executable Image

of the target

platform

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1165

Figure 2: A Model-Driven Development for the Insulin Prototype.

The glue code provides a clock source implementation that

provides the timing semantics of timed automata. Further,

the glue code is used to implement communication

channels between the insulin code and its platform

environment. The glue code is described in order to

validate the synthesized insulin implementation we

developed a tester that consists of two primary parts:

1) An input generator that fed the implementation with

environmental stimulus, such as user inputs or hardware

conditions.

2) A monitor that observed the runtime behavior of the

implementation relative to the particular stimulus. The

observed runtime behavior was then compared with the

execution of the UPPAAL model. They were also used to

produce testing scenarios that were used as input to the

tester. The next three sections explain the steps of our

model- driven approach: formal verification, automated

implementation, and validation.

IV. FORMAL MODELING AND

VERIFICATION
A. Formalization of the INSULIN model

 We transformed the INSULIN model expressed in

Simulink and Stateflow into a network of UPPAAL

automata through a manual process. To retain as much of

the syntactic structure of the Stateflow model as possible,

the transformation maintained one-to- one mapping

between states, conditions, actions, and transitions in the

two models. It is noted that our transformation process is

not intended to have a precise replication of the

Simulink/Stateflow model by overcoming all the semantic

diff erences between two models. Instead, we

reconstructed the general functions of the Simulink /

Stateflow model in the UPPAAL model, which was

formally verifiable against the INSULIN pump.

The INSULIN Stateflow model is organized hierarchically

as four sequentially connected state machines. Each of

these four state machines has a final state that sets a special

condition variable when it is entered. These variables are

set by the model environment and trigger transitions

between states. Each of such variables was kept in the

UPPAAL model in the format of communication channels

that triggers the corresponding transitions in the model.

Most states and transitions in both the INSULIN Stateflow

model and UPPAAL automata have accompanied actions.

For example, if one of the models is in the Alarm-Empty-

Reservoir state, it is expected to launch an alarm to inform

the empty-reservoir condition. Such accompanied actions

also need to be implemented when code is generated from

the models. For example, the action of raising an alarm

when the model is in the Alarm-Empty-Reservoir state

should be implemented as sending an electric signal to the

pump’s buzzer to make an appropriate alarming sound.

Fortunately, since we forced the generated code to inherit

the structure of the UPPAAL automata, it became easier to

implement the accompanied actions.

During the transformation, we also had to introduce

quantitative timing information into the UPPAAL model.

The INSULIN Stateflow model contains timeout

transitions, but constraints triggering timeout transitions

are not specified. We introduced a clock shared by all

UPPAAL automata to capture the progress in time. Then,

we added invariants to the automata locations and

extended transition guards to enforce timeout constraints.

The timeout constraints were derived from the INSULIN

pump and instantiated with specific values when used in

UPPAAL models. We now describe the four UPPAAL

automata that correspond to the four parts of the INSULIN

model.

B. The POST Session

The INSULIN model abstracts relevant testing procedures

into a state, called POST, which is mapped to the POST-

In-Progress state in the UPPAAL model. An exception

state is entered if the POST check fails or stalls for a

certain period of time.

We noted that the second requirement cannot be checked

at the model level, since the details of actual POST

operations and times they take are abstracted away.

Instead, we interpreted the requirement to mean that if

POST does not complete within t seconds, the pump enters

into an alarm state. This interpretation is consistent with

the INSULIN model, which includes an alarm state in the

POST session that is entered by a timeout transition.

C. The Check Drug Routine

This automation goes through a series of checks such as

checking drug types. The result of each check is decided

by the user, and can take one of the two possible

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1166

outcomes: a successful outcome will move the automaton

to a state where the next check can be performed, while an

unsuccessful one raises an alarm to be displayed by the

user interface.

Figure 3: The Insulin Configuration Routine

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1167

V. CODE SYNTHESIS AND

ADAPTATION
Applying the automatic code synthesis to the INSULIN

implementation is introduced in this section. The TIMES

tool is used to generate source code from the formal model.

The generated code uses glue code to interface with the

target platform. The glue code for the environmental

channel is explained.

A. Implementation with TIMES Tool

Manual implementation of embedded system software is

error prone due to the large number of control states and

variety of events that the code needs to react to. An

implementation improves the quality of embedded software

in that it reduces human errors while retaining the benefits

of model verification. Even a moderately complex

application such as this is difficult to implement manually

without introducing significant errors.

