
 © 2019, IJCSE All Rights Reserved 1345

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

A Machine Learning Based Bug Severity Prediction using Customized

Cascading Weighted Majority Voting

Prachi Pundir
 1
, Satwinder Singh

 2*
, Gurpreet Kaur

3

1,2

 Department of Computer Science and Technology, Central University of Punjab, Bathinda, India
3
Assistant Professor, Department of Law, Bathinda College of Law, Bathinda, India

*Corresponding Author: satwinder.singh@cup.edu.in , Tel.: +919300064064

DOI: https://doi.org/10.26438/ijcse/v7i5.13451350 | Available online at: www.ijcseonline.org

Accepted: 21/May/2019, Published: 31/May/2019

Abstract— As open source software systems are becoming bigger and more complex, the bug detection task and fixing it to

improve the performance of the software is also getting complex, time taking, and inefficient. Users are permitted by the

developers to report bugs that are found by them using a bug tracking system such as Bugzilla to improve the quality and

efficiency of the software. In Bugzilla, users identify clearly the details of the bug, such as the description, the component, the

version, the product, and the severity. Depending on this information, the priority levels to the reported bugs are assigned by

the developers according to their severity. In this research, the model is proposed that is a customized version of a classification

technique called ―Customized Cascading Randomized Weighted Majority Voting‖. This technique will include an ensemble of

two base classifiers: Naïve Bayes classifier and Random Forest classifier with different proposed weights in case of textual

datasets.

Keywords— Eclipse, Priority Prediction, Severity Prediction, Machine Learning, Textual Analysis, Bugzilla, Jupyter Notebook.

I. INTRODUCTION

As the rapid increase in dependence on software systems, the

importance of software quality is becoming more

necessitous. There are different methods to ensure quality in

software such as code reviews and rigorous testing so that

bugs can be removed as quickly as possible to prevent the

loss it may cause.

The bug is commonly described as the presence of a fault in

a software system which results in it to act differently from

its specified behavior. Due to system complexity and

incomplete testing, many software systems are often released

with defects. Bug reporting is a standard practice which

involves the integration of source software with bug

tracking/feedback system such as Bugzilla, Jira to keep track

of the reported bug by the end user to improve the next

releases. The number of responses is very large that it

becomes nearly difficult to remove all the bugs (due to time

constraints) and the software remains the same for many

releases. In order to come over this, the process called bug

triaging came into the picture. The collaboration of bug

priority on the basis of bug severity is called bug triaging.

The prioritization on the basis of severity forms the basis of

the important attribute that describes the impact of a bug on

the successful execution of the software product.

II. LITERATURE REVIEW

Bug fixing time is one of the important prospects in this

research area. Kim & Whitehead et al. [1] did an

experimental study to report important metrics such as bug

fixing time, fixing time distribution, files with the highest

bug fixing time and likewise. (2006)

Gujral and Sharma et al. [2] have explored the usage of the

dictionary-based approach using text mining technique and

Naïve Bayes Multinomial classifier in the classification of

Bug severity. They have further employed an approach using

a dictionary of bug terms to make the task more efficient.

They have created the local dictionary of particular terms

using TF-IDF with which severity can be predicted. The

precision and accuracy level of 72% and 69% respectively

have been calculated using the NBM algorithm. (2015)

Cubranic et al. [3] went beyond the prediction of bug

severity and automated the process of assigning the bug to

the concerned developer. He trained a Naıve Bayes classifier

with the history of the developers who resolved the bugs as

the category and the corresponding explanations of the bug

reports as the data. This classifier is subsequently used to

predict the most appropriate developer for a newly reported

bug. It was found to be over 30 % accurate with assigning of

the incoming bug reports of the Eclipse project to a correct

developer using this approach (2004).

