
 © 2015, IJCSE All Rights Reserved 129

International Journal of Computer Sciences International Journal of Computer Sciences International Journal of Computer Sciences International Journal of Computer Sciences &&&& EngineeringEngineeringEngineeringEngineering Open Access
 Research Paper Volume-3, Issue-7 E-ISSN: 2347-2693

Index Selection for in-Memory Databases

Pratham L. Bajaj
1*

 and Archana Ghotkar
2

1*,2
Dept. of Computer Engineering, Pune University, India,

www.ijcseonline.org

Received: Jun/09/2015 Revised: Jun/28/2015 Accepted: July/18/2015 Published: July/30/ 2015

Abstract—Index recommendation is an active research area in query performance tuning and optimization. Designing efficient

indexes is paramount to achieving good database and application performance. In association with database engine, index

recommendation technique need to adopt for optimal results. Different searching methods used for Index Selection Problem (ISP) on

various databases and resemble knapsack problem and traveling salesman. The query optimizer reliably chooses the most effective

indexes in the vast majority of cases. Loss function calculated for every column and probability is assign to column. Experimental results

presented to evidence of our contributions.

Keywords— Query Performance, NPH Analysis, Index Selection Problem

I. INTRODUCTION

Relational Database System is very complex and it is

continuously evolving from last thirty years. To fetch data

from millions of dataset is time consuming job and new

searching technologies need to develop. Query

performance tuning and optimization was an area of

interest for many researchers. Query performance can be

optimize either by query reformation or index

recommendation. In Query reformation, compound

queries (nested queries) are converted into simple queries

and join operations are restructure to reduce

computational cost. Database Engine performs query

reformation by converting one operator into other. For

example, BETWEEN operator is converted into IN

operator, if number of values in IN operator are less. OR

operator is try to convert into AND operator because both

predicates are evaluated separately that means two times

table scan need to do. In general, database engine suggest

indexes from candidate keys. But it may not be

considered in user query, so complete table scan is

perform. And also there is cost associated with index

table maintenance so number of indexes and type of data

structures are need to choose optimally.

Initially databases are solely stored in disk but due to fast

data requirement and by considering limitations of disk,

in-memory databases are evolved. Searching specific set

of tuples from millions of tuples which satisfies input

query is difficult. Automatic Index recommendation in

databases will reduce overall query execution cost. CRUD

operations may force to change indexing structure so

selection of indexes should be done carefully. Also there is

maintenance cost associated with indexing. Number of

index selection is depend upon application requirement.

For experimentation, in-memory databases are used. SQL

like query language used from user queries.

II. RELATED WORK

Database tables contains millions of records and indexes

helps to reduce overall searching time. Researchers

provides rules for index selections, data structures and

materialized views. Physical ordering of tuples may vary

from index table. In cluster indexing, actual physical

design get change. If particular column is hits frequently

then clustering index drastically improves performance.

In in-memory databases, memory is divided among

databases and indexes. Different data structures are used

for indexes like hash, tree, bitmap, etc. Collision

avoidance should be considered in hash indexes. Indexes

allocates some space, so it is important to select indexes

which will yield profit and leads to less overhead for

index maintenance. In composite indexes, order of

columns have major impact on complete system

performance. Compound indexes used only when

particular set of columns are hits simultaneously in query.

For example, supposed column A and column B are

considered as compound indexes AB. If queries get fired

on column A or on column A and B then compound index

AB gives optimal results. If predicate in queries fired on

column B then compound index is not used for user query.

Tuples retrieval from millions of records is difficult so

optimized searching methods are used. Generally

indexing is perform on candidate keys and selected

columns contributes in query execution [1]. Index

Selection Problem is NP-Hard problem. If there are N

columns then number of indexes are power set of N i.e.

2N. Indexes required some maintenance time and allocates

memory. If insert and update queries hit frequently then

overhead is more. Researchers found ISP resembles

Knapsack problem and knapsack. Knapsack allows to

select indexes which provides maximum profit to user

queries. Genetic algorithm is stochastic search, use when

search space is large and space increasing exponentially.

It is highly recommended when to deal with non-linear

optimization. It follows Darwin’s “survival of fittest”

model. Following table discussed different searching

techniques for ISP.

Select type of index that best fits application specification.

Index characteristics include the following:

• Clustered versus nonclustered

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(129-132) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 130

• Unique versus nonunique

• Single column versus multicolumn

Wearable devices and sensors generating data so

frequently that fast searching algorithms need to derive.

With evolving databases and changing user requirements,

new query languages comes like NoSQL and NewSQL

were developed.

G. Valentin et. al. [2] considered variant of knapsack

problem and suggested best index configuration for query.

Smart column enumeration suggests indexes based on user

queries. Solution provided is globally optimal. DB2 work

as black box index recommendation engine. Various

operator combination form within query and remove

duplicates. Also formulated number of indexes possible

for given databases.

