

 © 2018, IJCSE All Rights Reserved 151

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

Metaphorical Analysis of Software Clone Detection Techniques based on

Dimensions and Metrics

Sarveshwar Bharti

1*
, Hardeep Singh

2

1, 2

Department of Computer Science, Guru Nanak Dev University, Amritsar, India

*Corresponding Author: sarveshwar.dcsrsh@gndu.ac.in, Tel.: +91-9906129214

Available online at: www.ijcseonline.org

Accepted: 26/Dec/2018, Published: 31/Dec/2018

Abstract— In spite of having limited benefits, software clones mostly have negative impact on software quality, more

specifically on software maintenance and thus diminishing software quality and raising the maintenance cost. Not all the clones

are possible to remove, but, if possible clones need to be removed from the software system. To remove clones, we need to first

detect this duplication in the code base. Literature lists various clone detection techniques that are used to detect duplication in

software system. To have a better clone detection technique in future or to select from the available clone detection technique,

these available techniques found in literature need to be analyzed. This paper attempts to comparatively analyze the clone

detection techniques available in literature and thus will present a future scope as well as the recourse based on the analysis for

selection of any particular technique.

Keywords—Code Clone Detection, Clone Detection Techniques, Comparative Analysis

I. INTRODUCTION

Software Clones are basically defined on the notion of

significant similarities between code fragments. In literature,

the widely used definition of clones was given by Baxter et

al. [1], stating “a clone is a program fragment that [is]

identical to another fragment”. Similarity between these code

fragments can be of syntactic or semantic type. Bellon et al.

[2], presented the classification of clones based on the

similarity between code fragments. Based on the syntactic

similarity, three clone types were defined viz. Type1, Type2

and Type3 and based on the semantic similarity, Type4

clones were defined. There are various intentional as well as

unintentional reasons behind the induction of clones in the

software system, as discussed in [3]. Literature mentions 9%

to 17% [4] of the code of any software system may be a

cloned code. There have been various studies that have

proved the negative impact of clones on the software system

and thus researchers contend that these duplicated code

fragments must be polished off and if possible should be

averted to be inducted into the software system. Process of

code clone detection mainly includes the code transformation

and then the match detection. After extraction of the code to

be matched, it is transformed into an internal format. This

format is used by the implemented algorithm to detect

matches more efficiently. To detect clones there are various

clone detection techniques available in literature that use

different internal format to represent code and accordingly

they can be classified into different types based on this

internal format viz. text based, tree based, graph based,

metrics based and hybrid techniques.
To stimulate a better clone detection technique, these

clone detection approaches necessitates to be studied. This
paper will endeavor to compare these clone detection
approaches based on different parameters.

The rest of the paper is organized as follows. Section II
portrays the objective of this paper. Section III discusses the
literature related to the present study. Section IV lists various
clone detection techniques found in literature. Section V
presents various dimensions of clone detection techniques, VI
discusses various evaluation metrics and then comparative
analysis of the clone detection techniques is performed in
Section VII. And, then finally conclusion and future work is
presented in Section VIII, along with acknowledgments and
references in the support of this paper.

II. MOTIVATION AND OBJECTIVE

As discussed above, it has been empirically evidenced
that clones have a negative impingement on the software
quality and mainly on the software maintenance, thus, these
clones present in the software system needs to be removed
from the software system. To remove clones, these must be
detected first, and, to detect clones in the software system,
literature lists number of clone detection approaches.
Different types of code clone detection techniques found in
literature are text based, tree based, graph based, metrics
based, hybrid etc. that should be comparatively analyzed to
help the software clone researchers to select a suitable
technique for the system under consideration and also

 International Journal of Computer Sciences and Engineering Vol. 6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 152

identify the future potential for a new technique. So, the main
motive of this paper is to parametrically analyze and thus
evaluate different clone detection techniques that are
discussed in the code clone literature.

