Systematic Evaluation of Existing CAPTCHA Techniques

S.S. Kulkarni^{1*}, H.S. Fadewar²

^{1,2}School of Computational Sciences, S. R. T. M. University, Nanded, India

*Corresponding Author sushama.s.kulkarni@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i5.13991402 | Available online at: www.ijcseonline.org

Accepted: 23/May/2019, Published: 31/May/2019

Abstract— Continuous evolution of CAPTCHA techniques is necessary to combat modern generation of AI enabled bots. Designing a new CAPTCHA scheme requires a careful review of existing CAPTCHA techniques. But existing reviews of current CAPTCHA techniques lack systematic evaluation of the current trends in CAPTCHA development. Existing reviews focus on mere enlisting of current CAPTCHA schemes in several categories and explaining their working schema. Hence systematic evaluation and analysis of existing CAPTCHA techniques in several categories is necessary. In this paper we highlight the facts and flaws of existing CAPTCHA techniques in order to provide insights for future improvements in current CAPTCHA techniques. We have focused on providing simple and clear understanding of existing CAPTCHA techniques in a systematic way. This will help researchers to overcome the drawbacks of current CAPTCHA schemes and work on improvement of weaker aspects of existing CAPTCHA techniques.

Keywords-CAPTCHA, HCI, Web security, Human Interactive Proof (HIP), Bots

I. INTRODUCTION

CAPTCHA (Completely Automatic Public Turing Test to Tell Computer and Human Apart) is a test to combat bots and allow human users to interact with the given system. CAPTCHAs can be presented in textual, audio, video, image, puzzle or a game format. CAPTCHA test is designed to be easy for human users and difficult for bots.

Construction of CAPTCHAs is based on AI problems. If a CAPTCHA can be solved programmatically it marks scientific progress on a hard AI problem. A problem which cannot be solved by computer programs can be used as CAPTCHA. This indicates that continuous efforts are being made to improve the robustness of CAPTCHAs.

Many reviews of existing CAPTCHA techniques have been performed by several researchers [18]. But in this paper we attempt to gain understanding about current CAPTCHA techniques and find out their flaws through systematic evaluation. This will help CAPTCHA developers to design efficient CAPTCHA tests avoiding the existing drawbacks.

In this paper we have evaluated various categories of CAPTCHA like OCR based CAPTCHA, Non-OCR based CAPTCHA, Cognitive CAPTCHA, Face Detection based CAPTCHA and CAPTCHA as gRaphical Password (CaRP).

Rest of the paper is organized as follows, Section I contains the introduction of CAPTCHA concept, Section II contains

© 2019, IJCSE All Rights Reserved

the evaluation of OCR based CAPTCHAs, Section III contains evaluation of Non-OCR based CAPTCHAs, Section IV contains evaluation of Cognitive CAPTCHAs, section V contains evaluation of Face Detection based CAPTCHA techniques, Section VI describes evaluation of CAPTCHA as gRaphical Password (CaRP) schemes and Section VII concludes systematic evaluation with future directions.

II. EVALUATION OF OCR BASED CAPTCHAS

OCR-based CAPTCHAs are mainly text-based CAPTCHAs in which the user is shown distorted images of letters and/or digits. User must recognize it in order to pass the CAPTCHA test. OCR-based CAPTCHAs rely on the distortion techniques for preventing bots. Low readability results into increased failure rate for human users. Most of the websites use OCR based CAPTCHAs for preventing bots.

Table 1 shows the evaluation of OCR-based CAPTCHAs.

Table 1. Evaluation of OCR based CAPTCHAs

Facts Found	Flaws Found	Reference
Pessimal Print	Mori-Malik algorithm and	A. L. Coates et al.,
method artificially	brute-force method is	"Pessimal Print: A
lowers the quality of	capable of breaking it	Reverse Turing
the printed letters to		Test", 2001
prevent bots [1]		
Baffletext method	Provides low comfort level	Chew M. et al.,
produces words that	for human users since use	"BaffleText: a
are not provided in	of random letters instead of	Human Interactive
English dictionaries,	dictionary words irritates	Proof", 2003
picture of the word is	human users	

