

 © 2018, IJCSE All Rights Reserved 1505

International Journal of Computer Sciences and Engineering Open Access

 Survey Paper Vol.-6, Issue-6, June 2018 E-ISSN: 2347-2693

The Selection of Software Reliability Growth Models in Software

Development Life Cycle

J.K. Mantri

*
, R.S Bala

2

1*Dept. of Computer Science and Engineering. ABIT, Cuttack, Odisha-753014, India

2 Dept. of Computer Application, North Orissa University, Baripada, Odisha-57003, India

*Corresponding Author: jkmantri@gmail.com, Tel.: +91-94380-84141

Available online at: www.ijcseonline.org

Accepted: 14/Jun/2018, Published: 30/Jun/2018

Abstract—The definition of software engineering might blast something like, “An organized, analytical approach to the

analysis, design, development, use, reliability and maintenance of software.”Software reliability is the probability that a

software system will function without failure under a given environment and during a specified period of time. To be cost and

time effective, reliability engineering has to be coordinated with quality assurance activities, in agreement with Total Quality

Management (TQM) and concurrent engineering efforts. To build in reliability and maintainability into complex equipment or

systems, failure rate and failure mode analyses have to be performed early in the software development life cycle (SDLC) and

be supported by design guidelines for reliability, maintainability and software quality as well as extensive design reviews.

There are different types of software reliability models (SRMs) used for different phases of the software development life-

cycle. With the growing demand to deliver quality software, software development organizations need to manage quality

achievement and assessment. In this paper, we present the utility of a software reliability growth model is related to its stability

and predictive ability. Stability means that the model parameters should not significantly change as new data is added.

Predictive ability means that the number of remaining defects predicted by the model should be close to the number found in

field use.

Keywords—Software reliability models, model classification, software reliability growth model, Time Between Failure, Fault

Count Model.

I. INTRODUCTION

Recently, the rapid advancement of hardware, technology,

proper development of software technology has failed

miserably to keep pace in all measures, including

productivity, quality, cost and performance. Software

systems such as operating systems, compiler design, control

programs, and application programs have become more

complex and larger than ever. Naturally, it is to produce

reliable software systems efficiently since the breakdown of

the computer system, which is caused by software errors,

results in a tremendous loss and damage for social life. Then,

software reliability is one of the key issues in modern

software product development. Many efforts have been

devoted to the study of measuring software reliability

quantitatively in the area of software engineering. There is

several existing software reliability models, especially

applicable to the software testing phase in the software

development process, which are of great use to estimate and

predict software reliability. During the software testing

phase, a software system is tested to detect software errors

remaining in the system and correct them. If it is assumed

that the correction of errors does not introduce any new

errors, the probability that no failure occurs for a fixed time

interval, i.e., the reliability, increases with the progress of

software testing. A software reliability model describing such

an error detection phenomenon is called a software reliability

growth model (SRGM) [1].

 Rest of the paper is organized as follows: Section II

describes the activities and phases of SDLC and also the total

quality management (TQM). Section III covers the reliability

predictions are used to evaluate design feasibility, compare

design alternatives, identify potential failure areas, trade-off

system design factors, and track reliability improvement.

Section IV describes the definitions of software reliability.

Section V presents the various software reliability growth

models. Section VI covers Software reliability, as a part of

software engineering, software quality, and reliability

analysis. Its measurement and management technologies

during the software life cycle are essential to produce and

maintain reliable software systems. Section VII also

presented proposed algorithm. And Section VIII gives the

conclusion.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1506

II. SOFTWARE DEVELOPMENT LIFE CYCLE

(SDLC)

In this section, it provides a systematic approach to

analyzing, designing, using, operating, and maintaining a

software system. The standard IEEE computer dictionary has

defended the SDLC as “That period of time in which the

software is conceived, developed and used." A SDLC

consists five successive phases. The phases are Analysis

(requirements and functional), Design, Coding, Testing,

Operating.