H. Gupta et. al. [3] provide first model for automatic

index selection by summary table. They rely on

precompute data so that in future queries will give optimal

result. Also provide all possible set of solution for view,

queries and indexes. Chances of optimal result is very less.

S. Chaudhari et. al [5] depicted autoAdmin model for

physical design and provided what-if interface method.

Very well explanation of materialize view for index

selection. Considered multicolumn indexes with

enumeration of single column indexes. Explained

challenges in physical design changes, scaling challenges

and how it changes overall system maintenance cost. [11]

Focused on exploiting feedback from query execution and

query progress estimation. Specially focused on merging

and reduction in number of calls from optimizer.

P. Kolackow et. al. [6] solve ISP with genetic

algorithm by considering Darwin’s survival of fittest

model. Genetic algorithm (GA) does not guarantee of

optimal solution but converges solution space in one phase.

Focus on query execution cost by index recommendation.

GA refer chromosomes model by adopting mutation and

crossover [4].

S. Chaudhuri [8] resembles ISP with variation of knapsack

problem and approach lies in Linear Programming.

Experiments done by considering materialize view.

Highlighted two sub problems: picking right set of cluster

indexes and non-clustered indexes and referred as hard to

approximate. Explained workload with extensive updates.

S. Chaudhuri et. al. [10][13] number of index set evaluated

by considering both query syntax and cost information.

Find “goodness” for each index set. Iterative complexity

analysis done for multicolumn indexes. Depicted ISP as

difficult search problem. Efficiency measure on (1)

Number of indexes (2) Enumerated number of index

selection configuration (3) Number of optimizer calls for

each enumeration configuration and reduce it by atomic

configuration plan.

F. Fotouhi et. al. [12] ISP resemble Uncapacitated Facility

Location Problem (UELP). Derived cost function by

computing ISP by Genetic Algorithm (GA). Objective

function explained with time complexity and binary

encoding.

One can summarized from above literatures, ISP can be

solve either by linear programming or by non-linear i.e.

GA. If rate of growth of data is high then it better to go

with GA.

III. METHODOLOGY

The paper discussed complete implementation of query

performance optimization by index recommendation.

Goals and objectives are

• To recommend set of indexes that can minimizes

query execution cost.

• To calculate query cost estimation.

• To perform Space analysis.

• To perform Query analysis.

• To calculate probability of every column.

• To validate recommended indexes.

System contains database, system block diagram and

detail description of algorithms used in each phase. High

dimensional database i.e number of columns more than 7

and having different data types were considered for

implementation. Also database contains millions of rows.

Another Tool For Language Recognition (ANTLR) is

parser generator that uses LL(*) parsing. LL(1) is top

down parser and lookahead one symbol. ANTLR takes an

input a grammar that specific language and generate

output as source code. It generate lexer, parser, tree parser

and combine lexer-parser. Parser then generate Abstract

Syntax Tree (AST). Following figure shows syntax tree

for grammar.

Fig 1. Syntax Tree

The major steps involved in the proposed system are:

1. Database analysis

2. Query analysis

3. Statistical analysis

4. Index recommendation

5. Query execution cost

In proposed work, index recommendation done

dynamically by analyzing both user inputs and databases.

Generally, indexes are recommended by database engine

from candidate keys but chances of utilization are rare. So

indexes should be dynamically assign to databases.

In database analysis, cardinality of each column is find

out. At this moment, cardinality is find out by perfect

matching. It can be further evolve iteratively by analyzing

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(129-132) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 131

what value fire by user in predicate. If number of

cardinality greater than threshold then that space is drop.

In experiment, threshold value considered 60%.

Cardinality distribution is calculated by checking

cardinality count between multiple of 0.5 to ratio of total

number of rows to cardinality and multiple of 1.5 to ratio

of total number of rows to cardinality n query analysis.

Predicates were again separated into column name and

operator used on it. For equality and range operator

separate count value is maintain. More the count better to

select respective data structure i.e Hash or Tree. In special

case, if particular column with range operator count more

than k times of equality operator then in that case tree

data structure preferred over hash.

In statistical analysis, two errors are calculated for

optimal utilization of resources. Error1 is columns not

indexed but used by query i.e. wastage of time, database

engine go for complete table scan. Error2 is columns are

indexed but not used by query i.e. wastage of memory.

Both error1 and error2 varies from 0 to 1. Depend upon

application requirement weightage is assign to error and

payoff factor is calculated. Form error1 and error2 payoff

factor is calculated by eq. (1) and then columns were

arranged.

Payoff=k* Error1-(1-k)* Error2 (1)

 Fig 2. Column with error count

Probability value is set for every column and it is

resembles with knapsack problem. Probability of columns

can be calculated by

PB(C) =
������∗����

∑ ����
�∗�����
�
�

 (2)

Fig 3. Column Probability

Depending upon application requirement number of

indexes are set by altering physical design. Indexes can be

single column or multicolumn. More the number of

indexes more will be the maintenance cost. Proposed

system recommend indexes with its data structure. For

single column indexes, columns with highest probability

of occurrences is selected first. The point is what data

structure is used if both equality and range operators

applied on column. Hash indexes are faster than tree but

in insert and update operations tree gives better results. In

following figure column names are listed out with

occurrences of errors.