III. RELATED LITERATURE

This section will attempt to summarize various studies
that compare and evaluate various clone detection
techniques. Various related studies found in literature as
shown in table 1 are discussed below.

In the year 2007, Roy and Cordy [3] presented a detailed
survey on software clone detection research. They compared
and evaluated various clone detection techniques based on
the various properties viz. comparison granularity, code
representation, transformation, refactoring opportunities etc.
To evaluate various tools they first did the high level
evaluation of detection approaches. This high level
comparison was done by comparing different approaches
using different parameters viz. portability, scalability,
precision, recall and robustness. In 2008, Roy and Cordy [6],
presented the scenario based comparison of various clone
detection techniques. Roy et al. [7] in the year 2009
qualitatively compared and then evaluated clone detection
techniques found in literature. Ratten et al. [8] discussed the
systematic literature review followed by them in identifying
various tools and then the identified tools and implemented
techniques were compared. Rysselberghe and Demeyer [5]
presented the comparison of three representative detection
techniques. Sheneamer and Kalita [9], in the year 2016 came
up with a detailed survey of various clone detection
techniques.

Complementing the above mentioned surveys, this paper
compares and evaluates the clone detection techniques and
identifies the future potential by integrating the empirical
observations from the previous surveys. In contrast to the
previous surveys, this study presents simple and easily
adaptable observations with the emphasis on various
strengths as well as weaknesses.

IV. CLONE DETECTION TECHNIQUES

The corpus of the software clone research incorporates
number of clone detection techniques by proficient
researchers of research community. Researchers detected
clones using various clone detection tools that implements
different detection approaches. This section will discuss
various clone detection techniques found in literature.
Literature study revealed different types of approaches that

were employed to detect clones as shown in figure 1 are
discussed below:

A. Text Based Clone Detection Techniques

Various clone detection techniques detect clones by
comparing the program text directly, considering it as a
sequence of lines/strings. This technique involves very little
transformation of the source code that becomes an input to the
comparison algorithm. In this technique number of lines is
taken as a clone size.

B. Token Based Clone Detection Techniques

This technique involves the transformation of source code
involving lexing/parsing/transformation into the sequence of
tokens. After scanning this sequence of tokens to detect
duplicated fragments, the duplicate sub sequence pairs of the
tokens are reported as clones. This technique is more robust
than text based approach.

C. Tree Based Clone Detection Techniques

Using parser of the language under consideration, the
source code in parsed into an Abstract Syntax Tree (AST) or
parse tree. After the source code transformation, the sub tree
searching algorithm is applied on the tree representation of

Figure 1. Clone detection techniques

Table 1. Related Literature

S. No. Author Year Title Reference

1. Rysselberghe and Demeyer 2004 Evaluating Clone Detection Techniques from a Refactoring Perspective [5]

2. Roy and Cordy 2007 A Survey on Software Clone Detection Research [3]

3. Roy and Cordy 2008 Scenario-Based Comparison of Clone Detection Techniques [6]

4. Roy and Cordy 2009
Comparison and Evaluation of Code Clone Detection Techniques and

Tools: A Qualitative Approach
[7]

5. Ratten et al. 2013 Software Clone Detection: A Systematic Review [8]

6. Sheneamer and Kalita 2016 A Survey of Software Clone Detection Techniques [9]

 International Journal of Computer Sciences and Engineering Vol. 6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 153

the source code and the matching sub trees are returned as
clone pairs.

D. Graph Based Clone Detection Techniques

To go step further, semantic information of the source
code is obtained using program dependency graphs (PDG).
These PDGs contain the semantic information as the control
flow and data flow information of the source code. Similar
sub graphs are returned as clone pairs by applying sub graph
matching algorithm.

E. Metrics Based Clone Detection Techniques

Instead of comparing the program code directly, metrics
based approaches calculate various program metrics and then
compare these metrics values to identify the similar code
fragments. Most of the times, to calculate metrics, the source
code is transformed into an intermediate representation e.g.
AST/PDG representation. Metrics can be calculated at any
granularity like at statement level, method level, class level
etc.

