

 © 2019, IJCSE All Rights Reserved 1538

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Design and Implementation of Transition Table for Token Recognizer

with a Given Suffix

Rajanshu Goyal

1*
, Gulshan Goyal

2

1,2

Department of CSE, Chandigarh College of Engineering & Technology (Degree), Chandigarh, India

*Corresponding Author: rajanshugoyal@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i5.15381542 | Available online at: www.ijcseonline.org

Accepted: 12/May/2019, Published: 31/May/2019

Abstract— Token description and recognition are two important functions of a lexical analyser in compiler design. A token can

be described using mathematical expression like notation called regular expression. The process of token recognition is carried

out with the help of finite automata. A finite state automaton is a type of machine in which for each state and input symbol, a

transition takes place. A finite automaton can be deterministic or non-deterministic depending on number of possible

transitions for each state and input symbol. The design of automata for recognition of tokens is an important and challenging

task. From the available transitions, a token recognizer can be designed using JFLAP tool which further help in token

recognition. However, there is no standard algorithm or procedure for construction of transition table for token recognizer.

Present paper proposes an algorithm for construction of a language recognizer using deterministic finite automata for all tokens

having a given suffix. The algorithm is implemented and tested for various token strings and results are used and compared

with JFLAP results.

Keywords— Lexical Analysis, Token, Language Recognizer, Deterministic Finite Automata, Suffix.

I. INTRODUCTION

Lexical analysis is first and most important phase in compiler

design. The basic function of lexical analyser is to scan the

source program one character at a time and generate the

corresponding token. In lexical analysis, lexemes are

smallest possible addressable units in a program while tokens

are logical categories to which lexeme belongs [1]. For

example, consider the following statement:

a = b + c; (1)

The statement consists of lexemes and tokens as shown in

Table 1. There are two main tasks related to tokens:

1. Token Description

2. Token recognition

The tokens of a source language can be described using the

mathematical notations called regular expressions while the

Table 1. Lexemes and tokens

Sr. No. Lexeme Token

1. a Identifier

2. = Operator

3. B Identifier

4. + Operator

5. C Identifier

tokens can be recognized using finite state machines called

automaton [1]. As an example, a token described using the

regular expression (a/b)*ab can be recognized using

automaton as shown in Figure 1.

In general, a token recognizer can be deterministic finite

automata (DFA), non-deterministic finite automata (NFA) or

non-deterministic finite automata with null transitions (NFA

with null). Present paper describes an algorithm for design of

token recognizer with a given suffix. As an example the

recognizer shown in Figure 1 can be represented using a

table called transition table as shown in Figure 2.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1539

Figure 1. A recognizer for (a/b)*ab

Figure 2. Transition Table for (a/b)*ab

II. DETERMINISTIC FINITE AUTOMATA AS

TOKEN RECOGNIZER

In Lexical analysis phase of compiler, source code is broken

into small tokens and validity of tokens is checked according

to the rules specified in any particular programming

language. These rules are specified in the mathematical

expressions called regular expressions [2]. These expressions

are used to describe the tokens. The program that simulates

the given regular expressions into DFA can be used to check

whether the given token belongs to the specified language or

not. If DFA accepts the given token, then it is a valid token

otherwise it is invalid [3].

Deterministic finite automata commonly called as DFA is

defined as a machine in which for each state and input

symbol, a transition takes place. Mathematically, it can be

represented by 5 tuples:

M= (Q, ∑, δ, q0, F) (2)

Where

 Q = Finite set of states,

 ∑ = Input alphabet

 δ = Transition function for any input symbol at particular

state and is defined as:

δ: Q x ∑ -> Q (3)

q0 =Initial state of a machine,

 F= Set of final states of a machine

A state do∈ Q such that δ (do, a) = do ∀a ∈ Σ is called a dead

state [4]. An example of DFA for all strings over ∑ = {a, b}

having suffix ‘ab’ is shown in Figure 1 and corresponding

transition table is shown in Figure 2. Here,

 Q = {q0, q1, q2},

(4)

 ∑ = {a, b}, (5)

 δ (q0, a) =q1, δ (q0, b) =q0, (6)

 δ (q1, a) =q1, δ (q1, b) =q2, (7)

 δ (q2, a) =q1, δ (q2, b) =q0, (8)

 q0 is an initial state, and (9)

 F = {q2} (10)

A token string is said to be recognized by a DFA if a final or

accepting state can be reached starting from an initial state

and processing the string one symbol at a time. For example,

consider the token string w = ‘baab’ and process it in above

DFA. The sequences of steps showing the recognition

process are:

q0 --b--> q0 --a--> q1 --a--> q1 --b--> q2

As q2 is a final state therefore the token string ‘baab’ is

recognized by the recognizer of Figure 1.

