
 © 2018, IJCSE All Rights Reserved 1331

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Evaluation of Fault Tolerant & Min-Max Load Balancing Algorithm

in Grid Computing

Mahesh Reddy G

1*
, Lakshminarayana G

2
, Srinuvasa Reddy K

3

1*, 2,3
Department of CSE, Kallam Haranadhareddy Institute of Technology, JNTUK, Guntur, A.P, India

*Corresponding Author: mahesh.gogula@gmail.com Mobile: +91- 9505276512

Available online at: www.ijcseonline.org

Accepted: 19/Jul/2018, Published: 31/Jul/2018

Abstract- Grid computing is a growing technology, which have hundreds or thousands of computational nodes to execute large

applications. The main issues consider in grid computing is Load balancing, Fault tolerant and Fault recovery. In order to

utilize the resource efficiently and to satisfy all the requirements of the user, there is need for effective scheduling algorithm.

Scheduler schedule job to available resources in the sites and result submit to user. Otherwise if any faults detects by fault

detector, In the event of failures, how to execute the job from the processor failure. Since grid is more difficult, complex to

implement and manage, so there could be the differences in their performance under diverse experimental conditions. We

should modify the algorithm. To achieve high throughput and proper resource utilization we purpose Min-Max fair scheduling

algorithm for load balancing. This paper focus on how to increase performance of Grid Environment. The proposed system

builds on using Grid Simulation Toolkit (Gridsim).

Keywords: Load Balancing, Grid Computing, Fault Tolerant & Fault Recovery, Min-Max Fair Scheduling algorithm

I. Introduction

 Grid computing is basically taking number of

inexpensive personal computers and connecting them via

network to build a super computer which can utilize the

idle processing time. The notion is that computational

grids will offers users the ability to connect to network and

make use of computing resources such as mass storage and

large processing capabilities.

 In grid, the scheduling process is done by the grid

scheduler. Grid scheduler mainly deals with how

efficiently and appropriately to assign resources to jobs.

While choosing resources for jobs, scheduler should

consider various characteristics of job such as length of

job, user deadline and resource characteristics such as

capability, communication time and cost. The scheduler

will monitor all the resources by a resource monitoring

process before dispatching the job the scheduler. The grid

schedulers receive the job from the client and assign them

to the particular resource. If any job failed due to some in

the sites it should be tolerated. So we can purpose Fault

tolerance. At the primary site, a backup is takes from each

job. If any primary failed, the backup always succeeds.

Two types of load balancing policy in grid

environment are static and dynamic load balancing. Static

is not suitable to grid computing (change the load with

respect time). Based on the load at the time it allocates the

job to resource and also work stations are not constantly

monitor. In dynamic load balancing, work stations are

constantly monitored and selection of selection of

Workload done at run time and also uses the current load

information for decision making. Dynamic load balancing

algorithm will give better performance then static load

balancing. Each site in the grid environment will provide

its hardware information; time and how many resources

are available in each site in the grid environment. That

information is recorded for decision making purpose. The

grid scheduler is a manager it will manage the state of sites

to execute the jobs. As arriving jobs are placed in job

queue, the load of the system is increased with increase the

length of job queue. While load in system is balanced, the

grid scheduler will receive the job from the job queue and

perform the scheduling process.

The remainder of this paper is organized as follows:

Section 1. Introduction of Grid Computing

Section 2. Literature Survey

Section 3. Implementation

Section 4. Min-Max Fair Scheduling Algorithm

Section 5. Results and Analysis

Section 6. Conclusion.

II. Previous Work

In the grid the load balancing algorithm will

follow three polices there are information policy, transfer

policy, location policy and selection policy. The

information policy specifies what workload information to

be collected, when it to be collected and from where it to

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1332

be collected. The resource monitoring system will monitor

the status of the resource based on the resource load

information the transfer policy will decide whether the

resource have eligibility to act as s sender or receiver.

Sender means it will transfer the job to the resource.

