

 © 2019, IJCSE All Rights Reserved 1566

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Analysis of Arraylist and Linked list

K. Renuka Devi

Department of Computer Science, Dr.Mahalingam College of Engineering and Technology, Tamilnadu, India

Corresponding Author: krenukagiri@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i5.15661570 | Available online at: www.ijcseonline.org

Accepted: 10/May/2019, Published: 31/May/2019

Abstract— In the concept of data structures, the List plays a major role in the allocation of data. “A list in java is an interface

that can extend to collection interface”. A list can be implemented in two ways: Array list and Linked list. Array list is a class

which provides growable array of list ADT. Linked list provides different implementation of the List ADT. There are different

kinds of linked lists support in data structures which could be singly linked list, doubly linked list and circularly linked list.

This paper deals with the analysis of array list and linked list (i.e.) singly linked list by performing operations such as insertion,

deletion, searching and provides results based on time complexity to decide which would be better and efficient for allocation

of data.

Keywords—list, arraylist, linkedlist, data structure.

I. INTRODUCTION

The term data structure is one of the predominant ways for

allocating and organizing the data. There are different types

of data structures which would be Array, List, Stack, Queue,

Trees and graph [1].

This paper deals with list data structure. List could be

implemented in two ways. They are array list and linked list.

Array list is a list data structure which is implemented using

dynamic arrays. So, that it could be able to grow as needed.

The linked list is also a list data structure that is implemented

as a node with two entities: the data and a pointer. The data

which holds the actual value and the pointer holds the

address of the next value. This paper deals with linked list

implementation which is based on singly linked list.

Figure 1. Data structures – Types

This paper is organized as follows. Section I contain the

Introduction of the Arraylist and linked list. Section II

contains the Implementation of Array and Linked lists.

Section III contains the Analysis part of two lists described.

Section IV contains the results and brief discussions of the

methodology analysed. And finally the Section V contains

the conclusion and future scope.

II. IMPLEMENTATION

A. Array list:

Array list is a class which extends abstract list and

implements the list interface. It can grow as needed because

its supports dynamic arrays. Standard arrays which are

implemented in java are of fixed length. It cannot grow (or)

shrink, this becomes huge disadvantage that the user needs to

know the size of the array in-advance in order to implement

and to get the values be allocated.

So, we tend to use the Array list, it is created with initial size

but when this size gets exceeds (or) when the element gets

removed the array gets grow in the former type and the array

gets shrinks in the later type [2,10].

Constructors for creating Array list:

Arraylist() – builds an empty list.

Arraylist(constructor) – builds an array list which gets

initialized with the constructor.

Methods:

There are many methods to initialize and to create array list.

They are,

Void add(int index, object element) – Inserts the specified

element at the specified index.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1567

Boolean add(object object_name) – It appends the specified

element to the end of the list.

Array list Creation:

ArrayList<string> al = new ArrayList<>();

This is used to create a new arraylist with the name specified

as “al”. Using this name we can able to perform several

operations such as to add an element, to delete an element

and to search for an element [3].

al.add(“her”) - to add an element “her”.

al.remove(“her”) – to remove an element “her”.

Figure 2. Array list

B. Linked list:

A linked list in data structure is implemented as a node

which contains two entities such as data and a pointer. It is in

the form of sequence of links which is interconnected. Each

node contains the data and the pointer holds the address of

next data in a sequence and the last node contains the address

as the null pointer [4,10].

There are different kinds of linked lists. They are,

 Singly linked list – links only in forward direction.

 Doubly linked list – links both in forward and

 backward direction.

 Circularly linked list – links in circular form.

Figure 3. Node representation

B.1. Singly linked list

The navigation of an item which is in the forward

direction. Each node contains the reference to an

element in the sequence and contains the address of the

next element but it doesn’t contain any reference to the

previous node.

To store this list only the reference to the 1
st
 node must

be stored and the last node points to null.

Figure 4. Singly linked list

Creation of Node:

Node head; //head of list

static class Node //defines as static so that main()

can access it

{

int data; //like structure in c

Node next;

Node(int d) //constructor

{

data = d;

next = null;

}

}

The node can be created by initializing “Node head” and then

the constructor has been created by the above process.

Linked list creation:

Figure 5. Linked list

The figure 5 shows that how to insert the element in the list

using singly linked list.If the list is empty,it creates new node

and then inserts the first data.If the list is not empty,the list

traverse until last node and then creates new node at last[5].

Data Pointer

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1568

III. ANALYSIS

A. Array list-time complexity:

Table 1. Array list – Time complexity(operations)

 Beginning

(ms)

Middle

(ms)

End

(ms)

Insertion 300 340 400

Deletion 150 170 210

Search 100 125 150

The table 1 shows the time complexity of arraylist for the

operations such as insertion, deletion and search where the

data has been inserted, deleted and searched at the beginning,

middle and at the end.

Figure 6. Array list-Time complexity

The Figure 6 shows the time complexity of Arraylist for the

operations such as insertion, deletion and search. From the

above graph we infer that the element inserted in the

beginning takes less time than at the end [7]. This is because

when inserting the new element the array needs to grow in

size and also it doesn’t utilize pointer.

B. Linked List – Time Complexity

Table 2. Linked list – Time Complexity(operations)

 Beginning

(ms)

Middle

(ms)

End

(ms)

Insertion 100 139 200

Deletion 95 100 132

Search 282 310 390

The table 2 shows the time complexity of linked list for the

operations such as insertion, deletion and search where the

data has been inserted, deleted and searched at the beginning,

middle and at the end.

Figure 7. Linked list – Time Complexity

The Figure 6 shows the time complexity of Linked list for

the operations such as insertion, deletion and search. From

the above graph we infer that the element inserted in the

beginning takes less time than at the end [8]. The insertion

and deletion takes more or less same time because it makes

use of pointer by means of creation of node.