F. Hybrid Clone Detection Techniques

When more than one clone detection technique is applied
or more than one transformation is carried out for detecting
clones, we call this type of technique a hybrid approach. For
example, in software clone literature there are various clone
detection techniques that uses AST as well as Suffix tree
representation to detect similar fragments.

Table 2 presents the one implementation as example of
the above mentioned techniques discussed in the clone
literature. Dup is a text based tool implemented by Baker in
the year 1995, CCFinder is a token based tool implemented
by Kamiya et al. in the year 2002, tree based clone detection
tool CloneDr was implemented by Baxter et al. in the year
1998, in the year 2001 Krinke came up with Duplix, a graph
based tool and in the year 2011 ConQAT was developed by
Hummel et al.

V. DIMENSIONS OF CLONE DETECTION TECHNIQUES

To efficiently analyze the clone detection techniques, C.
K. Roy and J. R. Cordy [3], presented various dimensions
(properties), based on which various detection approaches can
be elucidated. Figure 2 shows the various dimensions used to
compare different techniques that are discussed below:

A. Source Transformation/Normalization

Clone detection approaches first transform the source
code into the suitable format and then the clone detection is
applied. Source code may also be normalized by removing
white spaces and comments.

B. Source Representation

After the transformation, detection algorithm works on the
transformed code, represented in a desirable format.

C. Comparison Granularity

To detect clones, detection algorithms may compare code
at only few lines of granularity or may compare at the level
tree or graph node etc.

D. Comparison Algorithm

Different sub fields of the clone research, applies different
algorithms, as per the requirement.

Table 2. Implementation under each Detection Approach (Only one publication)

S. No. Author Approach Tool Year Reference

1. Brenda Baker Text Based Dup 1995 [10]

2. Kamiya et al. Token Based CCFinder 2002 [11]

3. Baxter et al. Tree Based CloneDr 1998 [1]

4. Jens Krinke Graph Based Duplix 2001 [12]

5. Mayrand et al. Metrics Based Mayrand et al. 1996 [13]

6. Hummel et al. Hybrid ConQAT 2011 [14]

Figure 2. Dimensions of clone detection techniques

 International Journal of Computer Sciences and Engineering Vol. 6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 154

Table 3. Comparison of Various Clone Detection Approaches over 11 Dimensions

 International Journal of Computer Sciences and Engineering Vol. 6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 155

E. Computational Complexity

To detect clones efficiently, overall complexity of the
algorithm, including extraction, transformation and matching
should be taken into consideration, thus depicting the overall
complexity of the algorithm.

F. Clone Similarity

It represents the type of the similarity between the code
fragments and thus the types of clones viz. exact, near miss
etc.

G. Clone Granularity

Pre-defined syntactic boundary (fixed granularity) can be
at the function level, block level etc. or there may not be any
boundary to report clones.

H. Language Independency

This property will depict the language the clone detection
tool supports.

I. Output/Groups of Clones

Clones can be detected as clone pair, clone class or both.

J. Clone Refactoring

This property defines the support of the algorithm towards
the refactoring of the detected clones.

K. Language Paradigm

To which language paradigm the clone detection approach

targets viz. procedural, object oriented, assembly etc.

VI. EVALUATION METRICS

To evaluate various clone detection tools and thus various

techniques, various frequently used metrics are discussed

below:

A. Precision

One of the most common metric used to evaluate the

clone detection tools is the positive predictive value (PPV),

also known as precision. This metric refers to the relevant

clone instances detected by clone detection algorithm out of

all the retrieved clones. In terms of true positive (TF), true

negative (TN), false positive (FP) and false negative (FN),

precision is represented as:

Precision

B. Recall

It is another important metric used to assess the quality of

the clone detection results also known as sensitivity or true

positive rate. It refers to the relevant code clone instances

detected out of all the clones present in the code base. In

terms of the TP, TN, FP and FN, recall is represented as:

Recall

C. F-measure

F-measure also known as traditional F-measure or

balanced F-score depicts the harmonic mean of the precision

and recall, and is represented as:

F-measure

VII. COMPARATIVE ANALYSIS OF THE SOFTWARE

CLONE DETECTION TECHNIQUES

As discussed in the previous sections, clones should be

detected and to detect clones there are different approaches.