International Journal of Computer Sciences and Engineering

Vol.7(5), May 2019, E-ISSN: 2347-2693

changed with different		
degrees of ease or		
difficulty [2]		
Gimpy method uses	A correlation algorithm	Gabriel Moy et al.,
its word from a	correctly identified the	"Distortion
dictionary with 850	word in EZ-Gimpy	Estimation
words [3]	CAPTCHA 99% of the	Techniques in
	time and a direct distortion	Solving Visual
	estimation algorithm	CAPTCHAs", 2004
	identified the 4 letters in	
	Gimpy-r CAPTCHA 78%	
	of time	
Text-based	These CAPTCHAs are	Kumar Chellapilla
CAPTCHA uses the	becoming more difficult	et al., "Building
ability of people to	for genuine users, attackers	Segmentation
read images of text	are also getting better at	Based Human-
more reliably than	breaking existing	Friendly Human
OCR [4]	CAPTCHAs	Interaction Proofs
		(HIPs)", 2005

Evaluation of OCR based CAPTCHAs indicate that these are the most susceptible CAPTCHA schemes. More complex schemes of OCR CAPTCHAs for preventing bots are being introduced. But complex OCR based CAPTCHAs irritate human user and are difficult as well. Thus researchers must focus on providing ease of use for human users and improving robustness at the same time.

III. EVALUATION OF NON-OCR BASED CAPTCHAS

Non-OCR based CAPTCHAs basically test the audio/video sense capability of a human being. Table 2 shows the evaluation of Non-OCR based CAPTCHAs.

Table 2. Evaluation of Non-OCR based CAPTCHAs

Facts Found	Flaws Found	Reference
Implicit CAPTCHA	This CAPTCHA is	H.S. Baird et al.,
requires users to make	prone to pattern	"Implicit CAPTCHAs",
a simple click in	recognition attack	2005
specified area of the		
picture [5]		
Audio CAPTCHA	3 different types of	Tam J. et al. "Breaking
plays a sound, the	widely used audio	Audio CAPTCHAs",
user must recognize it	CAPTCHAs were	2008
and type the word [6]	broken with 71%	
	accuracy	
Video CAPTCHA	Irritates human user	K.A. Kluever et al.,
requires a user to	because of greater	"Balancing usability
provide appropriate	loading time.	and security in a video
tag for the video	They are prone to bot	CAPTCHA", 2009
displayed as a	attacks which use	
CAPTCHA test [7]	database replication,	
	Video analysis, etc.	

Evaluation of Non-OCR based CAPTCHAs indicate that they face pattern recognition and other advanced AI enabled attacks. Audio CAPTCHAs in this category are becoming soft targets. Hence researchers developing a new Non-OCR based CAPTCHA have to implement AI-Hard problems to thwart bots in a more efficient way.

IV. EVALUATION OF COGNITIVE CAPTCHAS

Table 3. Evaluation of Cognitive CAPTCHAs

Facts Found	Flaws Found	Reference
Ouestion-based CAPTCHA	It is a language	Mohammad
assesses skills of a user	dependent	Shirali-Shahreza et
through a question which can	CAPTCHA	al., "Question-
only be answered by a human		Based
user [8]		CAPTCHA", 2007
Math CAPTCHA asks user to	Difficulty level of	C. J. Hernandez-
solve a mathematical equation	the equation may	Castro et al.,
[9]	cause discomfort	"Pitfalls in
	for a novice	CAPTCHA design
	human user	and
		implementation:
		The Math
		CAPTCHA, a case
		study", 2010
NLP CAPTCHA makes use of	It is a language	http://nlpcaptcha.in
advertisements which are	dependent	· · · ·
embedded with the challenge	CAPTCHA	
for users		
Game CAPTCHA uses a	Gaming bots can	http://areyouahuma
database of cartoon mini-	solve these	n.com
games that are interesting and	CAPTCHAs	
supportive for users with		
accessibility difficulties as well		
Move & Select CAPTCHA	It requires high	M. M. Tanvee et
requests user to move and	amount of efforts	al., "Move &
correctly rearrange the	from a human	Select: 2Layer
randomly placed pieces of an	user to solve this	CAPTCHA Based
image and then select events	CAPTCHA	on Cognitive
associated with image from a		Psychology for
drop down list [10]		Securing Web
		Services", 2011
Four-Panel cartoon	Some of the	T. Yamamoto et al.,
CAPTCHA required user to	humours may not	"A Proposal of
rearrange the stages of a funny	have relevance in	Four panel cartoon
story in proper order [11]	different cultures	CAPTCHA", 2011
	and societies.	
	Hence it has high	
	error proneness.	
CAPTCHA based on human	It allows user to	M. J. M.
cognitive factor asked user to	choose specific	Chowdhury et al.,
choose the desired types of	domain area from	"CAPTCHA Based
challenge from 5 types of	given 5 domain	on Human
challenges [12]	areas which could	Cognitive Factor",
	make it easy for	2013
	bots to gain	
	success with	
	lowered efforts	UDL
A CAPTCHA utilizing	It has less visual	V. Dhaka et al.,
cognitive ability of human	clarity thus offers	"Developing a
through PHP presented user	low readability. It	САРТСНА
alphanumeric characters	is not suitable for	Utilizing Cognitive
		Ability of Human
hidden within innovative	blind users	
hidden within innovative designs and asked user to	bind users	through PHP",
hidden within innovative	billid users	