 In general, the activities and phases of the SDLC are

shown in figure 1. In the early phases of SDLC, a predictive

model is needed because no failure data are available. This

type of model predicts and the number of initial faults in

software reliability improves through perfect functioning and

debugging.

 In 1970s, the "water fall model" is the first well-known

SDLC. It divides the software development processes which

was till then consider being an art and one monolithic

activity into an engineering process company of several

distinct and interactivity tasks. The software development

project depends on many factors such as feasibility, cost

benefit, availability of resources such as manpower, required

technology, development know how to etc. and agreement

of customer on cost, time schedule, quality and reliability.

 Now, the total quality management (TQM) is considered

to be one of the key technologies needed to produce more

high quality software products. Also the total quality

management (TQM) used for software development and all

phases of SDLC.

Figure 1. The Software Development Life Cycle (SDLC).

Basically, the concept of total quality management (TQM)

means assuring the quality of products in each phase to next

phase. Particularly, the quality control carried out at the

testing phase which is the last stage of the SDLC. The testing

phase is very important for SDLC. During the testing phase,

the product quality and the software performance during

operation phase are evaluated and assured. A lot of software

faults introduced in the software system through the first

three phases of SDLC by user or end-user activities are

detected, corrected and removed. The fig.2 shows a SDLC

called a "Waterfall paradigm".

Figure. 2. The Software Development Process (Waterfall

paradigm).

Therefore, TQM for software development, that is, software

TQM has been emphasized. The software TQM aims to

manage the SDLC comprehensively, considering

productivity, quality, cost and delivery simultaneously and

assure software quality shown in fig 3.

Figure 3. The Elements of Software Quality based on a cause and

effect design.

In particular, the management technologies for improving

software reliability are very important. The quality

characteristic of software reliability is that computer system

can continue to operate regularly without the occurrence of

failure in software system [2].

III. RELIABILITY PREDICTION

Reliability predictions predict the failure rate of components

and overall system reliability. These predictions are used to

evaluate design feasibility, compare design alternatives,

identify potential failure areas, trade-off system design

factors, and track reliability improvement.

A. Reliability and Unreliability:

Definition of Reliability: The Reliability of a system or

component is defined as the probability that the component

or system remains operating from time zero to time t1, given

that it was operating at time zero. It is denoted by R(t).

 Definition of Unreliability: The Unreliability of a system

or component is defined as the probability that the

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1507

component or system experiences the first failure or has

failed one or more times during the time interval zero to time

t, given that it was operating or repaired to a like new

condition at time zero. It is denoted by F(t).

 The relationship Reliability (R(t)) and Unreliability

(F(t)) hold true since a component or system must either

experience its first failure in the time interval zero to t or

remain operating over this period. R(t) + F(t) = 1 or

Unreliability (F(t)) = 1 – Reliability(R(t)).

B. Availability and Unavailability

 Definition of Availability: The Availability of a

component or system is defined as the probability that

the component or system is operating at time t, given

that it was operating at time zero. It is denoted by A(t).

 Definition of Unavailability: The Unavailability of a

system or component is defined as the probability that

the system or component is not operating at time t, given

that is was operating at time zero. It is denoted by Q(t).

Therefore, the relationship between Availability (A(t)) and

Unavailability (Q(t)) holds true since a component or system

must be either operating or not operating at any time: A(t) +

Q(t) = 1.

 Definitions of Reliability Prediction:

 Failure Rates: Reliability predictions are based on failure

rates. It is denoted by (λ).

 Conditional Failure Rate or Failure Intensity: It can be

defined as the anticipated number of times an item will

fail in a specified time period, given that it was as good

as new at time zero and is functioning at time t. It is a

calculated value that provides a measure of reliability for

a product. It is denoted by λ(t).