TIMES is a tool suite for symbolic schedulability analysis

and synthesis of executable code with predictable behavior

for real-time systems [4]. We use its code-synthesis function

to translate the behavior of the UPPAAL model into Source

code. The tool generates C code that is either platform

Independent or specific to brickOS operating system

running on the LEGO Mindstorm platform. We adopted the

platform-independent version and then instrumented it to

run on our target platform. We briefly explain the code

synthesis scheme of the TIMES tool to help in

understanding the glue code in the next subsection.

In the code-synthesis scheme of the TIMES tool, transitions

in a timed-automata model are stored in an array of Type

trans-t. The data structure trans-t contains four fields to

represent transitions: an active transition flag, a source-

Location-id, a destination-location-id, and a

synchronization- id. The active transition flag is an indicator

that the transition needs to be evaluated in the current state.

Once a transition t is taken, transitions indexed by t’s

source-location-id are deactivated by setting their active

fields to false. In contrast, transitions indexed by t’s

destination-location-id are activated so that the new active

transitions can be processed in the next iteration of the

evaluation of guards. The synchronization-id indicates that a

transition contains a channel synchronization with another

complement transition. The check-trans function shown in

Listing 1, automatically generated by the TIMES tool,

implements the behavioral flow of timed automata based on

the trans-t data structure.

B. Interaction with the environment

The platform-independent code generated by the TIMES

tool needs to be ported to the target platform in a way that

preserves the semantics of timed automata. Two kinds of

glue code are needed to interface with the platform

independent code: code implementing the clock source for

timed automata and code implementing synchronous

channels for communication with the environment. For the

clock source, we introduced a platform-specific system call

to implement the notion of time that can be used by the

platform independent code. In this section, we concentrate

on the glue code for external communication, addressing a

practical issue in using the TIMES tool. As mentioned

earlier, TIMES Generates code for a closed system, but we

are working with An open system that communicates with

its environment.

We used UPPAAL channels to capture communication

between the INSULIN system and its environment. We used

a Very general environment model, which can send an input

Action at any moment and is always ready to accept any

Output action.

Of course, the INSULIN implementation should not contain

code for the environmental model. One approach is to

generate the code with both the environmental model and

the INSULIN model using the TIMES tool, and then

eliminate the code of the environmental model. However, it

turned out that the code generated by TIMES was tightly

coupled, and it was difficult to manually separate out the

environment code without affecting the correctness of the

INSULIN code.

Listing 1: pseudo-code of check-trans

1 function check−t r ans

2 for each t r a n s i t i o n t ∈ trans-t ar ray

3 if t i s a c t i v e and eval-guard(t) i s t rue

4 if t c ont a ins a channel s ynchr oni z a t i on .

5 if the r e e x i s t s a t ’ s complement t r ans i−

6 −t ion , t' , and eval-guard (t') i s t rue

7 assign(t) and assign(t')

8 endif

9 else if t has no channel s ynchr oni z a t i on }

10 assign(t)

11 endif

12 endif

13 endfor

14 endfunction

The check-trans function in Listing 1 evaluates transitions

defined in the model using the eval-guard function.

This process is described in lines 3-8 of Listing 1. The

generated code would have to be modified in many different

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1168

places to account for communication channels, which

communicate with the environment.

We took an alternative approach to overcome the difficulty

of decoupling the environment model from the INSULIN

model. We generated source code only for the INSULIN

model by replacing the environmental channels with state

variables.

Note that channels internal to the model were not affected

and were processed according to the TIMES logic.

In addition, we needed to implement a software routine to

receive user events, and interface this routine to the platform

independent code. Listing 2 shows the pseudo-code of

Impl(Ain). After receiving a user request, this front-end

thread passes the request to the model thread, denoted as

Impl(M), through shared variables.

In general, this may lead to desynchronization between the

system and its environment; in the case of handling user

input, this is appropriate.

We argue that the generated code preserves the behaviors of

the UPPAAL model. Indeed, the interaction with the

environment using the shared-variable implementation may

happen only when synchronization over communication

channels is used in the model. Checking the state of the

INSULIN model before accepting the request ensures this.

