
 © 2019, IJCSE All Rights Reserved 150

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-7, July 2019 E-ISSN: 2347-2693

Techniques of Parallelization : A Survey

Vijay Kumar

1*
, Alka Singh

2

1,2

Department of Computer Science K.N.I.T, Sultanpur, UP, India

Corresponding Author: Vijay Kumar_vijaykumar5391@gmail.com, Tel.: 9559142142

DOI: https://doi.org/10.26438/ijcse/v7i7.150154 | Available online at: www.ijcseonline.org

Accepted: 10/Jul/2019, Published: 31/Jul/2019

Abstract— Parallel computing enables us to utilize hardware resources efficiently and to solve computationally intensive

problems by dividing them into sub-problem using a shared-memory approach and solving them simultaneously. Emerging

technologies are based on parallel computing as it involves complex simulations of real-world situations which are extremely

computation-intensive and time-taking as well. Parallel programming is gaining significance due to the limitations of the

hardware. Researchers are trying to enhance memory and bus speed to match the processor's speed. Generating parallel code

requires skill and a particular technique of parallelization. There are several parallelization techniques amongst which one

needs to be shrewdly chosen for a particular task and architecture. A brief survey of existing parallelization procedures is

provided through this paper. New hybrid techniques are required to be developed combining technical and architectural

benefits two or more parallel models. A thorough revision of traditional parallelization techniques is required to derive new

techniques.

Keywords— Shared Memory; Parallel programming; Parallelization techniques.

I. INTRODUCTION

An exceptional move towards parallel processing from

sequential computing is essentially due to Von Neumann

bottleneck, where latency being significant problem. A slow

growth had been observed in rate of clock speed of the

processors in the recent years. Hence to improve the

performance of an application parallel processing is the best

alternative. Parallel computing provides solution to large

problem by using multiple cores or CPUs concurrently,

thereby saving execution time. Moore‘s law has provided a

significant impact in software and hardware industry. For the

proficient effect of the hardware, the multi-threaded or multi-

process programming must be composed. Hence computing

demands parallelism in future scope. Composing parallel

code manually is a time taking procedure. Hence to achieve

tremendous performance and functionally precise parallel

programming, automatic parallelization is essential. It

changes sequential code to parallel code for the reason to

make simultaneously utilization of the multicore architecture.

This parallel code can be used to run on multicore system

[1].

II. TYPES OF PARALLELISM

A. Hardware:

1) single processor:

 VLIW

 Pipelining

 Superscalar

2) SIMD, Vector processors, GPUs

3) Multiprocessor:

 Symmetric shared memory

 Distributed-memory

 Multi-cores

4) Multicomputer /clusters.

5) Classes of Parallel Computers

 Cluster

 Multiprocessor

 Multicore Computing

 Network Processor

B. Parallelism in Software

 Bit level partition

 Instruction level parallelism

 Task-level parallelism

 Data parallelism

 Transaction level parallelism

1. Parallelism in Applications:

a) At Instruction level:

 Several instructions executes from the same

instruction stream in concurrent fashion.

b) At task level:

 Concurrently executing multiple threads from

the same application.

 Compiler or user generated whereas managed

by compiler and hardware.

 Confined in practice by:

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 151

-communication/synchronization overhead.

-Algorithmic Attributes.

c) At data level:

 Single stream instruction concurrently drives

numerous data.

 Limited by irregular data handling patterns and

by memory bandwidth.

d) At transaction level:

 Several Threads from distinct transactions can

be executed concurrently.

 Limited by concurrency overheads.

e) Task Partitioning Algorithms

 Analysis Scheme

 Construction Scheme

f) Task Mapping Algorithms

 Graph Theoretic Algorithms

 Mathematical Programming

 Heuristic Algorithm

III. PARALLELIZATION TECHNIQUES

Parallelization process involves:

1. Complex programs are partitioned to task and

mapping it to different processors based on

partitioning and mapping algorithms.

2. Synchronization and communication is maintained

among processors.

3. Loop parallelization and Dependency analysis are

the most significant parallelization techniques [1].

A. Loop Parallelization

Loop parallelization is of greater significance since 90% of

the execution time is mostly due to loops in the code.

Distribution of loop elements into chunks and allotting to

various processors will lessen the latency. In loop

parallelization, parallelizing nested loop efficiently is a

challenging task [1].

B. Dependency Analysis

Dependency analysis is extremely significant in

parallelization process. For parallel execution of two

statements there should be no dependency between them.

Hence the removal of these dependencies is important to

make code parallelizable. Through complex analysis these

dependencies between statements are identified [1].

C. Full Replication

One basic method for keeping away from race conditions is

to recreate the reduction object and make one duplicate for

each thread. The duplicate for each thread should be

introduced at the beginning. Each thread basically updates its

very own duplicate, consequently keeping away from any

race conditions. After the local reduction has been performed

utilizing every data items on a specific node, the updates

made in every one of the duplicates are combined. The other

four procedures depend on locking [2]. The memory format

for these four methods is appeared in Figure 1.