Resource means it will receive the job from another

resource. Based on the transfer policy the location policy

will select a suitable partner for sender or receiver. If the

resource is an eligible sender the location policy seeks out

an eligible receiver to transfer the job. Suppose the

resource is an eligible receiver location policy seeks out an

eligible sender. Once we decide the resource as an eligible

sender or receiver the selection policy. The selection policy

defines which job should be migrated from heavily loaded

to lightly loaded node. [16]

 An extended version of the mutual information

feedback policy has been proposed to achieve average

response times of jobs. [3] Jobs will fail when the site

where they are located fails due to hardware faults. The

faults can be transient or permanent and are assumed to be

independent. For each job, the backup is scheduled after its

primary. There exists a fault detection mechanism such as

fail-signal and acceptance test to detect processor and job

failure. [13]With respect to fault tolerance, primary backup

approach proposed. Where one server is selected as the

primary and all the other are backups. If the primary fails

one of the backups takes over. In this paper the backup is

scheduled for each primary. [14]

In this article, an approach for load balancing and

scheduling is proposed. The throughput and performance

of the grid environment will greatly improve by fair

scheduling approach with equal opportunity to all jobs is

designed. The fair scheduling approach follows hybrid

scheduling by calculating residue value for each job for

number of iterations until the residue gets to zero. This

approach is linear and iterative in nature which eliminates

the fluctuations in the response time. [10]

III. Proposed Work

1. Globus Toolkit (Grid Simulation Toolkit):
The Globus Toolkit is a set of services and

software libraries that support Grids and Grid applications.

The Toolkit includes software for security, information

infrastructure, resource management, data management,

communication, fault detection and portability. It is

packaged as a set of components that can be used either

independently or together to develop useful Grid

applications and programming tools. Globus Toolkit

components include Grid Security Infrastructure (GSI),

which provides a single-sign-on, run-anywhere

authentication service, with support for delegation of

credentials to sub components, local control over

authentication service and mapping from global to local

use identifies; the Grid Resource Access and Management

(GRAM) protocol and service, which provides remote

resource allocation and process creation, monitoring and

management services; the Meta computing Directory

Service (MDS), an extensible Grid Information service

that provides a uniform framework for discovering and

accessing system configuration and status information

such as computer server configuration, network status or

the locations of replicated datasets and GridFTP, a high-

speed data movement protocol. The proposed system

builds on using Grid Simulation Toolkit Version 5.

2. System Model
In our simulation model, each site consists of one

machine and each machine consists of one or more

processors. As shown in Fig. 1, the environment has a

global and local grid scheduler which is a software

component that resides within each site. The grid scheduler

will manage the sites, provide the resources, receive the

job from the client and assign them to the processor in the

grid environment. If the local/remote site wants to join in

the grid environment, then resource information like

computing speed, storage, communication bandwidth etc.,

should be informed to the GIS.

System must satisfy following conditions:

 The grid scheduler administers the state of sites

that execute the job request.

 Future decision making should be made based on

the contribution of the resource to the previous

request with time stamp.

 The user job request must contain the information

about the minimum required resource units.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1333

 Fig. 1. Process flow of Grid Scheduler

3. Grid Model:
Grid environment consists of n sites connected to

simple network, labeled as s1, s2, s3… sn. We also assume

that there exists a well known set of brokers (Scheduler),

denoted as b1… bh. Each broker is located in certain grid

site. We use home site (bi) to denote the site that the broker

bi resides currently. Each broker is responsible for

exchanging information with other brokers and forwarding

the lightest loaded site from remote region to the heaviest

loaded site in the current site.

4. Proposed Approach Framework:
 Initially the grid client will submit the job to the

grid scheduler. Grid scheduler works in three phases:

Resource Discovery, Resource Allocation and Job

Execution. Resource Discovery phase involves identifying

the available resources from resource pool. Whereas

resource allocation phase involves selection of suitable

resource and allocating the selected resource to the jobs.