Similarly, Anvik et al. [13] used supervised learning

algorithms and labeling heuristic approach on different

datasets of Eclipse and Firefox. The precision level was

found to be 57% and 64% respectively. (2006)

Yang and Zhang et al. [11] proposed a novel method for bug

triage and bug severity prediction. They tried extracting

topic(s) from historical bug reports in the bug repository

using NLP and tokenization and find bug reports related to

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1346

each topic. When a new bug report arrives, they decide the

topic(s) to which the report belongs. Then utilizing the multi-

feature to identify corresponding reports that have the same

multi-feature (e.g., component, product, priority, and

severity) with the new bug report. Thus, given a new bug

report, we are able to recommend the most appropriate

algorithm (depending upon the frequency of topic) to fix

each bug and predict its severity. To evaluate the approach,

they had measured the effectiveness by using about 30,000

golden bug reports extracted from three open source projects

(Eclipse, Mozilla, and Netbeans). The results show that the

defined approach is effective to recommend the appropriate

algorithm to fix the given bug and predict its severity. (2014)

Pushpalatha and Mrunalini et al. [9] used a bagging

ensemble method for predicting the severity of Bugzilla bug

reports repository. They further analyzed the results and

compared with C4.5 classifier. Bagging, known as Bootstrap

aggregating technique creates the composite model N* which

reduces the variance of the individual classifier by combining

a series of N learned models, N1, N2…Nn. Whereas, on the

other hand, C4.5, also known as J48 on WEKA data mining

tool, is based on the Decision Tree algorithm. The results

have shown that bagging ensemble method gives better

accuracy (81%) as compared to C4.5 general classifier (76%)

on the given dataset. (2016)

Menzies and Marcus et al. [8] used textual analysis methods

like tokenization, stop word removal and stemming.

Important tokens are then identified using term frequency-

inverse document frequency (TF-IDF).These tokens are then

used as features for technique named SEVERIS (Severity

Issue assessment) on NASA datasets to predict the bug

severity.(2008)

Ahmed Lamkanfi et al. [7] proposed a new method for

classifying bugs based on the basis of severity. The usage of

text Mining Algorithms along with Machine Learning

Algorithm is effective in increasing the efficiency of the Bug

Severity prediction model. Bug reports from Eclipse,

GNOME, and Mozilla were preprocessed with text mining

algorithms (tokenization, stop word removal, stemming).

After that, Naïve Bayes was applied, and the average

precision and recall of Eclipse and Mozilla was 0.65-0.75

and 0.70-0.85 respectively in case of GNOME. (2011)
Israel Herraiz et al. [12] analyzed the bug reports of Eclipse.

It was concluded that this bug report has too many options

for severity and priority field. Severity levels can be reduced

to three levels as important, non-important and request for

enhancement based on the time taken. Similarly, the priority

field in bug reports was grouped into high, medium, low,

according to mean time taken to close the bug. (2008)

Lamkanfi et al. [6] provided a comparison of several

classifiers to classify bugs issues as severe, non-severe. He

compared Naive Bayes (NB), Naive Bayes Multinomial

(NBM) and Support Vector Machines (SVM) to evaluate the

performance of the classifiers within Eclipse and GNOME

projects. Moreover, he reduced the lower bound for the

number of bug reports for accurate prediction to 250 reports,

necessary for NB and NBM to start providing accurate

predictions. Overall, the best classifier selected for each

component was NBM with an average precision to vary

within 0.59 to 0.93. NBM was generally faster and more

efficient in the prediction process. (2010)

Ahsan S, Ferzund J, Wotawa F et al. [5] employed Naïve

Bayes, RBF network, Random Forest, SVM and J48

algorithms on Mozilla datasets and compared precision

values in the bug severity prediction.(2009)

Sharma and Rana et al. [10] proposed a feature selection and

classification approach for categorizing the bug reports into

severe and non-severe class. Further, they used the output to

create a dictionary of critical terms of severity indicator. Top

125 dictionary terms are selected and used as dictionary

terms to train a classifier using feature selection methods

such as info – gain and Chi-square. Further, the author

compared the performance of NBM and KNN. It was found

that accuracy, precision is in the range of 64 % to 75 % and

66 % to 74 % using Naïve Bayes classifier and using KNN

classifier, it is in the range of 87 % to 91 and 79 % to 95 %

respectively. (2015)

III. OBJECTIVE

The objectives of this research are as follows:

1. To study more than a thousand bug reports over

various versions of Eclipse and to apply the data pre-

processing techniques such as tokenization, Stop-words

removal process and stemming on the dataset.

