

 © 2019, IJCSE All Rights Reserved 134

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

A Comparative Study of Software Metrics for Analysis and Its Impact on

Predictability

G.Yamini
1*

, Gopinath Ganapathy
2

1
Department of Computer Science, Bharathidasan University, Trichy, Tamil-nadu, India

2
Bharathidasan University, Trichy, Tamil-nadu, India

*Corresponding Author: yamini.per@gmail.com, Tel.: 919489262627

Available online at: www.ijcseonline.org

Accepted: 14/Jan/2019, Published: 31/Jan/2019

Abstract— Quality assurance is one of the important non-functional software requirements which many software products fail

to satisfy. Current software market is driven mostly by urgency and competition. One of the methods to ensure software quality

is a metrics-based approach. Software metrics have been used to quantitatively evaluate software products. Software metrics

play an important role in developing high quality software as well as to improve the developer’s productivity. Metrics can help

quantify previous work in a way that can directly guide future efforts. For example, projects of different sizes can require

vastly different levels of effort, organizational structure, and management discipline. There is an increasing need for metrics

adapted to the Object-Oriented (OO) paradigm to help manage and foster quality in software development. Object-oriented

design patterns are an emergent technology: they are reusable micro-architectures, high level building blocks. A major benefit

of object-oriented software development is the support for reuse provided by object-oriented and object-based languages. The

usefulness of metrics is reviewed. The reliability is one of the most important attributes of software quality. The presumed

objective of the estimation of the reliability consists in the analysis of the risk and of the reliability of the software-based

systems. This paper presents the study of different suite in object-oriented (OO) design metric.

Keywords— Software metrics; Object-oriented; MOOD; CK metric

I.INTRODUCTION

Software metrics are useful in analyzing, designing, coding,

testing, documentation and measuring software quality and

complexity. Software metric is a measure to quantify an

attribute of software. In the 21 st century many software

developers are dependent on object-oriented programs where

above 95% are the reusable components. It is difficult to

make reusable components, but if made, it gives benefits like

improved quality and reduced code size. As size of the code

will decrease, definitely complexity will be reduced with

consequent possibility of reduction in timing and staffing of

the project. Software metrics are the decisive factors to

measure the quality and complexity of software. Object

oriented design is becoming more popular in software

development environment and object-oriented design metrics

is an essential part of software environment. The metrics for

object-oriented design focus on measurements that are

applied to the class and design characteristics.

Various object-oriented metric suites have been proposed

like CK, MOOD, Lorentz and Kidd. Object oriented metrics

are most useful in early stage of software development. To

minimize effort and to identify a metric relevant to measure

an attribute validation of a metric is essential. Validation of a

metric means to verify whether the metric is relevant to the

attribute being measured. Validation technique can be

empirical or analytical. CK suite was proposed in [2].

Message passing coupling (MPC), data abstraction coupling

(DAC), number of methods (NOM) and some other metrics

have been proposed in [3]. The metrics for object oriented

design (MOOD) suite was proposed by Fernando Brito and

Rogerio. Complexity is undesirable in a program. A high

value of complexity is undesirable. CK suite is designed in

such a way that low value implies low complexity. There is a

misconception that any design metric is a complexity metric.

Each CK suite is a complexity metric but has a different

definition for each metric. Different researchers have pointed

out regarding the reusability metrics [1] [2]. The best

example in C++ is the Template which provides the reusable

modules like FT (Function Template) and CT (Class

Template) [3]. In earlier days the developers used traditional

metrics but nowadays object-oriented metrics plays a vital

role. The objective of object oriented programming is to

develop a new system by using an existing system .This is

possible due to reusability i.e. Inheritance [4] [5]. Nowadays

CBRM (Component-Based-Reused-Metrics) are used widely

as well as the component based reused programs are fully

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 135

dependent on the repository for achieving success [7] [8].

Principal component analysis, Spearmans rank correlation,

Logistic regression, Decision tree, Linear regression, Neural

network, Multiple linear regression, Principal component

analysis, Naive Bayes, and Random forest, Logistic

regression, Probabilistic neural network, Bayesian poission

regression, Multiple regression, and Ordinary least square,

and Expert estimation, Statistical regression analysis, and

Principal component analysis, Support vector machine,

ANN, and Decision tree, are the various methods used by

different researchers, used in different situations accordance

to the nature of the software.