By atomically resetting the shared variable, we ensure that

no events that should be responded to are missed, and that

―old‖ events that have been already processed would not

affect the system again. Ideally, code synthesis tools should

support modular generation. If so, separating the system

from its environment, after the closed-system verification,

would be straightforward.

In our experience, this is the most error-prone aspect of a

model-based development that relies on systematic code

generation.

Listing 2: glue code for environmental channels

1 function ext e rna l−channel−thread

2 ext e rna l−event ← recv−ext e rna l−channel ()

3 if (ext e rna l−event i s a bolus r eque s t)

4 if (Impl (M) i s in the Infus ionNormal−

5 Operat ion s t a t e)

6 E−BolusRequest ← t rue

7 endif

8 endif

9 endfunction

C. TESTBED: THE INSULIN PROTOTYPE

Insulin pumps rely on hardware components to reduce the

risk of harm, such as stepper motors to administer precise

amounts of drugs to patients, sensors to detect an empty

reservoir, air-in-line sensors to detect air bubbles in the drug

flow, and so on. This prototype is equipped with software

routines that control sensors and actuators. To build it, we

obtained a used infusion pump and reused its hardware. The

pump contains a stepper motor, with the Atmega1281

processor performing low-level control of the motor. The

pump hardware also contains a buzzer that sounds alarms

and sensors that detect environmental conditions such as

temperature and humidity. In our future work, more sensors

will be attached to detect additional infusion problems.

Our INSULIN software implementation is running on an

OMAP3530 processor running Linux OS. POSIX threads

are used for parallel executions of the INSULIN State

Controller Impl (M), the front-end of the environmental

channel Imp (Ain), event logging, and RS-232

communication with the sensors and the motor controller.

Although automatic code generation procedures ensured that

our INSULIN pump implementation inherited the structure

of the UPPAAL model, the existence of the glue code,

including code implementing environmental channels and

control over actual hardware peripherals, required the final

implementation to be comprehensively validated. Since not

all of the requirements could be formalized and directly

verified against the final implementation, it became

necessary to use testing to achieve sufficient confidence in

our system.

Based on this observation, we implemented a tester in a

physically isolated system, which facilitated conformance

testing in an Internet environment to check the runtime

behavior of the INSULIN system. The tester communicates

with the INSULIN system using a communication protocol

over a TCP/IP connection. The protocol provides compact

encoding of signals and values exchanged between the tester

and the INSULIN system. Through this communication

protocol, the tester is fully capable of observing the outputs

of the INSULIN system and providing any stimulus that the

INSULIN system may expect. The stimuli include both user

actions and hardware conditions. In addition, the INSULIN

system reports the current state to the tester at regular

intervals. All states of the INSULIN model are encoded as

one-byte values in the communication protocol.

Test scenarios are selected based on the INSULIN pump.

Suppose, the, the pump shall issue an alert if paused for

more than t minutes, is to be tested. This scenario is used to

build a test sequence for the model and the implementation.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1169

First, the tester drives the INSULIN system to a particular

state from which the validation of the requirement can start.

In particular, if state V-Init is needed so that the validation

of can start, we query the UPPAAL tool to verify the

property A[](!V-Init) against the model. If V-Init is

reachable from the initial state of the INSULIN model,

UPPAAL would return a counterexample, which can be

used to infer an input sequence to drive the system to V-Init.

With such a technique, we acquire an input sequence and

use it to drive the INSULIN system to the Infusion Paused

state.

Once in the Infusion Paused state, the tester delays for t1

minutes, where t1 > t and watches if the system transitions

to the desired Alarm-Too Long Infusion Pause state . The

validation result proves that the INSULIN system hits the

Alarm-Too Long Infusion Pause state after the delay and

hence conforms. Although our current tester implementation

relies on a manual testing procedure, many aspects of it can

be automated. [5]

VI. DISCUSSIONS AND FUTURE WORK
This section discusses a few issues that we faced while

applying formal methods to the development of a Insulin

infusion pump implementation, and proposes future

directions. Looking at the future of insulin sets and canulas

is pretty exciting BD working on smaller Pen needles can

eventually transfer to infusion sets. [1]