2. To study various machine learning algorithms and

finalize two (Naïve Bayes and Random Forest) to create a

prediction model by using these algorithms

3. To compare and analyze the accuracy of these models.

IV. METHODOLOGY

4.1 BUG DATA COLLECTION:

The bug reports of Eclipse project are used for the

experiments. Eclipse projects focused on various metrics

such as building extensible frameworks, tools, and runtimes

for building and managing software across the life cycle

phase. In this research work, Eclipse bug data reports from

Bugzilla (bug repository) have been extracted. It has many

products and components. The versions taken into account

are 2.0, 2.1, 3.0,and 3.1. There are 5 main products of

Eclipse of which we focus on 3 which are JDT, PDE, and

Platform. The task of bug data collection was recorded

during the research work manually. The factors that were

taken into interest during the data collection are bug id,

summary, long description, product, component, resolution,

status, opened time, close time, severity, author and priority.

4.2 DATA PRE-PROCESSING:

Text processing is a major stage while working with textual

data in order to test and evaluate the accuracy of performance

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1347

of the proposed model. It is accomplished to extract textual

attributes from the bug report attributes such as summary and

long description. Because the summary of bug report gives a

better description of a bug report, it is included for priority

and severity prediction. There are a number of words in the

text attributes that contain meaningless information and

increase dimensionality, thus decreasing the performance of

the model. Therefore, standard text categorization approach

is used to transform the text data into meaningful

representation. It is done by applying the text pre-processing

techniques, which include tokenization, stop-word removal,

and stemming.

Various code is being written in Jupyter notebook to carry

out Text-Preprocessing.

4.3 CUSTOMIZED CASCADING WEIGHTED

MAJORITY VOTING:

This technique depends on having an ensemble of multiple

base classifiers that fed their individual results into a number

of learners; a learner per each severity category. For each

learner, each base classifier votes with different weight, i.e.,

a particular bug can be critical for one of the classifier, but

major for the other classifier and so on. Thus, the final output

is concluded using Majority Voting model. The higher the

combined weightage for the bug as a particular type of

severity, the more the chances of declaring it the same at the

end of the experiment. We would be using Random Forest

and Naive Bayes Multinomial classifiers on textual datasets.

The final contribution of this study is to design a generic

classification framework that can perform well with textual

datasets and also compare the result between NBM, RF, and

CCWMV.

4.4 EVALUATION TECHNIQUE:

Evaluation of the proposed technique is based on two

performance metrics: F-measure and Accuracy.

Traditionally, the accuracy rate has been the most commonly

used empirical measure. However, in the framework of

imbalanced datasets (used here), accuracy is no longer a

proper measure. Hence, it may lead to erroneous conclusions.

Therefore, F-measure is used.

F-measure can be defined as the weighted harmonic mean of

precision and recall and can be computed as follows.

 (1)

 (2)

 (3)

Where

F-measure is also used to define the weightage to the

particular severity type of the bug.

V. RESULTS AND DISCUSSIONS

As already discussed, the experiments were conducted with

different settings in Weka. The experiment accomplished by

using 70 percent of the dataset for training and 30 percent for

testing purpose. The results which are obtained are listed in

Table 1 and Table 2

Table 1 show precision, recall and F-measure for each bug

severity class for different versions of Eclipse projects and

their corresponding calculated accuracy for the bug report

features for Naïve Bayes classifier.