C. Comparison – Arraylist vs. Linked list

Table 3. Comparison – Arraylist vs. Linked list(operations).

 Beginning

(ms)

Middle

(ms)

End

(ms)

Insert-array 300 340 400

Insert-linked 100 139 200

Delete-array 150 170 210

Delete-linked 95 100 132

Search-array 100 125 150

Search-linked 282 310 390

The table 3 shows the time complexity for the comparison of

arraylist and linked list for the operations such as insertion,

deletion and search where the data has been inserted, deleted

and searched at the beginning, middle and at the end.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1569

Figure 8. Comparison – Arraylist vs. Linkedlist

The Figure 8 shows the comparison of arraylist and linked

list. From the graph we infer that insertion and deletion of

linked list takes less time than arraylist. This is because the

linked list makes use of links. So, the new node gets inserted

only at the last by moving the pointer [9]. Whereas, the

arraylist has to increase the size of the array. The deletion in

linked list deletes only the node specified by deleting the

address and replacing the pointer. Whereas, the arraylist has

to shrink the size of the array after deleting the element. The

search operation of linked list takes more time than arraylist.

This is because the linked list has to seek from initial node

till the final node if the element present at the last. Whereas,

the arraylist has to search only at the specified index [10].

IV. RESULTS AND DISCUSSION

The insertion, deletion and search operations have been

performed for arraylist and linked list (i.e.) singly linked list.

When analysing the above two methods, we get the result as

the insertion and deletion operation of linked list consumes

less time than arraylist. But the search operation in linked list

consumes more time than arraylist. This is because the linked

list utilize pointer to access the element whereas the arraylist

uses dynamic array and it has to grow or shrink the size of

the array. From the above analysis we infer that Linked list is

more efficient and better than Arraylist for allocation of

elements.

Table 4. Time Complexity

 Arraylist Linked list(singly

linked list)

Insertion O(n) O(1)

Deletion O(n) O(1)

Search O(1) O(n)

V. CONCLUSION AND FUTURE SCOPE

List in data Structure plays a vital role in the allocation of

data because it utilizes node to access the data. It uses pointer

to move across the node for insertion as well as deletion

operation. This paper mainly focuses on which method

would be efficient for data allocation while comparing

arraylist and linked list. Linked list takes only O(1) for

insertion whereas the array list takes O(n). As a result it is

better to utilize linked list to allocate the data more

efficiently and to delete the data. Aside from comparing only

with singly linked list, the other kinds of linked lists and

operations can be taken into consideration in future.

REFERENCES

[1] Stelios Xinogalos, Maya Satratzemi, “An analysis of students’

difficulties with ArrayList object collections and proposals for

supporting the learning process”, In the Proceedings of the
2008 IEEE International Conference on Advanced Learning

Technologies, Cantabria, Spain, pp. 180-182, 2008.

[2] Gaifang Dong, Xueliang Fu, “An Improved Pathfinding

Algorithm Based on Sorted Linked List and Indexed Array”, IEEE

Transaction, Vol.6, Issue.4, pp.978-981, 2008.

[3] Anshu Yadav, Aruna Bhat, Rajni Jindal, “Stack implementation

of adjacency list for representation of graphs”, In the
Proceedings of the 2008 IEEE International Conference on

Advanced Learning Technologies, Noida, Uttar Pradesh, India,
pp. 213-216, 2013.

[4] Shruti rishab panday, “A Heuristic Approach of Sorting Using

Linked List”, In the Proceedings of the IEEE Second International

Conference on Computing Methodologies and Communication,

Erode,India, pp. 446-450, 2018.

[5] Karuna, Garina Gupta, “Dynamic Implementation Using Linked

List”, International Journal of Engineering Research &

Management Technology”, Vol.1, Issue.5, pp.44-48, 2014.

[6] H. C Thomas, E. L Charles, L. R Ronald, and S. Clitlord,

“Introduction to Algorithms”, Second Edition, MIT Press and 609

McGraw- Hill, ISBN 0-262-03293- 7. Section 1.1 Algorithms,

pp.5, 2001.

[7] W.H. Butt, and M. Y. Javed, “A New Relative Sort Algorithm

based on mean value”. IEEE Conference on Multi topic, 2008.

[8] Devareddi Ravi Babu, R Shiva Shankar, V Pradeep Kumar,

Chinta Someswara Rao, D Madhu Babu, V Chandra Sekhar,

“Array-Indexed Sorting Algorithm for natural numbers”, IEEE,

pp. 606-609,2011.

[9] Wong, J., Vernon, A. Field, J., “Evaluation of a Path-Finding

Algorithm for Interconnected Local Area Networks”, Selected

Areas in Communications, pp. 1463-1470, 1987.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1570

[10] Nagendra Singh, “Role of Suffix Array in String Matching: A

Comparative Analysis”, International Journal of Computer

Sciences and Engineering, Vol. 3, Issue.6, pp.89-93, 2015.

[11] Sourabh Shastri, “A GUI Based Run-Time Analysis of Sorting

Algorithms and their Comparative Study”, International Journal

of Computer Sciences and Engineering, Vol. 5, Issue.11, pp.217-

221, 2017.

[12] A.Chitra, P.T. Rajan, “Data Structures”, second edition, 2007.

Authors Profile

K.Renuka devi completed her Bachelor of

Engineering in Computer Science from

Dr.Mahalingam College of Engineering and

Technology, Tamilnadu in 2018.She is currently

pursuing Master of Engineering in Computer

Science from Dr.Mahalingam College of

Engineering and Technology, Tamilnadu. She is

a member of ACM since 2018. Her main research work focuses on

Security in Computing, Data Structures, and Web Mining.

