

 © 2018, IJCSE All Rights Reserved 1399

International Journal of Computer Sciences and Engineering Open Access

Research Volume-6, Issue-6 E-ISSN: 2347-2693

Mode Based Round Robin Scheduling Algorithm

S.Jain
1*

, H. Rohil
2

1* Dept. of Computer Science and Application, CDLU, Sirsa, Haryana, INDIA.
2 Dept. of Computer Science and Application, CDLU, Sirsa, Haryana, INDIA.

*Corresponding Author: engishilpa19@gmail.com

Available online at: www.ijcseonline.org

Accepted: 13/Jun/2018, Published: 30/Jun/2018

Abstract— In a multiprogramming environment, the Scheduling technique decides which process will be selected and

assigned to the CPU next so that the efficiency of the CPU can be increased. One of the well-known techniques of

scheduling is round-robin technique. A number of modifications have been made in the basic round robin scheduling

algorithm but still work is going on to make it the ideal one. The performance of this technique mainly depends upon the

selected value of time quantum i.e. a fair share of time for which a process can get the CPU and if the process still not

completed, it will join the ready queue for completion of the remaining task. For achieving this aim, this paper proposed

a new mode based round-robin scheduling algorithm that offers the reduction of average turnaround time as compared to

average turnaround time calculated by existing modulus based technique, a best reported similar technique available in

the literature. Experimental evaluation is done using C language.

Keywords— CPU Scheduling, Scheduling Algorithm, Round-Robin Scheduling, Turnaround-Time, Time-Quantum.

I. INTRODUCTION

In the process scheduling, the process manager removes the

running process from the CPU and selects the next suitable

process on the basis of some strategy. Process scheduling is

an important part of Multiprogramming operating systems.

To schedule processes, a technique known as round-robin

was invented. Round-robin is a pre-emptive type of

scheduling algorithm. At the initial stage, a static time

quantum is assigned to each process as a time quantum. A

process could take the CPU for its allotted time quantum and

has to be pre-empted. As soon as the time quantum

completed, it has to leave the CPU sand next process in the

ready queue is assigned that CPU. If still, some work is

pending for the previous process, it will join the ready queue

for completing its pending work. Later, no. of modifications

was done to make a better approach than this. To achieve that

purpose static time quantum gets changed to dynamic time

quantum. Our purpose is to develop a new CPU scheduling

technique with dynamic time quantum. Before this, a number

of techniques were available with dynamic time quantum e.g.

modulus based technique, in which the time quantum is

calculated with the help of average, median and some other

mathematical functions [1]. The main objective of the

proposed scheduling algorithm is to reduce average

turnaround time, where Turnaround time is defined as the

total time required by a process from its submission till its

completion.

The paper is organized in sections. Section 1 discusses the

introduction of round robin scheduling. Section 2 covers the

research work already done over the round robin scheduling.

Section 3 discusses the proposed procedure and the existing

procedure which is considered as a base for the current

research work. Section 4 covers the numerical analysis of

proposed and existing algorithm. Section 5 discusses the

comparison among proposed and existing method. Section 6

discusses the final conclusion of the research work.

II. RELATED WORK

To implement round-robin scheduling various static time

quantum and dynamic time quantum methods has been

developed to date. Due to poor throughput and a large

number of context switches, the static time quantum

technique was modified to the dynamic one. In other work,

modulus based techniques [1], the fuzzy concept [2] etc. are

used to predict the length of time quantum. The detailed

study is given below:

This is the main research paper with which our proposed

work has been compared. The existing algorithm under

comparison is the modulus based approach. In this approach

concept of the dynamic time quantum is used and the time

quantum is calculated by following formula

√((average)
2
 + (median)

2
), where the average is calculated

as the sum of terms/total number of terms. And median is

calculated as:

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1400

 Case 1: If a number of terms is odd, a median element is

an element present at the position calculated by ((no. of

elements + 1) /2).

 Case 2: If number of terms is even, median element is

element present at position calculated by sum of (((no. of

elements /2) + (no. of elements/2) + 1))/2 [1].