Clinicians are using more intensive insulin strategies to

achieve glycemic control. At Childrens Hospital Los

Angeles, the use of multiple daily injections (MDI) began

increasing in 2001, with the introduction of the first long-

acting insulin analog, insulin glargine. Although it has been

in use for more than a decade, ―intensive‖ insulin therapy

involving the use of insulin pumps has also increased during

this time period. At Childrens Hospital Los Angeles, we

have been able to achieve lower glycosylated hemoglobin

(A1C) levels with fewer hypoglycemic episodes in regular

clinical practice using continuous subcutaneous insulin

infusion when compared with MDI (although MDI was not

always defined as basal-bolus insulin). An advantage that

pump users have when compared with patients using MDI is

the ability to fine-tune insulin delivery and the flexibility to

start or stop insulin delivery on demand with relative

discretion.

However, studies have shown that pump therapy has the

ability to improve glycemic control and reduce the

development of hypoglycemia in pediatric patients with

diabetes [9]. More frequent blood glucose monitoring

increases the potential for detecting hyperglycemic and

hypoglycemic episodes. Furthermore, frequent glucose

monitoring is linked to improved glycemic control and has

created a demand for advances in the area of glucose

monitoring.

Another advantage is the ability to monitor blood glucose

readings using an alarm system, which will signal users

when readings are low (or high) to prevent significant

hypoglycemic events (or to alert patients of significantly

elevated glucose levels). Pump therapy has improved

glycemic control and reduced hypoglycemic episodes.

Despite major improvements, therapeutic goals have not

been met. The fear of hypoglycemic events prevents

aggressive lowering of A1C levels in pediatric patients with

diabetes.[10]

VII. CONCLUSION
Researchers present a case study which applies model-

driven development to insulin model. This case study

illustrates how model-driven development can improve the

risk reduction in insulin pumps. Future work is to extend the

current INSULIN UPPAAL model to capture the entire

INSULIN model. Another direction for study is to develop a

systematic method that can be used to close the gap of code

generation/synthesis that is based on the notion of a closed

system. This is an important gap to fill since many life-

critical systems like medical devices operate in an open

environment. The sensor-augmented insulin pump was well

tolerated by these subjects with minor complaints about

tapes and alarms. It provided patients and health care team

members with insight into glycemic patterns, which

facilitated treatment changes. This work has been supported

from the resources of object management group for the

development of model driven architecture.

In summary, the insulin pump can offer real-time

information for ―in-the-moment‖ diabetes management, as

well as feedback for carbohydrate counting and adjustments

for physical activity. Treatment can be optimized based on

historical data from the sensor-augmented insulin pump

downloads, allowing for adjustment of pump settings,

calculation of the insulin-to-carbohydrate ratio, and

calculation of insulin sensitivity factors. Additional trials are

needed to confirm long-term clinical benefits of the sensor-

augmented insulin pump system.

ACKNOWLEDGEMENT
This work is supported by resources from Associate

Professor Dr. Shalini Agarwal department of Computer

Science and Engineering SRMU Lucknow. They would also

thank the anonymous reviewers for their significant and

constructive critiques and suggestions, which substantially

improved the quality of this paper.

http://www.diabeteshealth.com/read/2010/06/09/6714/bd-launches-worlds-smallest-pen-needle/

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1170

REFERENCES
[1] The generic patient controlled analgesia pump model.

http://rtg.cis.upenn.edu/gip.php3.

[2] Bin Ma and Sheng Liu, "A PZT Insulin Pump Integrated with a

Silicon Micro Needle Array for Transdermal Drug Delivery" Fifty

sixth IEEE ECTC Conference, San Diego, 2006: 677-681.

[3] The Insulin Model

http://www.endocrineweb.com/conditions/diabetes/diabetes-what-

insulin

[4] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi.

―TIMES: a tool for schedulability analysis and code generation of

real-time systems‖ In FORMATS, 2003.

[5] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural. ―Data flow

testing as model checking‖, In ICSE, pages 232–243, 2003.

[6] D. C. Schmidt. ―Model-driven engineering‖, IEEE Computer

Magazine, February 2006.

[7] I. Assayad, V. Bertin, F. X. Defaut, P.Gerner, O. Quevreux, and S.

Yovine. ―Jahuel: A formal framework for software synthesis,

ECMDA-FA, 2005.

[8] S. Burmester, H. Giese, and W. Schafer. Model-driven architecture

for hard real-time systems: From platform independent models to

code. ECMDA-FA, 2005.