D. Full Locking

 One clear solution to avoiding race conditions is to relate

one lock with every element in the reduction object. After the

data processing task, a thread requires to obtain the lock

linked with the element in the reduction object it needs to

update. As in the apriori mining algorithm, for each

candidate, there is a lock connected with the count, which is

required to be procured before updating that count. If a

candidate's count is required to be updated by two threads,

one should wait for the other to release the lock first. A large

number of candidates are considered during any iteration in,

so the probability of one thread to wait for another thread is

extremely small [2][3]. Supporting too many locks results in

three kinds of overheads:

1) Large number of locks requires large memory.

2) Overhead due to cache misses.

3) Overhead due to false sharing [3].

Figure 1. Locking Schemes with their memory layout.

E. Optimized Full Locks

The next scheme we describe is optimized full locks. As

illustrated in figure 1, to overcome cache misses related to

full locking scheme optimized full locking scheme allocate a

reduction element and the related lock in continuous memory

addresses. By proper alignment and padding, it can be

assured that the element and the lock are in the same cache

block. Each update operation now results in at most one cold

or capacity cache miss. The possibility of false sharing is

also reduced. This is because there are fewer elements (or

locks) in each cache block. This scheme does not reduce the

total memory requirements [2].

F. Fixed Locking

The fixed locking scheme is projected to diminish the

memory overheads required by locks in full locking and

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 152

optimized full locking schemes. A fixed number of locks are

used in fixed locking schemes. The number of locks chosen

is a parameter to this scheme. If the number of locks is ‗Lc,‘

then the element ‗Ie’ in the reduction object is assigned to the

lock Ie mod Lc. Two locks are used in figure 1[2].

G. Cache-Sensitive Locking

This technique collaborates with the ideas from fixed locking

and optimized full locking. Suppose an N byte cache block

and a K byte reduction element. For a particular cache block,

a single lock is used for all reduction elements in that block.

Consequently, every cache block will have 1 lock and N/K-1

reduction elements.

This scheme results in lower memory requirements than the

full locking and optimized full locking schemes. Cache-

sensitive locking reduces each of three types of overhead

associated with full locking.

Table 1. Tradeoff among the Techniques
 Full

Replication

Optimized

full Locks

Cache

Sensitive

Locks

Full

locks

Fixed

locks

Memory

Requirement

Very high High Low High Low

Parallelism Very high High Medium High low

Locking

Overhead

None Medium High Medium High

Cache

Misses

Low Medium Low High medium

False

Sharing

None Yes None Yes Yes

Merging

Costs

Yes None None None None

The problem of false sharing is also reduced because there is

only one lock per cache block.

H. Reduction Parallelization Techniques
The occurrence of loop dependence pattern in loops which

apply the reduction process. Reduction occurs at the core of

large number of applications and algorithms –scientific and

otherwise [4].

Reduction parallelism requires two tasks:

1) Reduction operation parallelization.

2) Recognizing the reduction variable: Techniques

involved in recognition of reduction variable:

a) Static reduction recognition: Recognition of

reductions statement is carried out at the time of

compilation by syntactic pattern matching the

iterative statements with generic reduction template

and then performing data dependency inspection of

the variable in order to assure that it is not used

anywhere else except reduction statement [5].

b) Run-time reduction validation: In cases where

compile-time dependency analysis is not possible

then in that case reduction has to be validated at run-

time [6][7][8].

I. AUTOMATIC PARALLELIZATION

A semi-automatic parallelization system SUPERB that is

being developed at the University of Bonn within the

framework of the SUPRENUM project [9]. It is designed to

merge MIMD and SIMD [10] techniques. It‘s applicable for

large-scale technical computing. [11][12][13][14].

J. CLUSTER PARALLELISM
Basing on explicit and implicit cluster parallelism, a model

of an expert system to develop a "smart" (intellectual)

compiler. The present research looks into quantitative

structural associations between clusters and, accordingly,

microprocessors in Embedded Computing Systems and

defines routes of data transfer inside a cluster or between

different clusters in the suggested smart compilation, based

on analysis of algorithms [15].

K. Rank-Level Parallelism in DRAM

The hierarchically organized DRAM system maintains

Channel-Rank-Bank structure. Hierarchical connection

comprises of channel to ranks (multiple ranks), and each

ranks to multiple banks connections hence facilitating

parallelism in DRAM shown in Fig.2 [16].

Figure 2. Rank level parallelization

L. Memory-Level Parallelism

Problem due to time consuming memory accesses degrades

system performance. Memory level parallelism enhances

performance through concurrent memory accesses [17][18].

M. Hybrid Approach for Parallelization

Analyzing the parallel segments in the code by performing

block-level analysis, function level analysis, and instruction-

level analysis.These parallel segments are executed in

parallel over different computers. Hybrid Approach

comprises of block level analysis and functional level

analysis [19][20][21].