In this research, CPU scheduling done by analyzing the

process so that the burst time of the process can be selected,

the analysis carried out when the process executed for the

first time. The analysis will determine the burst time of the

process and according to that burst time, the operating

system can adapt the value of the time-slice or time quantum

Q. When operating system starts for the first time, it begins

with a default time quantum value, which is subject to

change after a period of time for that the operating system

can identify the burst time for a subset of the programs used

by the user. The system will take the short period of time to

learn user behavior through the analysis of the burst time of

the new processes. The determined time quantum represents

real and optimal value because it based on real burst time.

When a new process loaded to be executed the operating

system tests the status of the program which can be either 1

or 0. When the status equals to 0 this means that the process

is either being executed for the first time or it has been

modified or updated since the last analysis. The operating

system assigns a counter to find the burst time of the process

and continues executing on the remaining processes

including the new arrival process using the current time

quantum Q, otherwise and when status is equal to 1, then the

operating system recalculates the time quantum Q depending

on the remaining burst time of ready processes including the

new arrival process. It was also found that the optimal time

quantum can be presented by the median =25 for the set of

processes in the ready queue [3].

 In this round robin algorithm will be executed in three

phase this will help to minimize average turnaround time.

The algorithm allocates every process to CPU, a single time

by applying Round Robin schedule, an initial time quantum

of k units. After the first run, the initial time quantum gets

doubled (2k units) and later select the shortest process from

the waiting queue and assign it to the CPU. After that, select

the next shortest process for execution by excluding the

already executed. Above defined steps will be repeated for

remaining processes [4].

 Here an algorithm is designed where; the jobs are sorted

in ascending order of their burst time. Performance of RR

algorithm mainly depends upon the size of time quantum. If

it is very small, it causes too many context switches. If it is

very large, the algorithm degenerates to FCFS. This

algorithm takes a dynamic time quantum where the time

quantum is repeatedly adjusted according to the remaining

burst time of currently running processes. To get the optimal

time quantum, the median of the burst time is taken as the

time quantum [5].

 In this algorithm, the researcher decides the time quantum

equals the burst time of the first process, which will change

after the end of the first time quantum. The determined time

quantum represents real value. Repeatedly, when a new

process is loaded into the ready queue, the operating system

calculates the average of the sum of the burst times of

processes found in the ready queue including the new arrival

process and set that value as a time quantum [6].

In this research work, The Fuzzy Inference System is used

for finding the time quantum. It got 2 inputs and one output.

The first input is the number of user/ processes in the system

and the second input is the average burst time of the

processes in the ready queue. Time quantum is the output of

the Fuzzy inference system. Membership Function gets used

here for calculation of inputs and time quantum. In this

paper, a method using the fuzzy logic value of time quantum

has been decided in such a way that it is neither too large nor

too small such that every process has the best throughput

without unnecessary context switches [7].

This research work focus on making task set and then

applying the adaptive round robin algorithm. According to

the arrival time, task sets are being formed. For this one, time

quantum value is valid only for a task set. Every time while

preparing task set, the algorithm will select the best suitable

time quantum value with the help of greedy approach [8].

III. METHODOLOGY

The proposed algorithm is named as the mode based method.

In this method, dynamic time quantum (TQ) is calculated by

finding the mode of the elements under study and the value

of mode and hence the value of TQ will vary with the

number of runs. The detailed algorithm is given as:

A) The algorithm for proposed Mode based Round Robin:
i. Enter the number of processes under study.

ii. Enter the maximum and minimum range of the numbers,

in which you want to generate the burst time of the processes.

The processes are generated randomly.

iii. Sort all the processes in ascending order of their burst

time.

iv. For RUN 1, TQ is decided by calculating Mode of the

available processes under study.

The Mode can be calculated by:

Case 1: An element which is repeated the maximum number

of times will be considered as a mode.

Case 2: In case, all elements are repeated the same number

of times then the element having the maximum value of time

quantum will be the targeted time quantum for the problem

under study.

v. For RUN 2, TQ is decided by calculating Mode of

remaining processes under ready queue.

vi. Repeat steps 4-5 until all processes execution gets

completed.

vii. Gantt chart for final execution.

viii. Calculate Average turnaround time for the proposed

algorithm by dividing total turnaround time by total no. of

processes under study.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1401

B) EXISTING SIMILAR ALGORITHM SELECTED FOR

COMPARISON [1]:

The existing algorithm is named as modulus base method [1].