Out of these detection approaches, which one should be

selected, is a matter of concern. Thus, these approaches need

to be comparatively analysed. This section presents the

comparative analysis of all these clone detection approaches.

Various dimensions discussed in the previous section can be

used to compare various clone detection techniques. Table 3

Table 5. Summary of Comparative Metric Evaluation of Code Clone Detection Tools and Techniques

Detection Approach Tool Used Precision Recall Reference

Text Based Dup1 High Low [10]

Token Based CCFinder1 Low High [11]

Tree Based CloneDr1 High Low [1]

Graph Based Duplix1 High Medium [12]

Metrics Based Mayrand et al. Medium Medium [13]

1 Values taken from an experiment conducted by Murkami et al. as mentioned in [9]

Table 4. Comparative Metric Evaluation of Code Clone Detection Tools

Approach Tool Precision Recall F-measure Reference

Text Based Dup1 3.1% - 9.3% 56% - 81.5% 5.95% - 16.04% [10]

Token Based CCFinder1 0.8% - 6.6% 44.5% - 100% 1.58% - 12.33% [11]

Tree Based CloneDr1 6% - 40.3% 14.9% - 48.1% 8.68% - 32.55% [1]

Graph Based Duplix1 2.9% - 10.5% 17.3% - 45.8% 5.35% - 17.08% [12]

Metrics Based Mayrand et al. N/A N/A N/A [13]

Hybrid ConQAT N/A N/A N/A [14]

1 Values taken from an experiment conducted by Murkami et al. as mentioned in [9]

 International Journal of Computer Sciences and Engineering Vol. 6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 156

presents the comparison of various clone detection techniques

with respect to the various dimensions mentioned in the

previous section. For example, the comparison granularity

used by the clone detection techniques are discussed

including lines, tokens, AST nodes, PDG nodes, metrics

calculated presented under text based, token based, tree based,

graph based and metrics based respectively. In the same

manner all the other dimensions are discussed in the table 3.

Table 4 presents the comparative metric evaluation of

different tools utilizing various clone detection approaches.

This table, based on previous survey, obtains precision, recall

and F-measure for various mentioned tools.

Table 5 summarizes the comparative evaluation results with

high, low or medium measure of clone detection quality.

VIII. CONCLUSION

Authors conclude that in spite of having advantages in

many cases, software clones cannot be left into the software

system. Because, Software Clones have an adverse impact on

the software quality, these should be removed. This paper first

discussed various clone detection techniques available in

literature viz. text based, tree based, token based, graph based,

metrics based and the hybrid approach, along with various

dimensions of these clone detection techniques viz. clone

similarity, comparison granularity, language paradigm etc.

Then extensive comparative analysis is performed

considering various dimensions and evaluation metrics to

describe each clone detection technique. Thus this paper gives

an overview of the detection approaches and would help the

researchers to identify the particular technique of his/her

interest, or to develop a new one.

ACKNOWLEDGMENT

Authors would like to acknowledge UGC for the Research

Fellowship to the first author and also would like to thank the

Department of Computer Science, Guru Nanak Dev

University for providing the needed infrastructure.

REFERENCES

[1] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant'

Anna, and Lorraine Bier, "Clone Detection Using Abstract Syntax

Tree," in Proceedings of 14th International Conference on

Software Maintenance(ICSM'98), Bethesda, Mayland, 1998, pp.

368 - 377.