II. OBJECT-ORIENTED METRICES

It is widely accepted that object oriented development

requires a different way of thinking than traditional

structured development and software projects are shifting to

object oriented design. Object oriented design is those design

which contained all the properties and qualities of software

that is related to any large or small project. It is a degree

through which a system object can hold a particular

attribute or characteristic. The main advantage of object

oriented design is its modularity and reusability. Object

oriented metrics are used to measure properties of object

oriented designs. Metrics are a means for attaining more

accurate estimations of project milestones, and developing a

software system that contains minimal faults. Compared to

structural development, object oriented design is a

comparatively new technology. Many object oriented metrics

have been proposed to assess the testability of an object

oriented system. Most of the metrics focus on encapsulation,

inheritance, class complexity and polymorphism.

A. C. K. Metric Suite

Chidamber and Kemerer define the so called CK metric suite

[2]. CK metrics have generated a significant amount of

interest and are currently the most well-known suite of

measurements for object oriented software. CK suite consist

of six metrics WMC, DIT, NOC, CBO, RFC and LOCM. CK

metric suites have been tested in C++ and Smalltalk. This

suite has come under criticism on the basis of lack of clear

terminology and a number of inadequacies in the

meaningfulness of the metrics. But in spite of all criticism

this suite has become industry standard.

Weighted methods per class (WMC)-WMC is the number of

all member functions and operators defined in each class.

Friend operators are not counted. Member functions and

operators inherited from the ancestors of a class are also not

counted. WMC should be kept as low as possible. It is used

to measure the understandability, reusability, maintainability

and complexity and quality.

Depth of inheritance tree of a class (DIT)-DIT is the length

of longest path from the class to the root in the inheritance

hierarchy.

Number of children (NOC)- NOC is the number of classes in

the inheritance tree of a class. NOC represents the effort

required to test the class and reuse. NOC should be kept as

low as possible. It is used to measure the quality.

Coupling between objects (CBO)- CBO provides the number

of other modules that are coupled to the current module

either as a client or supplier. Increase in CBO will decrease

the usability. It is used to measure complexity, reusability

and quality.

Response for a class (RFC)-RFC is the count of methods

within a set which can be invoked in response to a message

sent to an object to perform an operation. RFC should be

kept as low as possible. It measures complexity.

Lack of cohesion of methods (LCOM)- LCOM is the

difference between the number of methods whose similarity

is zero and the methods whose similarity is not zero. It is not

a good metric of quality.

B. MOOD Metric Suite

Abreu et at. defined MOOD (Metrics for Object Oriented

Design) metrics [15]. MOOD suite consists of the following

the following six metrics. MOOD metrics focus on system

level which includes encapsulation, inheritance,

polymorphism, and massage passing. This suite is applicable

to all object-oriented programming languages like C++,

JAVA.

Attribute Hiding Factor (AHF) - AHF is the ratio of

attributes hidden to the total data members defined. It should

be kept as high as possible. It is used to measure quality.

Attribute Inheritance Factor (AIF) - AIF is the ratio of the

sum of inherited attributes in all classes of the system to the

total number of available attributes for all classes. It should

be kept as high as possible. It is used to measure quality.

Coupling Factor (CF)-CF is the ratio of the possible number

of couplings in the software to the actual number of

couplings. It is a measure of coupling between classes. It is

not a good measure of quality.

Method Hiding Factor (MHF) –MHF is the ratio of method

hidden to the total number of classes.

Metric Inheritance Factor (MIF)-MIF is the ratio of method

inheritance to the total number of available methods.

Polymorphism Factor (PF)-Polymorphism is the ability to

take several forms.PF is the ratio of the number of methods

that redefine inherited methods to the maximum number of

possible distinct polymorphic situations.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 136

C. Lorenz and Kidd suite

In the fundamental book about software quality [14] Lorenz

and Kidd introduced many metrics to quantify software

quality assessment. Eleven metrics introduced by Lorenz and

Kidd are applicable to class diagrams. 1. Number of public

methods (NPM) 2. Number of methods (NM) 3. Number of

public variables (NPV) 4. Number of variables per class

(NV) 5. Number of class variables (NCV) 6. Number of class

methods (NCM) 7. Number of methods inherited (NMI) 8.

Number of methods overridden (NMO) 9. Number of new

methods (NNM) 10. Average parameter per method (APM)

11. Specialization index (SIX). The metrics were categorized

into Inheritance Metrics, Class Internals Metrics.