In this method, dynamic time quantum (TQ) concept gets

used. This algorithm is selected for comparison with the

proposed method because modulus based research work [1]

proved that it gives less number of context switches and

hence throughput as compared to Shortest remaining burst

round robin (SRBRR) technique [5] and AN algorithm [6].

So if proposed method proved itself good as compared to

modulus based method [1] then it will be better than both

SRBRR and AN algorithm as well.

The algorithm for existing Modulus based Round robin:

1. i. Enter the number of processes under study.

ii. Enter the maximum and minimum range of the numbers,

 in which you want to generate the burst time of the

 processes. The processes are generated randomly.

iii. Sort all the processes in ascending order of their burst

 time.

iv. For RUN 1,

a. Median can be calculated by:

Case 1: If the number of processes are even in number

say n, then median will be a process available at position

number calculated by finding an average of (n/2)
th

and

((n+1)/2)
th

 term.

Case 2: If Number of processes n is odd, then the median

will be the process available at position number given by

ceiling (n/2) in the sorted array.

b. Average can be calculated by:
 Average can be calculated by adding burst time of all the

processes / Total number of processes and consider the

integer part of the calculated term.

c. TQ can be calculated by:
TQ = √[{(median)

2
+ (avg)

2
}/2]

d. Draw Gantt chart for RUN 1.

v. For RUN 2:

a. Draw table for pending processes after RUN 1.

b. Median can be calculated by:

Case 1: If the number of remaining processes are even

in number say n, then median will be a process available

at position number calculated by finding an average of

(n/2)
th

and ((n+1)/2)
th

 term.

Case 2: If Number of remaining processes n is odd, then

the median will be the process available at position

number given by ceiling (n/2) in the sorted array.

c. Average can be calculated by:

Average can be calculated by adding burst time of all the

remaining processes / Total number of remaining

processes and considers the integer part of the calculated

term.

d. TQ can be calculated by:

TQ = √[{(median)
2
+ (avg)

2
}/2]

e. Draw Gantt chart for RUN 2.

vi. Repeat step5 until all processes execution gets

completed.

vii. Draw Gantt chart for the final execution.

viii. Calculate Average turnaround time for modulus method

by dividing total turnaround time by the total number of

processes under study.

IV. EXPERIMENTAL EVALUATION

A) Average Turnaround time for proposed

Mode based method:

i. The total number of processes entered 5.

ii. Minimum Range of the CPU burst time entered and

maximum range of the burst time 18. Processes are

generated randomly within the range using random

function.

iii. Generated burst time of processes in sorted order:

Table 4.1

Processes Burst

Time in

seconds

Sorted

Order

processes

Sorted

order

Burst

Time

P1 13 P3 4

P2 16 P5 9

P3 4 P1 13

P4 14 P4 14

P5 9 P2 16

RUN 1:

 The value of Mode for Run 1: 16

 Therefore, for Run 1, the value of TQ: 16

 Gantt chart after RUN 1:

P3 P5 P1 P4 P2

0……..4………13………26……..40………56

RUN 2:

The value of Mode for Run 2: 0

 Therefore, for Run 2, value of TQ =0.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1402

Gantt chart for RUN 2:

P3 P5 P1 P4 P2

0…….4………13………26………40………..56

vi. No process remaining

vii. Final Gantt chart :

P3 P5 P1 P4 P2

0…….4………13……..26………40………..56

viii. Average Turnaround time for mode method in above

 scenario =27.8

B) Average Turnaround time for existing

Modulus method:

1. i. The total number of processes entered 5.

ii. Minimum Range of the burst time entered 1 and

maximum range of the burst time 18. Processes are

generated randomly within the range using random

function.