A. OTHER APPLICATIONS OF DFA

Apart from the importance of DFA in token recognition,

there are many other applications based on use of automata.

Some of these applications are:

a) Text processor: To search a text file for strings that

matches with a given pattern, text processors or text

filters also uses DFA like code [5].

b) Speech Processing: Speech processing and other signal

processing systems often uses a DFA like technique to

transform an incoming signal [6].

c) Pattern Matching: DFA is a simple language

recognition device or a machine which recognizes the

given input strings. Minimized DFA can be more

helpful as it reduces the memory area required [7, 8].

d) Vending Machines: DFA can also be used in Vending

machine in which value of coins can act as a state of a

machine and only some combination of coins will lead

to dispense the selected item [9].

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1540

e) Path finding DFA in Video Games having AI [9,10].

III. PROBLEM FORMULATION

As mentioned in previous section that DFA is of extreme

importance in many applications including token recognition

in compiler design. However, most of the computer science

learners in this field face difficulty in designing

Deterministic Finite Automata (DFA) due to requirement of

high level of understanding [11]. JFLAP (Java Formal

Languages and Automata Package) is a free and open source

software tool used for designing finite automata, pushdown

automata, and turing machines from the available transitions.

Any kind of DFA can be designed in JFLAP manually.

However, there has to be some mechanism for defining and

presenting transitions for applying in JFLAP, which is

helpful for understanding the design of DFA.

Due to the deterministic nature of a DFA, it is implementable

in hardware and software for solving various specific

problems [12]. There is no availability of well formatted

algorithm for the automatic generation of transition table for

recognizers which can recognize token. Therefore, there is a

need of such algorithm which can facilitate automatic

generation of transition table for language string recognizer.

In the scope of present paper, an algorithm for automatic

generation of transition table for a language strings having

some given suffix is discussed. In this algorithm there is no

kind of limitations on number and type of input symbols and

also the length of given suffix.

IV. PROPOSED METHODOLOGY

Present section describes a simple and easily understandable

approach to generate transition table for token recognizer

with a given suffix. To generate transition table of token

recognizer for a given suffix the following steps are applied:

1. Total number of states in the recognizer will be

equal to length of given suffix plus one.

2. A transition for initial state (state 0) is defined to go

to the next state (state 1) for the first symbol (at

index 0) of suffix. For all remaining input symbols

at initial state it will create self-loop and will stay at

initial state.

3. Transitions for all remaining states i: At every state

i some part of suffix is already traversed till index i-

1. For state i and input symbol at index i in suffix,

transition to state i+1 will take place.

4. For all remaining input symbol j at state i the

algorithm will look for two longest matching

substrings (with length L) in suffix: First from

starting index to some index less than i and Second

from some index greater than index zero to index i-

1 in which input symbol j will be concatenated.

5. This matched substring of length L will tell that

with input symbol j at state i the part of suffix

recognized till this state will be of length L and the

transition to state L will take place for input symbol

j at state i.

The detailed algorithm for the generation of transition table

of token recognizer for a given suffix is shown in Figure 3.

Figure 3. Proposed Algorithm for Token Recognizer for Given Suffix.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1541

V. RESULTS AND DISCUSSION

The proposed algorithm is implemented using C++ Language

using the concept of strings and vectors. The result is tested

by generating transition table of token recognizer for various

suffixes. Snapshot for one of the suffix ‘abb’ over Σ ={a,b}

is shown in Figure 4. Transition table in Figure 4 is shown as

output of token recognizer in which ‘->’ represents initial

state and ‘*’ represents final state.

The string ‘ababb’ is checked for recognition using transition

table constructed in Figure 4 and output is shown in Figure 5.

By using transition table generated by proposed algorithm in

Figure 4, its corresponding token recognizer is constructed in

JFLAP as shown in Figure 6. The same string ‘ababb’ is

checked for recognition by a recognizer designed in Figure 6

in JFLAP also and its output is shown in Figure 7.