Third phase is executing the jobs at resource locations. The

grid scheduler will receive job from the

user and place the job in queue. The scheduler will assign

the jobs to appropriate sites. The grid scheduler backup the

received job and discover the candidate set of nearest sites

and give the job to the load balancing decision maker. The

load balancing decision maker will select the minimum

loaded site and give the job to the site selector.

 The site selector will decide whether the jobs are

to be executed in the local or remote area. The job

dispatcher will dispatch the jobs based on the availability

of the sites. The fault detector will monitor the computing

nodes. If the computing nodes get failed then fault detector

will send the failure message to the fault manager.

5. Application Design:
This approach follows decentralized strategy

which implies that any task in grid site may utilize any

available resource. In dynamic decentralized strategy,

decisions are made at any time. The grid scheduler

performs state collection, decision making and dispatch o

task to the available site. The fault detector will monitor

computing nodes. If the computing node completes the job

successfully then grid scheduler will send the completed

job details to the grid user. Another wise failure job details

send to the grid user.

6. Determining the List of Candidate Keys:
Each site in the grid environment has more

chances to enter in to the busy state because of grid

environment is a dynamic. So selecting site is more

important.

An array Vj is proposed to evaluate the

n

i

XijfWi=Vj , 1≤ j ≤ N

Where

i-which site in the Grid Environment

j- Computing Node

Wi- weight value for each site in Grid computing so we are

taking it as MIPS Rating of each site in Grid Environment.

F(Xij)- Free Resources in each site

Vj- Speed of execution rate for each site

In Fig 2, based up on the value of Wi, job is

allocated to resource. Grid environment contain sites, each

site has more number of resource. MIPS value changed to

each site so If a job is allocate to resource based up on the

value of MIPS choose the

minimum loaded site i.e minimum MIPS value of site and

allocate the job to that site first, so increase the execution

speed And proper resource utilization is done. In this we

compare the FCFS (FIRST COME FIRST SERVE) &

FAIR SCHEDULING based up on the MIPS values so we

can get better results with Min-Max fair scheduling

algorithm.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1334

Fig. 2. Efficiency of Resources.

In Fig. 2, R0, R1, R2 and R3 are resources and

their MIPS values (Speed of the execution) taking

randomly. R3 has Minimum MIPS value compare to

another resources and R0 has Minimum MIPS value

compare to remain resources and R2 has minimum MIPS

value compare to R1 this process done up to last resource

i.e. R3<R0<R2<R1 so we first allocate the job to R3 and

next R0 similarly up to R1. So we get the proper resource

utilization and then performance of the grid also increase.

7. Job Allocation:
Suppose Grid environment have 4 Gridlet sites

i.e. (Gridlet0, Gridlet1, and Gridlet2 & Gridlet3) and

resources are R0, R1, R2 and R3 and jobs are job0, Job1,

Job2 and Job3 respectively. From Fig. 3, Jobs are allocated

in this manner.

Gridlet1 (Job1) is submitted to site Res3 and ID: 17

Gridlet3 (Job3) is submitted to site Res0 and ID: 5

Gridlet0 (Job0) is submitted to site Res2 and ID: 13

Gridlet2 (Job2) is submitted to site Res1 and ID: 9

Here job1 submitted to R3 because job 1 requires more

demand rates compare to another jobs. Based up on the

demand rates of jobs, jobs are allocated to minimum

loaded site. Demand rates of jobs (Job1>Job3>Job0>Job2)

8. Site selection
We have to calculate the list of candidate keys for

each site in grid environment. Those values are stored in

Vj. Values are compared to each other if the value is

highest than others so we can select the highest value

corresponding site as site selection. So job first allocated to

this site first. Here Vj is called effectiveness of site (OR)

threshold value. The sites which are within the threshold

value are considering as effective sites and stored in

ascending order.

9. Fault Detection & Fault tolerant:
At first jobs are waited in the queue and then

according to fair rates then jobs are assigned to the

resources. The resource gets starts to execute the jobs.

Most of the jobs are completed at correct time. If any

failure occurred i.e. resource does not execute the job in it.