Fig 4. Recommended Indexes

IV. EXPERIMENTAL RESULTS

The result of different modules are shown below with

single column and two column indexes. Figure 1 shows

query performance optimization by single column indexes.

Here we can see difference between query execution time

before indexing and after indexing. Number of queries

fired were 540 and most of them is selection queries. If

the ratio of insert or update to select get change then final

results will also change.

Fig 4 Query execution time with one column indexes

Figure 2 show query performance optimization by two

column indexes obtained from by calculating

correlational factor between two columns.

0

10000

20000

30000

40000

50000

60000

1 2 3 4

Q
u

e
ry

 e
x

e
cu

ti
o

n
 t

im
e

 i
n

 m
s

Number of indexes

Single column indexes

Query execution cost before

Query execution cost after index recommendation

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(129-132) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 132

Fig 5 Query execution time with two column indexes

Figure 3 show query execution cost suggesting one and

two column indexes.

Fig 6 Query execution time with both single and

multicolumn indexes

V. CONCLUSION

Query performance optimization by Index

Recommendation is proposed for in memory database.

Index recommendation problem solved by resembles

knapsack problem. Proposed algorithm considered both

user query and database for index recommendation and in

results it was found that appropriate indexes reduces

overall query execution time. In experimental results,

comparison done between single column and

multicolumn indexes and verified query execution time.

The same index recommendation tool can be used with

other databases and enhances overall system performance.

ACKNOWLEDGMENET

I would like to take this opportunity to thank Nikhil

Tamhankar, Abhay Chavan and Ramaswami Raju for

always there for guidance and support.

REFERENCES

[1] Oracle “Performance Tuning Guide 11g Release 2”.

[2] G. Valentin, M. Zuliani, D. C. Zilio, A. Skelley and

G. Lohman, “DB2 Advisor: An Optimizer Smart

Enough to Recommend Its Own Indexes”, ICDE,

2000.
[3] H. Gupta, V. Harinarayan and A Rajaraman, “Index

Selection for OLAP,” in IEEE, 1997, pp 208-219.

[4] J. Calle, Y. Saez and D. Cuadra, “An Evolutionary

Approach to the Index Selection Problem,” in IEEE,

pp 485-490, 2011.

[5] S. Chaudhuri and V. Narasayya, “Self-Tuning

Database Systems: A Decade of Progress,” in VLDB

Endowment, pp 3-14, 2007.

[6] P. Kolaczkowski and Henryk Rybinski, “Automatic

Index Selection in RDBMS by Exploring Query

Execution Plan Space,” in IEEE, pp 131-137, 2005.

[7] P. Papadomanolakis and S. Ailamaki, “An integer

linear programming approach to database design,” in

Workshop on Self-Managing Database Systems, pp

442-449, 2007.

[8] S. Chaudhuri and V. Narasayya, “An Efficient, Cost-

Driven Index Selection Tool for Microsoft SQL

Server,” Proc. 23rd Int’l Conf. Very Large Databases

(VLDB), pp. 146-155, 1997.

[9] C. S. Blanken and H.M.Chang, “Index selection in

relational databases,” in International Conference on

Computing and Information, pp. 491–496, 1993.

[10] S. Chaudhuri, M. Datar and V. Narasayya “Index

Selection for Databases: A Hardness Study and a

Principled Heuristic Solution” in IEEE transactions

on knowledge and data engineering, Vol. 16, pp

1313-1323, 2004.

[11] S. Chaudhuri and V. Narasayya, “AutoAdmin ‘What-

If’ Index Analysis Utility,” in Proc. ACM SIGMOD,

pp 367-378, 1998.

[12] F. Fotouhi and C. Galarce, “Genetic Algorithms and

the Search for Optimal Database Index Selection”

Springer, pp 249-255, 1991.

[13] S. Agrawal, S. Chaudhuri and S. Narasayya

“Automated selection of materialized view and

indexes for SQL databases” in Proc 26
th

 VLDB, pp

496-505, 2000.

[14] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V.

R..Narasayya, and M. Syamala,, “Database Tuning

Advisor for Microsoft SQL Server 2005,” In Procs.

30th VLDB Conference, pp. 1110-1121, 2004.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3

Q
u

e
ry

 e
x

e
cu

ti
o

n
 t

im
e

 i
n

 m
s

Number of indexes

Two column indexes

Number of Indexes

Query execution time before

Query execution time after

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4

Q
u

e
ry

 e
x

e
cu

ti
o

n
 t

im
e

 i
n

 m
s

Number of indexes

Single and multi column indexes

Query execution time before Query execution time after