Experiments were performed on 4 versions of Eclipse using

textual datasets and different algorithms, namely Naïve

Bayes, Random Forest & proposed technique (CCWMV)

with 2 base classifiers (RF & NB). It is easily deducible from

the Table 1 that the Random Forest model predicts the

severity levels with an accuracy of 86.5% for version 2.0,

72% for version 2.1, 64.1% for version 3.0, 84.7% for

version 3.1. If we go by severity level, then Naïve Bayes is

efficient in predicting minor severity with the utmost

accuracy and average precision of about 86%.The reason

behind it is the presence of minor severity level in abundance

in our bug reports dataset with a maximum number of

instances. Given the imbalanced textual dataset, the Naïve

Bayes based classifier is also performing efficiently in

classifying different levels of severity with f-measure values

(combined metric of precision & recall) ranging between

0.71 to 0.86.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved

1348

Table 1. Severity prediction models of Naïve Bayes for Eclipse version 2.0, 2.1, 3.0, and 3.1

Version Algorithm Severity Precision Recall F-measure Accuracy

Eclipse
2.0

Naïve

Bayes

 Major 0.952 0.833 0.889

86.597%
 Minor 0.786 0.688 0.733

 Normal 0.947 0.857 0.900

 Blocker 1.000 0.947 0.973

 Critical 0.680 1.000 0.810

 Wt. Avg 0.884 0.866 0.868

Eclipse
2.1

 Major 0.125 0.286 0.174

72%
 Minor 0.895 0.850 0.872

 Normal 0.000 0.000 0.000

 Blocker 0.286 0.235 0.258

 Critical 0.000 0.000 0.000

Wt. Avg 0.754 0.720 0.735

Eclipse

3.0

 Major 0.745 0.798 0.771

64.1026%
 Minor 0.957 0.643 0.769

 Normal 0.349 0.526 0.420

 Blocker 0.046 0.692 0.087

 Critical 0.143 0.182 0.160

Wt. Avg 0.851 0.641 0.717

 Major 0.923 0.781 0.846

 Minor 0.821 0.636 0.717

Eclipse

3.1

Naïve Bayes

 Normal 0.883 0.807 0.833 84.705 %

 Blocker 0.941 0.884 0.841

 Critical 0.671 0.990 0.962

Wt. Avg 0.847 0.819 0.836

Table 2. Severity prediction models of Random Forest

Version Algorithm Severity Precision Recall F-measure Accuracy

Eclipse

2.0

Random Forest

Major 0.557 0.348 0.430

70.9%

Minor 0.519 0.507 0.516

Normal 0.867 0.911 0.877

Blocker 0.553 0.126 0.202

Critical 0.360 0.839 0.509

Wt. Avg 0.712 0.709 0.691

Eclipse

2.1

Random Forest

Major 0.911 0.842 0.875

84.2051%

Minor 0.802 0.561 0.660

Normal 0.838 0.829 0.833

Blocker 0.750 0.958 0.841

Critical 0.935 0.990 0.962

Wt. Avg 0.845 0.842 0.836

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1349

Eclipse

3.0

Random Forest

Major 0.000 0.000 0.000

81.0588%

 Minor 0.545 0.862 0.670

Normal 0.943 0.962 0.954

Blocker 0.163 0.056 0.087

Critical 0.667 0.313 0.421

Wt. Avg 0.789 0.811 0.691

Eclipse

3.1

Random Forest

Major 0.915 0.741 0.819

82.5%

Minor 0.673 0.614 0.642

Normal 0.745 0.844 0.792

Blocker 0.840 0.932 0.883

Critical 0.934 0.966 0.950

Wt. Avg 0.827 0.825 0.823

The Severity report, as the name guessed, is suggestive that

the model is capable of differentiating ranging between major

severity bugs to normal severity bugs efficiently. If the bugs

with normal severity do not distinguish from are not major or

blocker severity level with high accuracy by the classifier, the

fundamental purpose of time efficiency of the developers will

not be served, and the developers will not be able to

comprehend as to solve which bug and which bug can be kept

aside. As a result, the time and man-hours of the developers

will be utilized in the wrong direction, thus decreasing

efficiency and productivity. Solving blocker, major severity

level bugs is critical from the viewpoint of any company too

as the whole product will be corrupted and thereby decreasing

the market brand of that company.