D. Chen Metrics

The software metrics, through which it can defined, “What

is the behavior of the metrics in object-oriented design?”. All

of the terminologies in object-oriented language, consider the

basic components of the paradigm to be objects, classes,

attributes, inheritance, method, and message passing [12].

Each describes all of the behaviors like: i. CCM (Class

Coupling Metric), ii. OXM (Operating Complexity Metric),

iii. OACM (Operating Argument Complexity Metric), iv.

ACM (Attribute Complexity Metric), v. OCM (Operating

Coupling Metric), vi. CM (Cohesion Metric), vii. CHM

(Class Hierarchy of Method) and viii. RM (Reuse Metric).

Metrics (i) and (iii) are very subjective in nature, Metrics (iv)

and metric (vii) mostly involve the count of features; and

metric (viii) is a Boolean (0 or 1) indicator metric. It is stated

that, each object-oriented metrics concept implies a

programming behaviour.

E. QMOOD

Quality Model for Object-Oriented Design (QMOOD).The

QMOOD [6] is a comprehensive quality model that

establishes a clearly defined and empirically validated model

to assess object-oriented design quality attributes such as

understandability and reusability, and relates it through

mathematical formulas, with structural object-oriented design

properties such as encapsulation and coupling. The QMOOD

model consists of six equations that establish relationship

between six object- oriented design quality attributes

(reusability, flexibility, understandability, functionality,

extendibility, and effectiveness) and eleven design

properties. The whole description for QMOOD can be

obtained from the Bansiya‟s thesis through which, The

QMOOD metrics can further classified into two measures

namely:

System Measures: System measures describe such metrics

like DSC (Design Size in Metrics), NOH (Number of

Hierarchies), NIC (Number of Independent classes), NSI

(Number of Single Inheritance), NMI (Number of multiple

Inheritance), NNC (Number of Internal Classes), NAC

(Number of Abstract Classes), NLC (Number of Leaf

Classes), ADI (Average Depth of Inheritance), AWI

(Average Width of Classes), ANA (Average Number of

Ancestors).

Class Measures:- Class measure metrics are those metrics

which define metrics like, MFM (Measure of Functional

Modularity), MFA (Measure of Functional Abstraction),

MAA (Measure of Attribute Abstraction), MAT (Measure of

Abstraction), MOA (Measure of Aggregation), MOS

(Measure of Association), MRM (Modeled Relationship

Measure), DAM (Data Access Metrics), OAM (Operation

Access Metrics), MAM (Member Access Metrics), DOI

(Depth of Inheritance), NOC (Number of Children), NOA

(Number of Ancestor), NOM (Number of Methods).

F. LiW

The six metrics defined are, Number of Ancestor Classes

(NAC), Number of Local Methods (NLM), Class Method

Complexity (CMC), Number of Descendent Classes (NDC),

Coupling Through Abstract data type (CTA), and Coupling

through Message Passing (CTM).

Number of Ancestor Classes (NAC):- This metric is

proposed as an alternative to the DIT metric, measures the

total number of ancestor classes from which a class inherits

in the class inheritance hierarchy. The theoretical basis and

viewpoints both are same as the DIT metric. In this the unit

for the NAC metric is “class”, justified that because the

attribute that the NAC metric captures is the number of other

classes‟ environments from which the class inherits.

Number of Local Methods (NLM) - The Number of Local

Methods metric (NLM) is defined as the number of the local

methods defined in a class which are accessible outside the

class. It measures the attributes of a class that WMC metric

intends to capture. The theoretical basis and viewpoints are

different from the WMC metric [11]. The theoretical basis

describes the attribute of a class that the NLM metric

captures. This attribute is for the usage of the class in an

object- oriented design because it indicates the size of a

class’s local interface through which other classes can use

the class.

The major three viewpoints for NLM metric are: 1) The

NLM metric is directly linked to a programmer’s effort when

a class is reused in an Object-Oriented design. More the local

methods in a class, the more effort is required to comprehend

the class behaviour. 2) The larger the local interface of a

class, the more effort is needed to design, implement, test,

and maintain the class. 3) The larger the local interface of a

class, the more influence, the class has on its descendent

classes.

Class Method Complexity (CMC) - The Class Method

Complexity metric is defined as the summation of the

internal structural complexity of all local methods. The CMC

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 137

metric’s theoretical basis and viewpoints are significantly

different from WMC metric. The NLM and CMC metrics are

fundamentally different as they capture two independent

attributes of a class. These two metrics affect the effort

required to design, implement, test and maintain a class.