Cognitive CAPTCHAs use AI-hard or AI-Complete problems to identify humans and bots apart. In fact, cognitive CAPTCHAs are those which use human cognitive skills like classification, grouping, interpretation, game playing, etc. for preventing bots. But cognitive CAPTCHAs pose an obstacle for people having certain cognitive disabilities. Table 3 shows the evaluation of Cognitive CAPTCHAs.

International Journal of Computer Sciences and Engineering

Evaluation of Cognitive CAPTCHAs highlights that language dependency, cultural sensitivity, necessity of highly complex cognitive skills, visual complexity are major issues encountered by these CAPTCHAs. Hence researchers must consider solving these issues while designing a new cognitive CAPTCHA.

V. EVALUATION OF FACE DETECTION BASED CAPTCHA TECHNIQUES

Face detection based CAPTCHA techniques request user to find human faces in the CAPTCHA image and click the human faces in order to pass the CAPTCHA challenge. Some of the Face detection based CAPTCHAs perform liveness test by requesting user to upload "selfie" picture or video. Table 4 shows the evaluation of Face detection based CAPTCHA techniques.

Facts Found	Flaws Found	Reference
FaceDCAPTCHA requested user to click on the real human faces without selecting non- human faces from a set of distorted and occluded real and fake face images on a random background [14]	It is prone to Face Detection Algorithm based attack	G. Goswami et al., "FaceDCAPTCHA: Face Detection based Color Image CAPTCHA", 2014
FATCHA required user to perform some trivial gesture using face or head [15]	It is not acceptable in certain culture to share live videos of female users. Thus it can create accessibility barrier for women in certain cultures	M. De Marsico et al., "FATCHA: biometrics lends tools for CAPTCHAs", 2017
rtCAPTCHA asked user to take a "selfie" video while announcing the answer to the Captcha [16]	It is not acceptable in certain culture to share "selfie" videos of female users. Thus it can create accessibility barrier for women in certain cultures	E. Uzun et al., "rtCaptcha: A Real-Time CAPTCHA Based Liveness Detection System", 2018

Face detection based CAPTCHA techniques are vulnerable to Face detection Algorithm attacks. These CAPTCHAs can pose as accessibility barrier for women users in certain cultures. Thus they can invoke culture sensitive issues. Researchers designing Face detection based CAPTCHA should take care of strength of CAPTCHA along with the accessibility to all genders.

VI. CAPTCHA AS GRAPHICAL PASSWORD (CARP)

One of the evolving techniques is the use of CAPTCHA as gRaphical Password (CaRP). It combines graphical password and CAPTCHA scheme. CaRP uses Captcha-based Password

Authentication (CbPA) protocol to prevent online dictionary attacks. CaRP can be classified as:

- Recognition based CaRP
- Recognition-Recall based CaRP

Table 5 and Table 6 shows the evaluation of Recognition based CaRP and Recognition-Recall based CaRP.