The fault detector fined it and send message to the fault

manager. The fault manager will execute the secondary of

the job in another resource. Now this resource will

complete the job successfully.

10. Min-Max Fair Scheduling Algorithm:

We propose new Algorithm for distribution of the

load in Grid Environment. Here inputs and outputs to Grid

Environment are mentioned in below algorithm. Based

upon the algorithm, Processor Capacity is allocated to the

jobs.

Algorithm

Input-No. Of Grid Environments, Users and Jobs

Output-All Jobs are successfully executed

Begin

Calculate CPU Capacity(C) and assign Demand

Rates (D) and weights to jobs (W)

Calculate Residue= Divide Processor Capacity

by total Weights of jobs

Start First Iteration

If (W==1)

Allocate Residue to jobs

Else If (W==2)

Allocate Double Residue to Jobs

End

Calculate Residue=C-
n

=k

ktionFirstItera
0

Residue>0

End

Start Second Iteration

Begin

Calculate residue=Divide Remain Processor

Capacity by Total Remain Weights of jobs

If (W==1)

Allocate Residue to Jobs

Else If (W==2)

Allocate Double Residue to Jobs

Calculate Residue

If (Residue==0)

End

Each task has different demand rates and weights.

According to the weight the tasks are scheduled in the grid

environment. In grid environment, processor having the

capacity limits. The total weight of the tasks are calculates.

And then divide the processor capacity by the total weight

of the task. The calculated units are assigned to the tasks

having normal priority. The residue of the first iteration is

calculated. The residue is divided by the total weight of

remaining tasks. The calculated units are assigned to the

task having normal priority and then twice the calculated

units are assigned to the task having high priority.

Likewise the capacity of the processor is shared or

scheduled to the tasks.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1335

In Table 1, we take 6 jobs with id 0,1, 2, 3, 4, and 5.

Assign demand rates 5, 84, 3, 40, 5 and 20 and weights 1,

1, 1, 2, 1, 2 respectively. Total capacity=60. Divide

capacity 60 by total weights (60/8=7.5) (i.e. we can divide

60 into 8 parts).In First Iteration, Job 0, 1, 2 and 4 of

weights are equal to 1 then residue is assign to job 0, 1, 2

and 4. In allocated resources, job 0 demand rates are 5

allocated & residue value is also allocated to job 1, job 2 &

job 4. Job 1 has demand rate 84, in that 7.5 allocated

remain rates are allocated in next iteration. Job 2 has 3 and

assign resources are 7.5 in that 3 resources are allocated to

job 2. Job 4 has demand rates 5; allocated resources are

7.5 in that 5 resources are allocated. Job 3 and job 5 assign

weights 2 and demand rates 40 and 20 respectively.

Double the residue value is allocated to job 3 and job 5.

I.e. 2*7.5=15; 15 is allocated to job 3 and job 4. In first

Iteration, job 0, 2 and 4 are completed. Calculate the

residue value= (Total capacity-allocated capacity) i.e.

residue value=60-50.5=9.5 In Second Iteration, residue

value is allocated remain jobs. Remain total jobs of

weights 5(1+2+2); 9.5 divided with 5 and gets 1.9. This

value is allocated to job 1, job 2 and job 5. Job 1 has

weight 1 so 1.9 value is allocated. So job 1 gets 9.4

resources in second iteration. Job 3 and job 5 has weights 2

than double the residue value and allocated to Job 3 and

Job 5 i.e. 2 * 1.9 =3.8. Residue 3.8 value is allocated to Job

3 and Job 5 then Job 3 got 18.8 and Job 5 got 18.8 and

residues value gets to zero. So this way shared processor

capacity is fully utilized.

Table 1. Min-Max Fair Scheduling

Job id Demand

rates

Weights First

iteration

Second

iteration

0 5 1 5 5

1 84 1 7.5 9.4

2 3 1 3 3

3 40 2 15 18.8

4 5 1 5 5

5 20 2 15 18.8

IV. Results and Analysis

In this section, we show the results of my algorithm.