Number of Descendent Classes (NDC) – This metric is an

alternative to NOC and is defined as the total number of

descendent classes (subclass) of a class. The stated

theoretical basis and viewpoints indicate that NOC metric

measures the scope of influence of the class on its sub classes

because of inheritance [13]. Li claimed that the NDC metric

captures the classes attribute better than NOC.

Coupling through Abstract Data Type (CTA) – This is

defined as the total number of classes that are used as

abstract data types in the data-attribute declaration of a class.

Two classes are coupled when one class uses the other class

as an abstract data type [9] [10]. The theoretical view was

that the CTA metric relates to the notion of class coupling

through the use of abstract data types. This metric gives the

scope of how many other classes’ services a class needs in

order to provide its own service to others.

Coupling through Message Passing (CTM) - The Coupling

through Message Passing (CTM) is defined as the number of

different messages sent out from a class to other classes

excluding the messages sent to the objects created as local

objects in the local methods of the class. Two classes can be

coupled because one class sends a message to an object of

another class, without involving the two classes through

inheritance or abstract data type. Theoretical view given was

that the CTM metric relates to the notion of message passing

in object-oriented programming. The metric gives an

indication of how many methods of other classes are needed

to fulfil the classes’ own functionality.

G. SATC Metrics

Rosenberg Linda proposed to select object oriented metrics

that supports the goal of measuring the code, quality, result

and they proposed many object-oriented metrics due to lack

of theoretical basis and that can be validated.These metrics

may be used to evaluate the object-oriented concepts like

methods, coupling and inheritance as shown in table 1.

Table 1. Types of Metrics

Name Source Metrics

MOOSE/CK Chidamber

et.al.

WMC, DIT, NOC, CBO,

RFC, LCOM

MOOD Abrreu et.al. MIF, AIF, MHF, AHF,

POF, COF

LK Lorenz et.al. CS, NOO, NOA, SI, OS,

OC, NP

QMOOD Bansiya DSC,NOH,NSI,NMI,

NNC,NAC,NLC,ADI,AWI,

ANA,MFM

LiW Li et.al. NAC,

NLM,CMC,NDC,CTA,CT

M

SATC Rosenberg

et.al.

CC,

LOC,WMC,RFC,LCOM

,DIT,NOC

III. CONCLUSION

The increase in software development means the

measurement was also so high. The increasing significance

being placed software measurement which has to lead,

increase the amount of research on developing the new

software measures. In this paper, the various software

metrics for object-oriented method is analyzed. This paper

provides some help for researchers and practitioners for

better understanding and selection of software metrics for

their purposes. This paper presented analysis of existing

major object- oriented metrics. Four out of six metrics

WMC, NOC, CBO, and RFC are suitable for complexity and

quality measurement. This study also advice to metrics

developers that, metrics should be simple, computable and

programming language independent. Future work involves

identifying limited set of metrics to model quality and

complexity of object-oriented design and validating the

identified metric suite against prevalent metric suites using

different.

Machine learning helps to gain insight from a massive

amount of data which is very cumbersome to humans.

Machine learning is a subfield of soft computing and a

rapidly up surging topic in today’s context and is expected to

boom more in coming days.

REFERENCES

[1] W. Li and S. Henry, “ Maintenance Metrics for the Object-Oriented

Paradigm”, In Proceedings of the First International Software

Metrics Symposium, Baltimore Maryland, pp. 52-60, 1993.

[2] L. Etzkorn, J. Bansiya, C. Davis, “Design and Code Complexity

Metrics for OO Classes”, Journal of Object- Oriented Programming,

pp. 35-40, 1999.

[3] K. K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra, “Software Reuse

Metrics for Object - Oriented Systems”, In Proceedings of ACIS

Third International conference on Software Engineering Research,

Management and Applications, 2005.

[4] P. Gandhi, P. K. Bhatia, “Reusability Metrics for Object - Oriented

System: An Alternative Approach”, International Journal of

Software Engineering (IJSE), Vol. 1, No 4, pp. 63 – 72, 2010.

[5] Taylor, D. (1992): Object-Oriented Information Systems: Planning

and Implementation. New York, US: John Wiley & Sons, Inc.

[6] W. Frakes and C. Terry, “Reuse Level Metrics”, Proceedings of the

3rd International Conference on Software Reuse: Advances in

Software Reusability, IEEE, 1994.