[9] Intensified Treatment of Diabetes in Pediatrics Today

http://general-medicine.jwatch.org/cgi/content/full/2011/712/1

[10] Continuous Real-Time Glucose Monitoring for Better Control.

http://www.medtronicdiabetes.net/treatmentoptions/continuousglu

cosemonitoringto

[11] BaekGyu Kim, Anaheed Ayoub, Oleg Sokolsky, Insup Lee, Paul

Jones, Yi Zhang, and Raoul Jetley. Safety-Assured Development

of the GPCA Infusion Pump Software.The International

Conference on Embedded Software 475-487, 2011.

[12] Zhi Xu, Sheng Liu , Zhiyin Gan, Bin Ma, Guojun Liu, Xinxia Cai,

Honghai Zhang, Zhigang Yang. An Integrated Intelligent Insulin

Pump Electronic Packaging technology, ICEPT 2006.

[13] Frank Truyen, ―The Fast Guide to Model Driven Architecture The

Basics of Model Driven Architecture (MDA)‖, Cephas

Consulting Corp January 2006.

[14] Christen Rees et. al., ―Recommendations for Insulin Dose

Calculator Risk Management‖, Journal of Diabetes Science and

Technology 2014 Jan; 8(1): 142–149.

[15] Brooke H. McAdams and Ali A. Rizvi, ―An Overview of Insulin

Pumps and Glucose Sensors for the Generalist‖, Journal of

Clinical Medicine2016 Jan; 5(1): 5.

[16] Levon Gevorkov , Anton Rassõlkin , Ants Kallaste , Toomas

Vaimann, ―Simulink based model for flow control of a centrifugal

pumping system‖, 25th International Workshop on Electric

Drives: Optimization in Control of Electric Drives (IWED), PP-1-

4, Feb, 2018.

[17] Alessio Bucaioni, Lorenzo Addazi, Antonio Cicchetti, Federico

Ciccozzi, Romina Eramo, Saad Mubeen, Mikael Sjödin,

―MoVES: A Model-Driven Methodology for Vehicular

Embedded Systems‖ , IEEE Access PP- 6424-6445, Jan 2018.

[18] B. Bakariya, G.S. Thakur, ―Effectuation of Web Log

Preprocessing and Page Access Frequency using Web Usage

Mining‖, International Journal of Computer Sciences and

engineering, Vol.1 , Issue.1 , pp.1-5, Sep-2013.

[19] K. J. Modi, D.P. Chowdhury, ―A Framework for Management and

Monitoring of QoS-based Cloud Services‖, International Journal

of Computer Sciences and engineering, Vol.5, Issue.5, pp.115-

119, May-2017.

Authors Profile

Mr. Vishal Bhatt obtained his B. Tech (CS) degree in 2006 from
UPTU, Lucknow, Uttar Pradesh, India . He did M. Tech (CSE)
from GLA University, Mathura and Astt. Professor in Department
of Computer Science, Shri Ramswaroop Memorial University
Barabanki,. Uttar Pradesh, India. His main research interest is in
the field of Data Mining, Software Engineering approaches etc..

Mr. Kapil Kumar Gupta obtained his B. Tech (IT) degree in 2009
from JSS academy of technical education, Noida, Uttar Pradesh,
India . He did M. Tech (CSE) from Integral University, Lucknow
and Astt. Professor in Department of Computer Science, Shri
Ramswaroop Memorial University Barabanki,. Uttar Pradesh,
India. His main research interest is in the field of Image
Processing, Software Engineering approaches and Design and
analysis of algorithms, etc.. He is a Member of IEEE and CSTA.

Mr. Nitin Goel obtained his B. Tech (CSE) degree in 2006 from
ABES, Ghaziabad, Uttar Pradesh, India . He did M. Tech (
Advance Network) from IIIT, Gwalior and Astt. Professor in
Department of Computer Science, Shri Ramswaroop Memorial
University Barabanki,. Uttar Pradesh, India. His main research
interest is in the field of Data Mining, Software Engineering etc.
He is a Member of IEEE.

http://rtg.cis.upenn.edu/gip.php3
http://www.endocrineweb.com/conditions/diabetes/diabetes-what-insulin
http://www.endocrineweb.com/conditions/diabetes/diabetes-what-insulin