Table 5. E	valuation of	Recognition	based CaRP

Facts Found	Flaws Found	Reference
ClickText requires user to	Random rotation	Bin B. Zhu et al.,
click a sequence of	and low spacing	"Captcha as Graphical
characters which are	between	Passwords-A New
randomly arranged in set	neighbouring	Security Primitive
of 33 characters on a 2D	characters	Based on Hard AI
space. It authorizes user if	sometimes lowers	Problems", 2014
password characters are	the readability of	
clicked in specified	ClickText	
sequence [17]	CAPTCHA	
ClickAnimal uses	It has smaller	Bin B. Zhu et al.,
sequence of animal names	password space as	"Captcha as Graphical
as password. CAPTCHA	compared to Click	Passwords-A New
is generated by arranging	Text CaRP	Security Primitive
2D animal images on a		Based on Hard AI
cluttered background [17]		Problems", 2014
AnimalGrid is a	It is difficult to	Bin B. Zhu et al.,
combination of	handle for a novice	"Captcha as Graphical
ClickAnimal and Click A	user.	Passwords-A New
Secret (CAS) schemes		Security Primitive
[17]		Based on Hard AI
		Problems", 2014

Table 6. Evaluation of Recognition-Recall based CaRP

Facts Found	Flaws Found	Reference
TextPoint requires user to click a sequence of clickable points on a character. Coordinates of user clicked-points are	It is prone to phishing attack	Bin B. Zhu et al., "Captcha as Graphical Passwords-A New Security Primitive Based on Hard AI Problems", 2014
directly sent to authentication server [17]		,
<i>TextPoints4CR</i> each character having multiple clickable points appears only once. Server stores a password for each account [17]	It is prone to phishing attack	Bin B. Zhu et al., "Captcha as Graphical Passwords-A New Security Primitive Based on Hard AI Problems", 2014

Evaluation of CAPTCHA as gRaphical Password (CaRP) schemes indicates that they have issues like low readability, complexity of user interface and high vulnerability to phishing attack. Researchers designing a new CAPTCHA as gRaphical Password (CaRP) scheme must provide user friendly interface and take necessary precautions to avoid phishing attack.

VII. CONCLUSION

Evolution of AI techniques has improved efficiency of bots. Thus necessity of new robust CAPTCHA schemes is growing. Every effort to design a new generation of

International Journal of Computer Sciences and Engineering

CAPTCHA requires a retrospective and through evaluation of existing CAPTCHA techniques. Researchers must avoid flaws of current CAPTCHA techniques while designing a better and efficient CAPTCHA. This paper has evaluated existing CAPTCHAs in various categories like OCR based CAPTCHA, Non-OCR based CAPTCHA, Cognitive CAPTCHA, Face Detection based CAPTCHA, and CAPTCHA as gRaphical Password (CaRP). We have summarized the facts found about each of the CAPTCHA under consideration and also highlighted the flaws of these CAPTCHAs. We hope this will provide much needed insights for development of future generation of robust CAPTCHAs.

REFERENCES

- A.L. Coates, H. S. Baird and R. J. Faternan, "*Pessimal Print: A Reverse Turing Test*," In the Proceedings of the 6th International Conference on Document Analysis and Recognition, Seattle, WA, USA, pp. 1154-1158, 2001.
- [2] M. Chew and H. S. Baird, "BaffleText: a Human Interactive Proof," In the Proceedings of 10th SPIE/IS&T Document Recognition and Retrieval Conference (DRR2003), Santa Clara, CA, USA, pp. 305-316, 2003.
- [3] G. Moy, N. Jones, C. Harkless, and R. Potter, "Distortion Estimation Techniques in Solving Visual CAPTCHAs," In the Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04), vol. 2, pp. 23-28, 2004.
- [4] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski, "Building Segmentation Based Human-Friendly Human Interaction Proofs (HIPs)," In the Proceedings of HIP 2005, Bethlehem, PA, USA, pp. 1-26, May 19-20, 2005.
- [5] H. S. Baird and J. L. Bentley, "Implicit CAPTCHAs," In the Proceedings of SPIE/IS&T Conference on Document Recognition and Retrieval XII (DR&R2005), San Jose, pp. 191-196, 2005.
- [6] J. Tam, J. Simsa, S. Hyde, and V. Ahn, "Breaking Audio CAPTCHAs," In the Proceedings of 21st International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, pp. 1625-1632, December 2008.
- [7] K.A. Kluever and R. Zanibbi., "Balancing usability and security in a video CAPTCHA," In the Proceedings of the 5th Symposium on Usable Privacy and Security (SOUPS '09), ACM, New York, NY, USA, Article 14, pp. 1-11, 2009.
- [8] M. Shirali-Shahreza and S. Shirali-Shahreza, "Question-Based CAPTCHA," In the Proceedings of International Conference on Computational Intelligence and Multimedia Applications, Sivakasi, Tamil Nadu, India, pp. 54-58, 2007.
- [9] C. J. Hernandez-Castro and A. Ribagorda, "Pitfalls in CAPTCHA design and implementation: The Math CAPTCHA, a case study," Computers & Security, Vol. 29, No. 1, pp. 141-157, 2010.
- [10] M. M. Tanvee, M. T. Nayeem, and M. M. Rafee, "Move & Select: 2 Layer CAPTCHA Based on Cognitive Psychology for Securing Web Services," International Journal of Video & Image Processing and Network Security, IJVIPNS/IJENS, Vol. 11, No. 5, pp. 917, 2011.
- [11] T. Yamamoto, T. Suzuki, and M. Nishigaki, "A Proposal of Four-Panel cartoon CAPTCHA," In the Proceedings of International Conference on Advanced Information Networking and Applications 2011, Singapore, pp. 159–166, 2011.
- [12] M. J. M. Chowdhury, N. R. Chakraborty, "CAPTCHA Based on Human Cognitive Factor," International Journal of Advanced Computer Science and Applications, Vol. 4, No. 11, pp. 144-149, 2013.