[7] J. Guo, Luqui, “A Survey of Software Reuse Repositories”, 7th

IEEE International Conference and Workshop on the Engineering

of Computer Based Systems, pp. 92-100, 2000.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 138

[8] Kaur, S. Singh and K. S. Kahlon, “Evaluation and Metrication of

Object Oriented System”, Proceedings of the International Multi

Conference of Engineers and Computer Scientists 2009, I IMECS

2009, Hong Kong, 2009.

[9] Dr B.R. Sastry, M.V. Vijaya Saradhi, “Impact of software metrics

on Object Oriented Software Development life cycle”, International

Journal of Engineering Science and Technology, Vol. 2, No. 2, pg

67-76, 2010.

[10] Y. Singh, A. Kaur, R. Malhotra, “Software fault proneness

prediction using support vector machines”, Proceedings of the

World Congress on Engineering, vol. 1, pp. 1–3, 2009.

[11] G.J. Pai, J.B. Dugan, “Empirical analysis of software fault content

and fault proneness using Bayesian methods”, IEEE Trans. Softw.

Eng. 33 pp. 675–686, 2007.

[12] H.M. Olague, L.H. Etzkorn, S. Gholston, S. Quattlebaum,

“Empirical validation of three software metrics suites to predict

fault-proneness of object-oriented classes developed using highly

iterative or agile software development processes”, IEEE Trans.

Software. Vol. 33, pp. 402–419.2007.

[13] Y. Zhou, H. Leung, “Empirical analysis of object-oriented design

metrics for predicting high and low severity faults”, IEEE

Transactions on software engineering, Vol. 32, pp. 771–789, 2006.

[14] R. Subramanyam and M.S. Krishnan, “Empirical Analysis of CK

metrics for Object Oriented Design Complexity: Implications of

Software defects”, IEEE transactions on Software Engineering,

Vol. 29, No. 4, 2003.
[15] S.R.Chidamber and C.F.Kemerer. “A metrics suite for object

oriented design”. IEEE Transactions on Software Engieneering,

pp. 476 – 493, 1994.

Authors Profile

Ms. G.Yamini pursed Bachelor of Science, Master

of Science, Master of Philosophy in computer

science from Bharathidasan University , Trichy in

1998, 2001 and 2004 respectively. Currently

pursuing P.h.D. and currently working as Faculty in

Department of Computer Science, Bharathidasan University,

Trichy, since 2011. Has presented many papers in conferences.

Participated in various seminars and workshops in various

institutions in and around Trichy. Guided around 20 M.Phil

graduates. Interested in handling subjects like Microprocessor,

Software Engineering, Software Metrics, Data Structures,

Programming Languages. Main research work focuses on Software

Metrics, Software Reliability, Prediction of reliability in software.

Has 12+ years of teaching experience and 2 years of Research

Experience.

Dr Gopinath Ganapathy pursed Bachelor of
Science and Master of computer applications from
St.Joseph’s college, Trichy. Completed Ph.D from
Madurai Kamaraj University. Currently working as
a Registrar, Bhararhidasan University, Trichy.He
has 30 years of total experience in academia, Industry, research &
consultancy services. He has around 8 year International experience
in the U.S and U.K. He served as a Consultant for a few fortune
500 companies that include IBM,Lucent-Bell Labs, Merrill Lynch
Toyota etc. He received the Young Scientist Fellow award for the
year 1994 from the Govt. of Tamil Nadu with cash Rs 20000. His
name is listed in “Who is Who in the World – 2009” by Marquis,
USA for individual accomplishment He is a nominee for
“Rashtriya Gouvrav” award. He is the recipient of “Best Citizens of
India” award. He published and presented nearing100 research
papers at international journals and conferences. He acted as
academic advisor for mediating off-campus programs in University

of Valley Creek, USA He is a member in several academic and
technology councils in various Universities in India He convened
many international conferences/workshops/seminars. He is a referee
and editorial member in a few international journals. Guidance for
PhD: 12 awarded, 6 progressing. He is a Professional Member in
IEEE, ACM, and IAENG. He is a Life Member in Indian Science
Congress, Indian Society for Technical Education, and Computer
Society of India. He specialized in designing Multi-Tier and EAI
technologies. His areas of Research are: Semantic Web, AI, Auto
Programming, Ontology and Text Mining.