Table 3. Severity Prediction Model for CCWMV

Eclipse Version CCWMV Accuracy F-Measure

Version 2.0 87.4 0.7095

Version 2.1 83.8 0.7355

Version 3.0 78.5 0.6495

Version 3.1 86.1 0.8045

This categorization is somewhat solved as our classifier can

distinguish between major, minor & normal with quite a good

accuracy and developers can decide which bug to be

addressed.

The algorithm shows lesser accuracy while classifying normal

and critical severity types of bugs. One of the causes behind it

is the less number of instances for the above-mentioned types

may be due to 70-30% division of dataset. There may be

miss-classification of severity types which may be one of the

causes of less accurate performance.

Table 2 shows Random Forest classifier for predicting

severity levels with an accuracy of 70.9% for version 2.0,

84.2

% for version 2.1, 81.05% for version 3.0, 82.5% for version

3.1 respectively. Again, if we talk of the f-measure (harmonic

mean of precision and recall), the F-measure for Minor,

Normal & Critical severity types of version 2.0 is comparably

better than Major and Blocker severity types. Similarly, the F-

measure for Major, Normal, Blocker, Critical severity types

of version 2.1 is comparable among themselves and is better

than Minor severity types. The F-measure of version 3.0 for

Normal severity types is excellent and good for comparison

with Major, Minor, Blocker, and Critical. Similarly, in this

version, Minor can be easily distinguished from Major as well

as Blocker. The f-measure in this version is poor for Blocker

as well as Major severity types. The F-measure of version 3.1

is comparable between Critical and Blocker with the

maximum value for Critical severity type while f-measures

for all others such as Major, Minor & Normal severity types

are good.

This research paper hovers around the prediction of bug

severity on the basis of various severity types (Major, Minor,

Normal, Blocker & Critical) based on a CCWMV
(Customized Cascading Randomized Weighted Majority

Voting) technique. The proposed model has been assessed

and compared with related works by other classification

algorithms such as Random forest & Naïve Bayes. It can be

easily inferred from Table 3 that CCWMV technique has

better accuracy in predicting the types of severity in Eclipse

version 2.0, 2.1, 3.0, 3.2 over the Naïve Bayes but Random

Forest has the better performance in predicting the bug

severity in eclipse version 2.1 and version 3.0 with the

accuracy of 84.2% & 81.05% as compared to 83.8% & 78.5%

respectively in case of CCWMV model. However the

percentage accuracy in versions 2.0 & 3.1 is high in case of

CCWMV with 87.4% & 86.1% over 70.9% & 82.5% in case

of Random forest model.

On the same note, the f-measure (0.70) in version 2.0 in case

of CCWMV is better than that of Random forest (0.691),

thereby CCWMV is more accurate in distinguishing between

various types of severity than Random forest. The f-measure

in version 3.1 is comparable to that of Random forest; thus,

both of the models are equivalent in classifying bug into

various severity types. The main reason for low performance

in version 2.1, version 3.0 might contribute to the small-size

dataset in the respective cases. It can be enhanced by using

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1350

the different set of base classifiers with the usage of statistical

classifiers too.

Graphical representation of evaluated Accuracies for various

versions of Eclipse for Naïve Bayes, Random Forest, and

CCWMV:

Figure 1. Accuracy of each version for Naïve Bayes, Random Forest and

Customized Cascading Weighted Majority Voting Algorithm

VI. CONCLUSIONS AND FUTURE SCOPE

In this paper, the experiments were performed to predict the

severity levels of bug reports of Bugzilla. These bugs affect

the trustworthiness and quality of software. Bug tracking

systems allow users to report bugs that are introduced when

they use the Eclipse platform that is an open source software.

However, predicting the priority and severity level of these

bug reports is an arising issue. The factors that were

considered for the experiments include temporal, textual,

author-related, severity and product. All these features are fed

to the Naïve Bayes and Random Forest successively using the

CCWMV after textual analysis to classify the issues with bug

reports and to predict the severity levels to bug reports. The

text preprocessing techniques refine the most useful terms

from datasets.

The prediction models for chosen techniques are developed

and compared with the CCWMV results.