 The Failure rate calculations are based on complex models

which include factors using specific component or system

data. In the prediction model, assembled components are

structured serially. Thus, calculated failure rates for

components within the assembly. There are three common

basic categories of failure rates:

 Mean Time to Failure (MTTR): It is defined as the total

amount of time spent performing all corrective or

preventative maintenance repairs divided by the total

number of those repairs. It is the expected span of time

from a failure (or shut down) to the repair or

maintenance completion.

 Mean Time To Repair (MTTF): It is a measure of

reliability for non-repairable systems. It is the mean time

expected until the first failure of a piece of equipment.

MTTF is a statistical value and is intended to be the

mean over a long period of time and with a large number

of units. Mathematically,

t

MTTF

1

Where, t is the period of time.

 Mean Time Between Failures (MTBF): It can be

calculated as the inverse of the failure rate, λ, for

constant failure rate. Mathematically,

1
MTTF

C. Failure Frequencies

There are four failure frequencies, which are commonly used

in reliability.

 Failure Density f(t) :The failure density of a component

or system is defined as the probability per unit time that

the component or system experiences its first failure at

time t, given that the component or system was

operating at time zero.

 Failure Rate r(t): It is defined as the probability per unit

time that the component or system experiences a failure

at time t, given that the component or system was

operating at time zero and has survived to time t.

 Conditional Failure Intensity (or Conditional Failure

Rate) λ(t) : It is defined as the probability per unit time

that the component or system experiences a failure at

time t, given that the component or system was

operating, or was repaired to be as good as new, at time

zero and is operating at time t.

 Unconditional Failure Intensity or Failure Frequency

ω(t): It is defined as the probability per unit time that the

component or system experiences a failure at time t,

given that the component or system was operating at

time zero.

 The relationships between failure frequencies parameters

are as follows:

1)()(tFtR

dt

tdF
tf

)(
)(

1

0
)()(duuftF

)(1

)(
)(

tF

tf
tr

1

0
)(

)(
duur

tR

1

0
)(

1)(
duur

tF

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1508

1

0
)(

)()(
duur

trtf

D. Repairable and Non-repairable Items

It is important to distinguish between repairable and non-

repairable items when predicting or measuring reliability.

 Non-repairable items: It is defined as Conditional Failure

Intensity or Conditional Failure Rate (λ(t)) is equal to the

hazard rate or failure rate (r(t)), that is, λ(t)=r(t).

 Repairable Items: There is also the concern for

availability, A(t), of repairable items since repair takes

time. Availability, A(t), is affected by the rate of

occurrence of failures (failure rate, λ) or MTBF plus

maintenance time; where maintenance can be corrective

(repair) or preventative (to reduce the likelihood of

failure). Availability, A(t), is the probability that an item

is in an operable state at any time.

MTTRMTBF

MTBF
ttyAAvailabili

)(

IV. SOFTWARE RELIABILITY

 The definitions of software reliability are as follows:

“Software reliability is defined as the probability of

failure free operation of a computer program in a

specified environment for specified time.” Or “Reliability

of a software product essentially denotes its trust

worthiness or dependability.” Or “Reliability of a

software product can also be defined as the probability of

product working correctly over a given period of time.”

The important points for software may be retired only if it

becomes obsolete. Some of the contributing factors are

change in environment, change in infrastructure or

technology, major change in requirement, increase

complexity, extremely difficult to maintain, deterioration in

structure of the cost, slow execution speed and poor

graphical user interface.

A. Difference between Software reliability and Hardware

reliability

 Hardware reliability: Failure rate has a bathtub curve. The

burn-in state is similar to the software debugging state.

Material deterioration can cause failures even though the

system is not used. Failure data are fitted to some

distributions. The selection of the underlying distribution

is based on the analysis of failure data and experiences.

Emphasis is placed on analyzing failure data. Failures are

caused by material deterioration, random failures, design

errors, misuse, and environment. Hardware reliability can

be improved by better design, better material, applying

redundancy and accelerated life testing. Hardware repairs

restore the original condition. Hardware reliability can be

improved by better design, better material, applying

redundancy and accelerated life testing. Hardware repairs

restore the original condition. Hardware failures are

usually preceded by warnings. Hardware components can

be standardized. Hardware can usually be tested

exhaustively

 Software reliability: Without considering program

evolution, failure rate is statistically non-increasing.