In this results, how to create grid Environment and sites

and resources and how to assign jobs to resources and how

to schedule the resources to execute the jobs. In the results,

Girdlet0, Gridlet1, Gridlet3 are successfully executed but

Gridlet2 is failed so we can assign failed jobs to another

Gridlet4. Job 2 is submitted to Res 4 and successfully

executes jobs and display recovery done to user.

RESULTS:

---Enter Number of sites of grid Environment: 4

Creating a gridlet with name =gridlet_0 and ID =0

Creating a gridlet with name =gridlet_1 and ID =1

Creating a gridlet with name =gridlet_2 and ID =2

Creating a gridlet with name =gridlet_3 and ID =3

---Enter No of user’s for Grid Environment: 4

Creating a griduser with name =user_0

Creating a griduser with name =user_1

Creating a griduser with name =user_2

Creating a griduser with name =user_3

---Total No of jobs: 4

Job ID: 0=0

Job ID: 1=1

Job ID: 2 =2

Job ID: 3 =3

---Resource creation

Initializing GridSim package

Initializing

Created Res0 with id = 5

Creating Res1 with id = 9

Creating Res2 with id = 13

Creating Res3 with id = 17

---Resource status

Fx00=4

W0=1416

Value function of site 0 is 5664

Fx11=4

W1=84

Value function of site 1 is 336

Fx22=4

W2=1404

Value function of site 2 is 5616

Fx33=4

W3=964

Value function of site 3 is 3856

Minimum loaded site is 1

That is 336

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1336

Processor capacity: 40

Job id

0

1

2

3

Demand Rates

8.0

107.0

6.0

90.0

Weights

2

1

1

2

First Iteration

8.0

6.666666666666667

6.0

13. 3333333333334

Second Iteration

8.0

8. 666666666666668

6.0

17.333333333333336

Job allocation:

Gridlet1 is submitted to site Res1 and ID is: 9

Gridlet3 is submitted to site Res5 and ID is: 25

Gridlet0 is submitted to site Res2 and ID is: 13

Gridlet2 is submitted to site Res3 and ID is: 17

Initializing…

Starting GridSim version 5.0

Entities started.

Sim_system: No more future events

Gathering simulation data

Grid Information Service: Notify all GridSim entities.

Simulation completed.

Gridlet ID Status Output Size Cost

0 Success 300 0.0

1 Success 300 0.0

2 Failure 300 0.0

3 Success 300 0.0

Fault Manager sends the failure message details to user

Failure site Gridlet id 2 Status FAILURE

Assign job 2 to Gridlet with name = gridlet_4 and ID

=4

Initializing Gridsim package

Initializing…

Created Res4 with id = 5

Gridlet 4 is submitted to site Res 4

Gridlet Number Status

4 Success

------Job Execution

Gridlet Number Status

0 Success

1 Success

2 Failure

3 Success

4 Success (Recovery Done)

In Fig. 4. Comparison of FCFS and Min-Max Algorithm

In Fig.4, we compare the throughput of FCFS and

Min-Max algorithm so proposed algorithm give better

response time in within fraction of seconds, all jobs

executed in fraction of seconds so here maximum resource

utilization done and also increase the performance of grid

environment so performance of grid is improved.

V. Future Work

In this paper, we presented a highly de-centralized,

distributed and scalable algorithm for scheduling tasks

and load balancing resources in Grid Environment. Our

algorithm providing an effective scheduling and

resource management strategy. We introduce a new Min-

Max Fair scheduling algorithm based on minimum

efficiency of site. So that gives better performance. Still

we can increase the performance of Grid, in future work

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1337

we can use efficient fault tolerant mechanism that gives

better results.

Conclusion

 Load balancing is important issue in the grid

computing environments. We propose a new way to load

balancing. The Min-Max fair scheduling algorithm is

played very important role in the job dispatch phase. Using

this Min-Max algorithm the jobs are scheduled. The fair

rates are very important in the fair scheduling algorithm

and another issue in grid is Fault Tolerant. The fault is

tolerated by execute the job in another resource. By this

jobs are successfully executed. Here we achieve high

throughput and resource utilization is done so that

performance of Grid Environment is increased.