Vol.7(5), May 2019, E-ISSN: 2347-2693

- [13] V. Dhaka, G. Gandhi, "Developing a CAPTCHA Utilizing Cognitive Ability of Human through PHP," International Journal of Advanced Networking Applications, Special Issue, pp. 50–54, 2015.
- [14] G. Goswami, B. M. Powell, M. Vatsa, R. Singh, and A. Noore., "FaceDCAPTCHA: Face Detection based Color Image CAPTCHA," Future Generation Computer Systems, Vol. 31, pp. 59–68, February 2014.
- [15] M. De Marsico, L. Marchionni, A. Novelli, and M. Oertel, "FATCHA: biometrics lends tools for CAPTCHAs," Multimedia Tools Applications, Vol. 76, No. 4, pp. 5117-5140, February 2017.
- [16] E. Uzun, S. P. H. Chung, I. Essa, and W. Lee, "rtCaptcha: A Real-Time CAPTCHA Based Liveness Detection System," Network and Distributed Systems Security Symposium (NDSS), San Diego, CA, USA, 2018.
- [17] Bin B. Zhu, Jeff Yan, Guanbo Bao, Maowei Yang, and Ning Xu, "Captcha as Graphical Passwords-A New Security Primitive Based on Hard AI Problems," IEEE Transactions on Information Forensics and Security, Vol. 9, No. 6, pp. 891-904, June 2014.
- [18] A. Bhalerao, L. Rade, "A Basic Survey of CAPTCHA :Application and Challenges", International Journal of Scientific Research in Computer Science and Engineering, Vol. 06, No. 01, pp.1-5, 2018.

Authors Profile

Mrs. S. S. Kulkarni pursued Bachelor of Science from S. R. T M. University, India in 2005 and Master of Science from S. R. T M. University, India in year 2007. She has aquired Post Graduate Diploma in Advanced Computing from CDAC, Pune,

India in year 2008. She is currently pursuing Ph.D. in School of Computational Sciences, S. R. T M. University, India. She has published several research papers in reputed international journals and conferences including IEEE & Springer and it's also available online. Her main research work focuses on Web Security Algorithms, Accessibility on web, Human Computer Interaction and CAPTCHA based security. She has 3 years of industrial experience and 1 years of teaching experience.

Dr. H. S. Fadewar pursued Bachelor of Science from Dr. B. A. M. University, India and Master of Science from S. R. T M. University. He has obtained M. Phil. from Y. C. M.O. University and pursued Ph.D. from S. R. T M. University, India.

He is currently working as Assistant Professor in School of Computational Sciences, S. R. T M. University, India since 2011. He a life member of The Indian Science Congress Association, Kolkata and International Association of Engineering. He has published more than 40 research papers in reputed international journals and conferences including IEEE, Springer and it's also available online. His main research work focuses on Human Computer Interaction, Data Mining and Biometrics. He has more than 15 years of teaching experience and 10 years of Research Experience.