REFERENCES

[1] S. Kim, E. J. Whitehead, “How long did it take to fix bugs?”, MSR

'06 Proceedings of the 2006 international workshop on Mining

software repositories, Shanghai, China, pp.173-174, 2006.

[2] S. Gujral, G. Sharma, “Classifying Bug Severity Using Dictionary

Based Approach”, International Conference on Futuristic trend in

Computational Analysis and Knowledge (ABLAZE 2015), Noida,

India, pp.632-639, 2015.

[3] D. Cubranic, G. C. Murphy, “Automatic bug triage using text

categorization”, 16th International Conference on Software

Engineering, Italy, pp.92-97, 2004.

[4] V. Challagulla, F. Bastani, I.-L. Yen, R. Paul, “Empirical

Assessment of Machine Learning Based Software Defect Prediction

Techniques.”, 10th IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems., Arizona, USA, pp.263-

270, 2005.

[5] S N Ahsan , J. Ferzund , F. Wotawa, “Automatic Software Bug

Triage System (BTS) Based on Latent Semantic Indexing and

Support Vector Machine”, Proceedings of the 2009 Fourth

International Conference on Software Engineering Advances,

Portugal, pp.216-221, 2009.

[6] Lamkanfi, S. Demeyer, E. Giger, B. Goethals, “Predicting the

severity of a reported bug.”, 7th IEEE Working Conference Mining

Software Repositories (MSR), South Africa, pp.1-10, 2010.

[7] Lamkanfi, Ahmed, et al. "Comparing mining algorithms for

predicting the severity of a reported bug", 15th European

Conference on Software Maintenance and Reengineering (CSMR),

Germany, pp.249-258, 2011.

[8] T. Menzies, A. Marcus, “Automated severity assessment of software

defect reports,” in IEEE International Conference on Software

Maintenance, China, pp.346–355, 2008.

[9] M.N. Pushpalatha, M. Mrunalini, “Predicting the Severity of Bug

Reports using Classification Algorithms”, 2016 International

Conference on Circuits, Controls, Communications and Computing

(I4C), Bangalore, India, pp.520-525, 2016.

[10] S. Sharma, P. Rana, “Implementing Bug Severity Prediction

through Information Mining using KNN Classifier‖, International

Journal of Science Technology & Engineering, Vol. 2, Issue 4,

pp.333 – 340, 2015

[11] G. Yang, T. Zhang, “Towards Semi-automatic Bug Triage and

Severity Prediction Based on Topic Model and Multi-Feature of

Bug Reports”, 2014 IEEE 38th Annual International Computers,

Software and Applications Conference, Sweden, pp.97-106, 2014.

[12] Herraiz, D. German, J. Gonzalez-Barahona, G. Robles, “Towards a

Simplification of the Bug Report Form in Eclipse,” in 5th

International Working Conference on Mining Software

Repositories, Germany, pp.145-148, May 2008.

[13] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” in

Proc 28th International Conference on Software Engineering. ACM,

China, pp.361–370, 2006.

Authors Profile

Prachi Pundir pursued Bachelor of Technology in 2015 from

University Institute of Engineering and Technology. She is currently

persuing Masters of Technology in Computer Science and

Technology from Central University of Punjab, Bathinda,Punjab,

India. She is currently working in the area of Data Science.

Dr. Satwinder Singh had completed his Ph.D in 2014 from Guru

Nanak Dev University, Amritsar. He is currently working as an

Assistant Professor at Department of Computer Science and

Technology, Central University of Punjab, Bathinda, Punjab, India,

He has 15 years teaching experience. He has published research

papers in reputed journals and conferences. His research interests

include Re-engineering of Software System , Maintenance and Fault

prediction of Object Oriented Systems, Big data analytics and Text

Data Analytics

Mrs. Gurpreet Kaur had completed her Ph.D in 2016 Punjabi
University, Patiala. She is currently working in Department of Law,
Bathinda College of Law, Bathinda, Punjab, India. She has 11 years
of teaching experience. She has expertise in Criminal Law and
International Law.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10372
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10372