 REFERENCES

[1] Nikolaos D, Doulamis, Anastsios D. Doulamis, Emmanouel A.

Varvarigos and Theodora A. Varvarigou, ”Fair scheduling

algorithm in grids”, IEEE transactions on parallel and distributed

systems, Vol. 18, No.11, November 2007, pp. 1630-1648.

[2] Buyya, R., Abramson, J., and Giddy, j/ Nimrod/G: architecture

for a resource management and scheduling system in a global

computational Grid. 4
th
 IEEE conf. on High-performance

computing, 2000.

[3] Kai lu and Albert Y.Zomaya “A Hybrid policy for Job Scheduling

and Load Balancing in Heterogeneous Computational Grids” 6
th

International Symposium on parallel and Distributed Computing,

IEEE, 2007.

[4] Manish Arora, Sajal K. Das and Rupak Biswas “A De-centralized

Scheduling and Load Balancing Algorithm for Heterogeneous

Grid Environments”, Proceeding of the International Conference

on Parallel Processing Workshops, IEEE, 2002, pp. 1-7.

[5] Yajun Li, Yuhang Yang and Rongbo Zhu “A Hybrid Load

balancing Strategy of Sequential Tasks for Computational Grids”,

International Conference on Networking and Digital Society,

IEEE, 2009, pp. 112-117.

[6] S.K. Karthik Kumar, M. Udhaya Preethi and P. Chitra “Fair

Scheduling Approach for Load Balancing and Fault Tolerant in

grid environment”, IEEE International Conference on Emerging

Trends in Computing, Communication and Nanotechnology,

2013. pp. 446-451.

[7] Jing Wei-peng, liu Ya-qiu and Wu Qu “Fault-tolerant task

scheduling in Multiprocessor systems based on Primary-Backup

Scheme”, IEEE, 2010, pp. 670-675.

[8] Jasma balasangameshwara, Nedunchezhian Raju “A Hybrid

policy for fault tolerant load balancing in grid computing

environment”, Journal of network and Computer Applications,

Vol. 35, Issue 1, January 2012.

[9] Hwang s, Kesselman C,”A flexible framework for fault tolerance

in the grid”, Journal of grid computing, 2003.

[10] N. Budhiraja et al., S. Mulender “The primary Backup

Approach”, Distributed systems, pp.169-197, 1993.

[11] Li K, “Optimal load distribution in non dedicated heterogeneous

cluster and grid computing environment”, Journal of Systems

Architecture: The EUROMICRO Journal 2008.

[12] Nandagopal Malarvizhi, Rhymend Uthariaraj V, “Decentralized

dynamic load balancing for multi cluster grid environment”

Future Generation Computer Systems 2009.

[13] L. Anand, D. Dhose, V. Mani, “ELISA: An estimated load

information scheduling algorithm for distributed computing

systems”, Computers & Mathematics with applications, Vol. 37,

Issue 8, April 1999.

Authors Profile

Mr. Mahesh Reddy G pursed

Master of Technology from

Vignan’s University, India in year

2014. He is currently working as

Assistant Professor in Department

of Computer Science and

Engineering. His main research

work focuses on Grid Computing

and IoT. He has 2 years of teaching experience and 2 years

of Indistrial Experience.

Mr. Lakshmi Narayana G pursed

Bachelor of Science and Master of

Science from JNTUK, India in

year 2012. He is currently working

as Assistant Professor in Computer

Science and Engineering. His main

research work focuses on Grid

Computing, Big Data and IoT. He

has 6 years of teaching experience .

Mr. Srinivasa Reddy K pursed

Master of Technlogy from JNTUK,

India in year 2016. He is currently

working as Assistant Professor in

Computer Science and Engineering.

His main research work focuses on

Grid Computing, DWDM and IoT.

He has 2 years of teaching

experience.