The results of string recognition by both transition table and

JFLAP are same as both are showing the same state

transitions and string ‘ababb’ as accepted (recognized). The

string is shown as recognized when the last transition leads

to the final state. In this way transition table of token

recognizer for different suffixes are generated using

algorithm in present paper and its corresponding token

recognizer is constructed in JFLAP. Many strings are

traversed in JFLAP for designed recognizer and all are

giving the same results as of results given by algorithm in

present paper.

Figure 4. Transition Table for suffix ‘abb’

Figure 5. Token String Recognition Using Proposed Algorithm

Figure 6. Token Recognizer Design using JFLAP

Figure 7. Token String Recognition Using JFLAP

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1542

VI. CONCLUSION AND FUTURE SCOPE

Token description and recognition is first and most important

activity in compiler design. Constructing a transition table for

a recognizer has been challenging task over years. Using

JFLAP, transitions can be used for designing a recognizer but

cannot be constructed, which is helpful for understanding the

design of DFA. In JFLAP one has to give predefined

transitions manually for desired token recognizer, which is a

time consuming process. Present paper proposes an approach

to implement the transition table for token recognizer with a

given suffix. The results of proposed algorithm are used to

design the recognizer using JFLAP. In present paper, the

algorithm designed for implementing token recognizer using

DFA with a given suffix, transition table can be constructed

automatically and stores the DFA in a well formatted

transition table. In future the algorithm can be made simpler

and its time and space complexity can also be taken into

consideration to make the algorithm computationally more

efficient. Further, the algorithm can be extended to other

types of token strings also.

REFERENCES

[1] Aho A. V., Ullman J. D., “Principles of Compiler Design”, Narosa

Publishing House, 2002

[2] John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman,

“Automata Theory, Language, and Computation”, Delhi: Pearson,

2008.

[3] Aparna, Goyal G., “Application Review of Automata Theory”

International Journal of Scientific Research in Computer Science,

Engineering and Information Technology, Vol. 3, Issue 1, pp. 947-

955, 2018.

[4] Parekh, R. G., Honavar, V. G., "Learning DFA from Simple

Examples” Journal of Machine Learning, Vol. 44, Issue 1-2, pp. 9-

35, 2001.

[5] Webber A. B., “Formal Language: A Practical Introduction”,

Franklin, Beedle & Associates Inc., Wilsonville, pp. 35-43, 2008.

[6] Ullman, J. D. (1972), "Applications of language Theory to Compiler

Design", Proceedings of the May 16-18, 1972, spring joint

computer conference, pp. 235-242, 1972.

[7] BabuKaruppiah A., Rajaram S., “Deterministic Finite Automata for

pattern matching in FPGA for intrusion detection” International

Conference on Computer, Communication and Electrical

Technology, pp. 167-170, 2011

[8] Ejendibia P., Baridam B. B., “String Searching with DFA-based

Algorithm”, International Journal of Applied Information Systems,

Vol. 9, No. 8, pp. 1-6, 2015

[9] Gribko E. “Applications of Deterministic Finite Automata” ECS

120 UC Davis, Spring 2013, pp. 1-9, 2013.

[10] Raj N., Dubey R., “Snakes and Stairs Game Design using Automata

Theory”, International Journal of Computer Sciences and

Engineering, Vol. 5, Issue 5, pp.58-62, 2017

[11] Shenoy V., Aparanji U., Sripradha K., Kumar V., “Generating DFA

Construction Problems Automatically” International Journal of

Computer Trends and Technology, Vol. 4, Issue 4, pp.32-37 ,2013

[12] Pant Y., “A Novel Approach to Minimize DFA State Machines

Using Linked List”, International Journal of Scientific Research in

Computer Science and Engineering, Vol. 6, Issue 4, pp. 41-45, 2018

Authors Profile

Mr. Rajanshu Goyal is pursuing Bachelor of Engineering in

Computer Science & Engineering from Chandigarh College

of Engineering & Technology (Degree Wing), Chandigarh

(India). He is a member of ACM since 2017. His main

research work focuses on Theoretical Computer Science and

Data Structures & Algorithm.

Dr Gulshan Goyal has persued Bachelor of Technology,

Master of Technology and Ph.D. in Computer Science &

Engineering. He is currently working as Assistant Professor

in Department of Computer Science & Engineering at

Chandigarh College of Engineering & Technology (Degree

Wing), Chandigarh (India). He has published many papers in

reputed Journals and Conferences. His main research work

focuses on Digital Image Processing, Theoretical Computer

Science and Algorithm Design. He has more than 16 years

of teaching experience.