2. iii. Generate burst time of processes in sorted order:

Table 4.2

Processes Burst

Time in

seconds

Sorted

Order

processes

Sorted

order

Burst

Time

P1 13 P3 4

P2 16 P5 9

P3 4 P1 13

P4 14 P4 14

P5 9 P2 16

 RUN 1:

a. Median for Run 1:

Total number of elements in sorted list = 5

Median (Element at position) = Ceiling (5/2) =3

Therefore, median= 13.

b. Average for Run1:
Floor {(4+9+13+14+16)/5} = 56/5 = floor (11.2)

Average: 11.

c. Time Quantum for Run 1:
TQ = int [[√{ (13)

2
 + (11)

2
} / 2] = 12

d. Gantt Chart for Run 1:

P3 P5 P1 P4 P2

 0……..4……..13……….25……..37……….49

RUN 2:

a. Table for pending processes after Run 1:

Table 4.3

P2 4 P3 1

P3 1 P4 2

P4 2 P2 4

b. Median for Run 2:
Total number of elements in sorted list=3

Median (Element at position) = Ceiling (3/2) =2

Therefore, median= 2.

c. Average for Run2:

Floor (4+1+2)/3 = 7/3 =floor (2.3)

Average: 2.

d. Time Quantum for Run 2:

TQ = int [√ {(2)
2
 + (2)

2
}] =2

e. Gantt Chart for Run 2:

P3 P5 P1 P4 P2 P1 P4 P2

0…..4…..13….25…..37…..49……50….52…54

vi. RUN 3:

a. Table for pending processes after Run 2:

Table 4.4

P2 2 P2 2

b. Median for Run 3:
Total number of elements in sorted list = 1

Median (Element at position) = ceiling (1/2) =1

Therefore, median= 2.

c. Average for Run 3:

Floor (2/10) = floor (2)

Average: 2.

d. Time Quantum for Run 3:

TQ = int [[√{(2)
2
 + (2)

2
} / 2]] = 2

e. Gantt Chart for Run 3:

P3 P5 P1 P4 P2 P1 P4 P2 P2

0…..4…13….25…..37…49…50…..52…..54…56

vii. No process is left.

viii. Final Gantt Chart:

0…..4…..13….25….37…..49…..50…52…54…56

ix. Average Turnaround time for modulus method

 for above scenario =35.

V. RESULT AND DISCUSSION

Table 5.1 shows the average turnaround time calculated

using the existing algorithm (Modulus based Round Robin

scheduling) vs. proposed algorithm (Mode based Round

Robin scheduling) for various ranges of CPU burst time.

Details are as under:

P3 P5 P1 P4 P2 P1 P4 P2 P2

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1403

TABLE 5.1

AVERAGE TURNAROUND TIME

Sr.

No

.

The Range

of CPU

Burst Time

Average Turn Around Time

Proposed

Mode based

Round Robin

Method

Existing Modulus

based Round Robin

Method

1. 1-10 12.00 13.62

2. 10-20 63.86 73.29

3. 20-30 115.43 130.91

4 30-40 104.279 113.279

5 40-50 134.8999 146.789

The experiment shown above is conducted for different ranges of

CPU burst time. Here, 100 experiments were conducted in each

range of burst time. For each experiment under one range, 5

processes were taken. CPU burst time for these processes was

generated using RAND () function in C language. Then the average

of turnaround times of these 100 experiments was calculated using

proposed and existing technique. Similarly next 100 experiments

were conducted for CPU burst time ranges from 10-20 and the

process continues for remaining ranges. Hence, a total of 500

experiments in 5 ranges were conducted. Each row of the table 5.1,

gives an average of turnaround time of 100 experiments for a given

range of CPU burst time for proposed method and for the existing

method. The result produced by the proposed method is far better

than existing approach under comparison

VI. CONCLUSION

Round robin scheduling is a pre-emptive fair share scheduling

method. It is free from starvation problem. The success of this

scheduling algorithm depends upon the selection of the right value

of time quantum. The proposed technique named as mode based

round robin scheduling algorithm also tried to find the suitable

value of time quantum so that average turnaround time of the

system could be minimized. It was compared with the existing

modulus based technique, the best reported similar approach

available in literature. The existing and the proposed algorithms

were implemented in C language. In each experiment under range

1-10 of CPU burst time, 5 processes were generated randomly using

rand () function of C language and turnaround time was calculated

for the proposed approach and the existing approach. This step was

repeated 100 times for one range. The average of these 100

turnaround times was calculated for both approaches under range 1-

10. The same experiment was repeated for remaining ranges and the

results were entered in the table 5.1. From above experiment, it was

concluded that the proposed approach gives better average

turnaround time as compared to existing modulus technique.