Failures never occur if the software is not used. Most

models are analytically derived from assumptions.

Emphasis is on developing the model, the interpretation

of the model assumptions, and the physical meaning of

the parameters. Failures are caused by incorrect logic,

incorrect statements, or incorrect input data. This is

similar to design errors of a complex hardware system.

Software reliability can be improved by increasing the

testing effort and by correcting detected faults. Reliability

tends to change continuously during testing due to the

addition of problems in new code or to the removal of

problems by debugging errors. Software repairs establish

a new piece of software. Software failures are rarely

preceded by warnings. Software components have rarely

been standardized. Software essentially requires infinite

testing.

B. Similarity between Software reliability and hardware

reliability

Software reliability is similar to hardware reliability. For

hardware, components wear out, due to factors such as

corrosion, shock, overheating, and aging. It is usually

physical in nature and probabilistic. For software, we can use

the same basic approach although we do not have the same

physical issues. It is probabilistic. The probabilities vary over

time, we can graph them and model them, and, for each

model, there is a probability distribution function (PDF)

[3,4,5].

V. SOFT WARE RELIABILITY MODELS

Software reliability evaluation is playing an important role in

software reliability engineering. The role of statistics is also

very important in reliability estimation for software [6].

Software Reliability Models are mainly used to measure the

quality of the software. In this model, software is tested for a

period of time, during which failures may occur. These

failures cause a modification in design the new version of

design is tested again. This cycle is repeated until design

objectives are met. The software reliability classification

shown in figure 4. In software reliability models, it is divided

into two types deterministic model and probabilistic model In

deterministic model, it can be divided into two types

Halstead’s software metric and McCabe’s cyclomatic

complexity metric.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1509

Figure. 4. The classification of software reliability models.

A. Deterministic Model

 Halstead’s software metric

Typically, the measures depend on program size, control

structure, or the nature of module interfaces. The most widely

known measures are those devised by Maurice Howard

Halstead in 1977 and his colleagues that are collectively

known as software science. The Halstead measures are

functions of the number of operators and operands in the

program. The major components of software science are n1

the number of unique operators, n2 the number of unique

operands, N1, the total number of operators, and N2 the total

number of operands. Halstead defined the volume, V, of a

program to be

 2121 log nnNNV

and program difficulty, D, to be

2

21

2n

Nn
D

Halstead derived a number of other measures. The most

extensively studied of these is an estimate of the effort, E,

required to implement a program:

VDE

Halstead’s bug prediction:

3000

V
B

 McCabe’s cyclomatic complexity

The complexity is defined by the execution time and storage

required to perform the computation. If the interacting system

is a programmer, then complexity is defined by the difficulty

of performing tasks such as coding, debugging, testing, or

modifying the software. The term software complexity is

often applied to the interaction between a program and a

programmer working on some programming task. McCabe’s

cyclomatic complexity metric based on cyclomatic number

V(G). Mathematically, The cyclomatic number V(G) of a

graph G with n vertices, e edges, and p connected components

is pneGV)(

B. Probabilistic Models

The dynamic software reliability models also known as

the probabilistic models which include the failure rate model

(times between failure models), failure or fault count model

(NHPP models), error or fault seeding model and reliability

growth model etc. The hierarchy of dynamic Software

Reliability Models shown in figure 5.

 The Failure Rate Model: It based on the assumption

that is time between failure models. The time between i-1
th

and i
th
 failures is a random variable which follows a

distribution whose parameters depend on the number of

faults remaining in the program during this interval. It

estimates of the parameters are obtained from time between

failures, mean time to next failure then obtained from the

fitted model.