[2] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke,

and Ettore Merlo, "Comparision and Evaluation of Clone

Detection Tools," IEEE Transaction on Software Engineering, vol.

33, no. 9, pp. 577 - 591, 2007.

[3] Chanchal K. Roy and James R. Cordy, "A Survey on Software

Clone Detection Research," Queen's University, Kingston,

Technical Report 2007-541, 2007.

[4] Minhaz F. Zibran, Ripon K. Saha, Muhammad Asaduzzaman, and

Chanchal K. Roy, "Analysing and Forecasting Near-miss Clones

in Evolving Software: An Empirical Study," in Proceedings of the

16th IEEE International Conference on Engineering of Complex

Computer Systems, Las Vegas, USA, 2011, pp. 295-304.

[5] Filip Van Rysselberghe and Serge Demeyer, "Evaluating Clone

Detection Techniques from a Refactoring Perspective," in

Proceedings of the 19th IEEE international conference on

Automated Software Engineering (ASE'04), Linz, Austria, 2004,

pp. 336-339.

[6] Chanchal K Roy and JamesR Cordy, "Scenario-Based Comparison

of Clone Detection Techniques," in The 16th IEEE International

Conference on Program Comprehension, 2008, pp. 153-162.

[7] Chanchal Kumar Roy, James Cordy, and Rainer Koschke,

"Comparison and Evaluation of Code Clone Detection Techniques

and Tools: A Quantitative Approach," Science of Computer

Programming, vol. 74, no. 7, pp. 470 - 495, March 2009.

[8] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh, "Software

Clone Detection: A Systematic Review," Information and

Software Technology, vol. 55, no. 7, pp. 1165-1199, July 2013.

[9] Abdullah Sheheamer and Jugal Kalita, "A Survey of Software

Clone Detection Techniques," International Journal of Computer

Applications, vol. 137, no. 10, pp. 1 - 21, March 2016.

[10] Brenda Baker, "On Finding Duplication and Near Duplication in

Large Software Systems," in Proceedings of the 2nd Working

Conference on Reverse Engineering (WCRE'95), 1995, pp. 86-95.

[11] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue,

"CCFinder: A Multilinguistic Token-Based Code Clone Detection

System For Large Scale Source Code," IEEE Transactions on

Software Engineering, vol. 28, no. 7, pp. 654-670, July 2002.

[12] Jens Krinke, "Identifying Similar Code with Program Dependence

Graphs," in Proceedings of the Eighth Working Conference on

Reverse Engineering (WCRE'01), Stuttgart, 2001, pp. 301-309.

[13] Jean Mayrand, Clande Leblane, and Ettore Merlo, "Experiment on

the Automatic Detection of Function Clones in a Software

Systems Using Metrics," in Proceedings of International

Conference on Software Maintenance (IWSM'96), Monterey,

1996, pp. 244 -253.

[14] Benjamin Hummel, Elmar Juergens, Lars Heinemann, and

Michael Conradt, "Index-Based Code Clone Detection:

Incremental, Distributed, Scalable," in IEEE International

Conference on Software Maintenance, Timisoara, Romania, 2010.

Authors Profile

Mr. Sarveshwar Bharti is presently working at

the Department of Computer Science, Guru

Nanak Dev University, Amritsar, India, as a

Ph.D. Research Fellow. He has received his

Master of Computer Applications (MCA)

degree from University of Jammu, Jammu,

India. He is a Software Engineering Researcher with research

interests including Software Clones, Integrated Clone

Management, and Clone Management Plug-in.

Dr. Hardeep Singh is a Professor and Head at
the Department of Computer Science, Guru
Nanak Dev University, Amritsar, India. His
research interests lie within Software
Engineering and Information Systems. He has
been awarded with various prestigious awards
including Dewang Mehta Award for best
Professor in Computer Engineering, ISTE
Award for Best Teacher in Computer Science and Rotract
International Award for best Teacher.