REFERENCES

[1] S. Arif, S. Rehman, F. Riaz, “Design of A Modulus Based Round

Robin Scheduling Algorithm”, 9th Malaysian Software

Engineering Conference, pp. 230-235, Dec. 2015.

[2] M. Ghazizadeh and M. Naghibzadeh et al., “Fuzzy Round Robin

CPU Scheduling (FRRCS) algorithm”, International Conference

on Systems, Computing Sciences and Software Engineering

(SCSS), Part of the International Joint Conferences on Computer,

Information and Systems Sciences and Engineering, pp: 348-353,

2007.

[3] R. Matarneh, “Self-Adjustment Time Quantum in Round Robin

Algorithm Depending on Burst Time of the Now Running

Processes”, American Journal of Applied Sciences, pp. 1831-

1837, 2009.

[4] A. Singh et. al., “An Optimized Round Robin Scheduling

Algorithm for CPU Scheduling”, International Journal on

Computer Science and Engineering, Vol. 02, No. 07, pp. 2383-

2385, 2010.

[5] R. Mohanty, H. Behera, K. Patwari et al. "Design and

Performance Evaluation of a New Proposed Shortest Remaining

Burst Round Robin (SRBRR) Scheduling Algori thm"

[6] A. Noon, A. Kalakech, S. Kadry, "A New Round Robin Based

Scheduling Algorithm for Operating Systems: Dynamic Quantum

Using the Mean Average ", IJCSl lnternational Journal of

Computer Science, Issues, Vol. 8, Issue 3, No. I,2011.

 [7] B. Alam, M. Doja, R. Biswas,“Finding Time Quantum of Round

Robin CPU Scheduling Algorithm Using Fuzzy Logic”,

International Conference on Computer and Electrical Engineering,

pp. 795-798, 2008.

 [8] N. Kumar, A. Kumar, “A Task set Based Adaptive Round Robin

(TARR) scheduling algorithm for improving performance”, 1st

International conference on futuristic trend in computational

analysis and knowledge management, pp. 347-352, 2015.

Authors Profile

S. Jain- Shilpa Jain is M.Tech. in Computer

Science and engineering (2011) from Ch.

Devilal University, Sirsa, Haryana. I have

completed my B.Tech. in Computer Science

and Engineering (2008) from Kurukshetra

University, Kurukshetra. I have qualified Gate

(2010), GATE (2017), UGC NET (DEC

2014), UGC NET (DEC 2015), UGC NET

(JAN 2017). I have been working as an assistant professor,

Department of Computer Science and Applications, Ch. Devilal

University, Sirsa, Haryana, India since 2015. I am having a teaching

experience of approximately 7 years. Published a research paper

named as “Text-based emotion detection” authored by Poonam

Arya and Shilpa Jain in International Journal of Computer

Engineering & Technology (IJCET) (ISSN Print: 0976-6367)

recently. A total of 10 Research papers have been published in

various national, international Journals.

H. Rohil Harish Rohil started his career as

Asst. Professor at Dept. of CSA, Ch. Devi Lal

University, Sirsa (Haryana) in 2004. He

worked as Associate Professor and has been

founder officiating Registrar in addition to

other charges of Dean, Faculty of Physical

Sciences and Chairperson, Dept. of CSA at Ch.

Ranbir Singh University, Jind (Haryana). He

obtained his Ph. D. from Department of Computer Sc. &

Applications, Kurukshetra University, Kurukshetra in 2012 and his

M.Tech(CSE) from Guru Jambheshwar University of Sc. &

Technology, Hisar in 2004. He has published 70 research papers.

His research interests include software reuse, data mining, data

structure and, operations research.