 The Failure Count Models: It is based on the number

of failures that occur in each time interval. The random

variable of interest is the number of faults (failures)

occurring during specified time intervals. It is assumed that

failure counts follow a known stochastic process. Usually a

Poisson distribution with a time dependent will be discrete

or continuous failure rate. The time can be calendar time or

CPU time Parameters of the failure rate can be estimated

from the observed values of failure counts and then the

Software reliability parameters are obtained from the

appropriate expression.

 Error or Fault Seeding Model : In this model, a

predefined number of artificially generated errors are

"incorporated" in the program code. After that, test runs are

used to detect the errors and to examine the ratio between

actual and artificial errors based on the total number of

detected errors. Naturally, the artificially generated errors

are not known to the testers.

 Input Domain Based Category: when the test cases

are sampled randomly from well known operational

distribution of inputs program. By finding all unique paths

through the program and then execute each and everyone it

is possible to guarantee that everything is tested.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1510

Figure 5. The hierarchy of dynamic Software Reliability Models.

VI. SOFTWARE RELIABILITY MODELS

Software reliability, as a part of software engineering,

software quality, and reliability analysis. Its measurement and

management technologies during the software life cycle are

essential to produce and maintain reliable software systems.

IEEE Std. 982.2-1988 states "A software reliability

management program requires the establishment of a

balanced set of user quality objectives, and identification of

intermediate quality objectives that will assist in achieving the

user quality objectives." ISO 9000-3 specifies measurement

of field failures as the only required metric at a minimum,

some metrics should be used which represent reported field

failures and/or defects from the customer view point. The

supplier of the software products should collect and act on

quantitative measures of the quality of these software

products".

The software reliability growth model (SRGM) can be

estimated to be a mathematical expression which fits the

experimental data. It may be obtained simply by observing

the general trend of reliability growth. However some of the

models can be achieved analytically by making some

assumptions about the testing and debugging process. Further,

there are essentially two types of software reliability models.

The first type of models are usually called "defect density"

models and use code characteristics such as lines of code,

nesting of loops, external references, input/outputs, and so

forth to estimate the number of defects in the software. The

second type of models are usually called "software reliability

growth" models. These models attempt to statistically

correlate defect detection data with known functions such as

an exponential function. If the correlation is good, the known

function can be used to predict future behavior.

A. Software Reliability Growth Models (SRGMs) in SDLC

The Software reliability models have been classified
according to Software Development Life Cycle phases, based
principally on the phases of software development life
cycle(SDLC) during which the model is applicable. The
SRGMs are further classified based on the software failure
phenomenon, as given in Figure 6. Most of the existing
models can be used during the design, implementation and
testing phase. The Software Reliability Growth Models
(SRGMs) is one of the best way to measure software
reliability. This type of model captures failure behavior of
software during testing, and extrapolates it to determine its
behavior during operation. Hence, this category of models
uses failure data information and trends observed in the
failure data to derive reliability predictions Wood in 1996.
These models are also called black-box models. The SRGMs
encounter major challenges. First, the software testers seldom
follow the operational profile to test the software, so what is
observed during software testing may not be directly
extensible for operational use. Secondly, when the number of
failures collected in a project is limited, it is hard to make
statistically meaningful reliability predictions. Thirdly, some
of the assumptions of SRGM are not realistic, that is, the
assumptions that the faults are independent of each other; that
each fault has the same chance to be detected in one class and
that correction of a fault never introduces new faults. Further,
the SRGMs are classified as Failure Rate Model (times
between failure models), Failure or Fault Count Model
(NHPP models), Error or Fault Seeding Model and Reliability
Growth Model [7,8].

B. Classification of Software Reliability Models

In [9], the software reliability models are classified as Early

prediction Models, Architecture Based Models, Hybrid Black

Box Models, Hybrid White Box Models, Software Reliability

Growth Model and Input Domain Based Models.