IV. CONCLUSIONS

Program analysis and transformation strategies have been

developed in order to attain the proper parallelism. A

program calculus is now emerging that allows the formal

analysis of these transformations as well as the development

of new powerful transformations. Although it is not clear

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 153

how close we are to that goal, it is clear is that we are not

there yet and that our research effort must continue because

of the great impact that effective parallelizers are bound to

have on the ordinary users acceptance of parallel machines.

REFERENCES

[1] Prema, S.,and R. Jehadeesan,"Analysis of Parallelization

Techniques and Tools," International Journal of Information and

Computation Technology 3 (2013): 471-478.

[2] Jin, Ruoming, and Gagan Agrawal,"Shared memory parallelization

of data mining algorithms: Techniques, programming interface,

and performance" Proceedings of the 2002 SIAM International

Conference on Data Mining. Society for Industrial and Applied

Mathematics, 2002.

[3] John L. Hennessy, and David A. Patterson, ―Computer Architecture:

A Quantitative Approach‖Morgan Kaufmann,Inc.,San

Francisco,2nd edition,1996.

[4] Yu, Hao, and Lawrence Rauchwerger, "Adaptive reduction

parallelization techniques" ACM International Conference on

Supercomputing 25th Anniversary Volume. ACM, 2014.

[5] Chapman, Barbara, and Hans Zima, ―Supercompilers for parallel

and vector computers‖ Addison-wesley, 1990.

[6] Zhang, Ye, Lawrence Rauchwerger, and Josep Torrellas,"Hardware

for speculative run-time parallelization in distributed shared-

memory multiprocessor." Proceedings 1998 Fourth International

Symposium on High-Performance Computer Architecture. IEEE,

1998.

[7] Rauchwerger, Lawrence, and David A. Padua,"The LRPD test:

Speculative run-time parallelization of loops with privatization

and reduction parallelization" IEEE Transactions on Parallel and

Distributed Systems 10.2 (1999): 160-180.

[8] Yu, Hao, and L. Rauchwerger, "Run-time parallelization overhead

reduction techniques" Proc. of the 9th Int. Conf. on Compiler

Construction, Berlin, Germany. 2000.

[9] Banerjee, Utpal, et al, "Automatic program

parallelization" Proceedings of the IEEE 81.2 (1993): 211-243.

[10] P.M. Behr, W.K. Giloi and H. Mfihlenbein, ―SUPRENUM: The

German supercomputer architecture—Rationaleand concepts,

Proc” 1986 International Conference on Parallel Processing

(1986).

[11] MJ. Flynn, “Some computer organizations and their

effectiveness”, IEEE Trans. Computer. 21 (9) (1972) 948-960.

[12] U. Trottenberg, “SUPRENUM--an MIMD multiprocessor system

for multi-level scientific computing”, in: W. H~indler et al., eds.,

CONPAR 86. Conference on Algorithms and Hardware for

Parallel Processing, Lecture Notes in Computer Science 237

(Springer, Berlin, 1986) 48-52.

[13] H.P. Zima, H.-J. Bast, M. Gemdt, P.J. Hoppen, “Semi-automatic

parallelization of Fortran programs”, in: W. Hgmdler et al., eds.,

CONPAR 86. Conference on Algorithms and Hardware for

Parallel Processing, Lecture Notes in Computer Science 237

(Springer, Berlin, 1986) 287-294.

[14] H.P. Zima, H.-J. Bast, M. Gerndt, PJ. Hoppen, “SUPERB: The

SUPRENUM Parallelizer Bonn”, Research Report SUPRENUM

861203, Bonn University, (1986).

[15] Ruchkin, Vladimir, et al, "Frame model of a compiler of cluster

parallelism for embedded computing systems",2017 6th

Mediterranean Conference on Embedded Computing (MECO).

IEEE, 2017.

[16] Shin, Wongyu, et al, "Rank-Level Parallelism in DRAM",IEEE

Transactions on Computers 66.7 (2017): 1274-1280.

[17] Liu, De-feng, Guo-teng Pan, and Lun-guo Xie, "Understanding

how memory-level parallelism affects the processors

performance",2011 IEEE 3rd International Conference on

Communication Software and Networks. IEEE, 2011.

[18] Cheng, Shaoyi, et al, "Exploiting memory-level parallelism in

reconfigurable accelerators", 2012 IEEE 20th International

Symposium on Field-Programmable Custom Computing

Machines. IEEE, 2012.

[19] Kumar, K. Ashwin, et al, "Hybrid approach for parallelization of

sequential code with function level and block level

parallelization”, International Symposium on Parallel Computing

in Electrical Engineering (PARELEC'06). IEEE, 2006.

[20] Gasper, Pete, et al, "Automatic parallelization of sequential C

code”, Midwest Instruction and Computing Symposium, Duluth,

MN, USA. 2003.

[21] Wall, D,"Limits of instruction level parallelism. David W. Wall,

Limits of Instruction Level Parallelism" Proc. 4th ASPLOS. 1991.