 Early prediction Models: In this model, it uses the

characteristics of the software as well as the characteristics

of the software development process. The development

process characteristics are used to extrapolate the software

operational behavior. This model uses information

collected during the reviews performed in the requirements,

design, and implementation development phases. This

information includes the fault statistics that are used to

predict the reliability of the system.(Smidts et al., 1996)

proposes a reliability model based on a systematic

identification of software process failure modes and their

likelihoods. This model uses a Bayesian approach where

the prior knowledge is provided by failure process

identification.

 Architecture Based Models: In this model, it puts

emphasis on the architecture of the software, and derives

reliability estimates by combining estimates obtained for

the different modules of the software Gokhale et al. in

1998. Different approaches for the architecture-based

reliability estimation of the software are based on the

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1511

Module identification, Architecture of the software, Failure

behaviour and Combining the architecture with the failure

behaviour. Further, the architecture based software

reliability models are classified into state based models,

path based models, and additive models.

 Hybrid Black Box Models: All SRGMs are of the

black box type since they only consider failure data, or

metrics that are gathered if testing data are not available.

Black box models do not consider the internal structure of

the software in reliability estimation and are called as such

because they consider software as a monolithic entity, a

black box. The hybrid black box models combine the

features of input domain based models, and SRGMs.

 Hybrid White Box Models: White box software

reliability models consider the internal structure of the

software in the reliability estimation as opposed to black

box models which only model the interactions of software

with the system within which it operates. In this model, it

uses selected features from both white box models and

black box models. However, since these models consider

the architecture of the system for reliability prediction,

therefore these models are considered in hybrid white box

models.

 Software Reliability Growth Model :This type of

model captures failure behavior of software during testing,

and extrapolates it to determine its behavior during

operation. Hence, this category of models uses failure data

information and trends observed in the failure data to derive

reliability predictions Wood (1996).Further, the SRGMs are

classified as failure rate models and NHPP models. To

incline practitioners to use a SRGM, it has to be simple in

concept and inexpensive to collect the required input data.

The analytical research on SRGMs is extensive as a number

of models are proposed with individual assumptions.

Ehrlich et al. (1990), Wood (1996), Wood (1997), String

fellow and Andrews (2002), and Jeske & Zhang (2005)

have given practical experiences of use of SRGMs in a

variety of contexts.

 Input Domain Based Models:The basic approach

taken here is to generate a set of test cases from an input

distribution which is assumed to be representative of the

operational usage of the program. Because of the difficulty

in obtaining this distribution, the input domain is

partitioned into a set of equivalence classes, each of which

is usually associated with a program path. An estimate of

program reliability is obtained from the failures observed

during physical or symbolic execution of the test cases

sampled from the input domain. This category include that

assess the reliability of a program when the test cases are

sampled randomly from well-known operational

distribution of inputs program.

VII. ALGORITHM

We have proposed Software Reliability growth Model
Selection algorithm that helps in the selection of models by
applying the SDLC.

A. Algorithm for Software Reliability Growth Model

Selection
Step: 01 The software reliability models are used in

different phases of the Software Development Life Cycle, it is
required to determine which of these models can be used in a
particular life cycle phase.

Step: 02 In a particular phase, it is deciding criterion
which will reduce the number of candidate models in that
phase.

Step: 03 After step number 2, we will be left with the
remaining criteria that are applicable in that phase. Now these
criteria will be applied. First of all importance weights will be
assigned to these criteria. Suggested weights are assigned to
these criteria according to the phases of SDLC.As per
criterion weights, two possibilities can exist.

Step: 03a. If all the remaining criteria apply on all models
in that phase.

Step: 03b. If for any model in that phase, the number of
criteria applied is less.

Step: 04 In this step, after applying the criteria, a weight
will be assigned to each model for every criterion according
to the level by which it fulfills the criterion. These weights are
called applicability weights. If weight = 1 then satisfied
otherwise 0(unsatisfied).

Step: 05 The respective applicability weights and criterion
weights are multiplied for each criterion and this number is
summed for every model to obtain the total points for that
model.

Step: 06 Select the applicable model to the assessment of
software reliability are called SRGM. SRGM are useful for
estimating how software reliability improves as faults are
detected and repaired.

Step: 07 Software Reliability Models can be classified
based on Failure History and the other one is Data
Requirements.

Step: 08 Based on Failure History for probabilistic models
include Failure Rate Model (times between failure models),
Failure or Fault Count Model (NHPP models), Error or Fault
Seeding Model, Reliability Growth Model. And the other one
is Data Requirements for empirical model, analytical mode.

Step: 09 Selected Models for Parameter Estimation and

Comparison Criterion which are popular and frequently used

for comparison of SRGM.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1512

VIII. SCONCLUSION

In this paper, Software reliability is a measuring technique for

defects that causes software failures and we have classified software

reliability growth models according to Software Development Life

Cycle (SDLC) phases. We have identified and defined a number of

criteria for software reliability model selection. We have proposed an

algorithm based on these criteria for the selection of software

reliability growth models.

REFERENCES

[1] Yamada, S. and Osaki, S., “Software Reliability Growth

Modeling: Models and Applications, IEEE Trans. On Software

Engineering, vol. SE-11, no. 12, pp. 1431-1437, December1985.

[2] Hoang Pham, “Software Reliability", Springer-Verlag

Singapore,Pte. Ltd 2000.

[3] A. Birolini, “Reliability Engineering Theory and Practice”, @

Springer-Verlag Berline, 1999.

[4] http://www.reliabilityeducation.com/ReliabilityPredictionBasics.p

df.

[5] Linda M. Laird and M. Carol Brennan, "Software Measurement

and Estimation", Copyright John Wiley & Sons, Inc., 2006.

[6] A. Loganathan, R. Jeromia Muthuraj, "Importance Of

Environmental Factors Affecting Software Reliability”, Global

And Stochastic Analysis, Vol. 4 No. 1, 119-125, January 2017.

[7] Alan Wood,"Software Reliability Growth Models",© Tandem

Computers, 1996.

[8] A. L. Goel, "Software Reliability Models: Assumptions,

Limitations, and Applicability", IEEE Transactions on Software

Engineering, Volume SE-11. Number 12, pages 1411–1423,

December 1985.

[9] Ch. Ali Asad, Muhammad Irfan Ullah, Muhammad Jaffar-Ur

Rehman, "An Approach for Software Reliability Model

Selection”, Proceedings of the 28th Annual International

Computer Software and Applications Conference

(COMPSAC’04), IEEE, 2004.

Authors Profile

Mr J. K. Mantri pursed Master of
Technology in Computer Sc. from Utkal
University in year 2002 and Ph.D degree in
Computer Application from Sambalpur
Univeresity in year 2010.. He is currently
working as Reader in Department of
Computer Application, North Orissa
University,India,. He is a life member of
ISTE and ISCA. He has published 5 books
and more than 58 research papers in reputed
international journals including Thomson Reuters (SCI & Web of
Science) and conferences including IEEE, & Springer. His main
research work focuses on Cryptography, Software Engineering
&Computational Intelligence. He has 28 years of teaching
experience.

Mr. R. S. Bal pursed Master of Technology
in Computer Science and Engineering degree
from Biju Patnaik University of Technology
in year 2009 and Maseter in Computer
Application degree from Fakir Mohan
Univeresity in year 2002. He is currently
working as Assistance Professor in
Department of Computer Science and
Engineering ,Cuttack 75301, BPUT,India. He
is a life member of ISTE. He has 11 research
papers in reputed international journals.
Served in guest faculty in different premier institutes namely
Institue of Management & Information Technology, Cuttack,
Ravenshaw University, Cuttack and IGNOU study center, Cuttack,
Odisha, India. Having research interests include Wireless Sensor
Network, Software Engineering &Computational Intelligence. He
has more than 15 years of teaching experience and currently
pursuing Ph.D.

