

 © 2019, IJCSE All Rights Reserved 1588

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

UMAX Meta Task Scheduling Algorithm in Grid Computing

K. Padma Priya
1
, M. Hemamalini

2*

1,2

Department of Computer Science, A.V.C College (Autonomous), Mayiladuthurai, Mannampandal, Nagapattinaam District,

TamilNadu, India 609305

*Corresponding Author: maliniavcce@gmail.com, Tel.: +91 9442389661

DOI: https://doi.org/10.26438/ijcse/v7i5.15881592 | Available online at: www.ijcseonline.org

Accepted: 21/May/2019, Published: 31/May/2019

Abstract—Grid computing technology can be seen as a positive alternative for implementing high-performance distributed

computing. The goal of Grid computing is to create the illusion of virtual computer out of a large collection of connected

heterogeneous nodes. Scheduling jobs on computational grids is identified as NP-hard problem due to the heterogeneity of

resources; the resources belong to different administrative domains and apply different management policies. Today a highly

secure or virtual grid is very demanding in which you can share any resource from any cluster even with existence of fault in

system. In this paper, an algorithm named as UMAX is proposed. This method aims to improve the resource utilization with

maximum efficiency and throughput

Keywords— Meta task; Scheduling; Resource utilization; Grid task scheduling

I. INTRODUCTION

The major goal of distributed computing research was to give

users an easy, simple and transparent method of access to a

vast set of heterogeneous resources. This is generally known

as metacomputing. Metacomputing done on local area

networks is typically known as Cluster Computing

Environments and those that are done on wide area networks

are known as Grid Computing Environments. This paper

deals with the later one Grid Computing. A computational

grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive and inexpensive access to

computational capabilities [1]. Grid computing concepts

were first studied and explored in the 1995 I-WAY

experiment, in which high-speed networks were used to

connect, for a short time, high-end resources at 17 sites

throughout the United States. From this experiment, a

number of Grid research projects emerged that developed the

core basic technologies for Grids in various communities and

scientific disciplines. For example, the US National Science

Foundation's National Technology Grid and NASA's

Information Power Grid are both creating Grid

infrastructures to serve university and NASA researchers,

respectively. Across Europe and the United States, the

closely related European DataGrid, Particle Physics Data

Grid and Grid Physics Network (GriPhyN) projects plan to

analyze data from frontier physics experiments [2,3].

A. Characteristics of a computational grid

There are many desirable properties and features that are

required by a grid to provide users with a computing

environment [4, 5]. They are as follows:

 Heterogeneity: The grid involves a number of

resources that are varied in nature and can

encompass a large geographical distance through

various domains.

 Scalability: The grid should be tolerant to handle a

large number of nodes without any performance

degradation.

 Adaptability or Fault Tolerant: In a grid,

unexpected computational aborts, hardware or

software faults etc. are high. These faults are

generally handled by resource managers.

The major Grid components [6,7] that are necessary to form

a grid are as follows:

 User Level: this layer houses the application and

high-level interfaces. Applications can be varied

and encompass a vast variety of problems from

chemistry to nuclear engineering. The high-level

interfaces implement an interface and protocols

allowing the applications and users to access the

middleware services.

 Middleware Level: the major functionalities of grid

systems normally occur in this layer. This layer

provides many services such as resource discovery,

resource scheduling and allocation, fault tolerance,

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1589

security mechanisms and load balancing. It should

provide the users a transparent view of the resources

available.

 Resource Level: This layer typically provides local

services that render computational resources such as

CPU cycles, storage, computers, network

infrastructure, software, etc.

II. RELATED WORK

In a study by [8] Phillipa Sessini, statistical analysis of data

based on arrival rate and interarrival times was proposed. In

a study by Carsten Franke et al. [9], a summarization of

several different approaches for scheduling in Grid

environments was proposed. Two Grid Computing Scenarios

discussed are HPC Grids and Global Grid. HPC Grids define

cooperation between a limited or moderate number of

computing sites with high-performance computer systems

and a dedicated user community. Global Grid defines large-

scale Grids with a diverse number of resources and

independent users.

Hemamalini and Srinath [10] proposed the method memory

constrained load shared minimum execution Time Grid Meta

task scheduling algorithm is used to reduce the makespan

and balance the load based on memory requirement of the

task. Resource utilization can be calculated and is used to

analyze the performance with MET Meta scheduling

algorithm.

In the study by Wisnesky [11], the results of a simulation

study of a heterogeneous computational grid using different

scheduling algorithms were presented. The definition of

robustness based on the concept of work completion latency

is discussed; a method to simulate grids based on estimated

time to compute matrices is presented. The rapid growth in

communication capacity among machines today makes grid

computing practical, compared with the limited bandwidth

available when distributed computing was first emerging.

Therefore, it should not be a surprise that another important

resource of a grid is data communication capacity. This

includes communications within the grid and external to the

grid. Communications within the grid are important for

sending jobs and their required data to points within the grid.

Some jobs require a large amount of data to be processed and

it may not always reside on the machine running the job [11].

The bandwidth available for such communications can often

be a critical resource that can limit utilization of the grid.

In a study by Jairam Naik et al. [12], the load is balanced in

the grid by grouping the resources into levels as per their

success rate and speed. Where, the main consideration was

the success rate history of each resource to determine a

suitable resource for the job, and to take scheduling decision

thereafter. Based on the resource speed requirement, the job

is scheduled to the resource of a specific level. Once the job

is scheduled on the selected resource, it is removed from the

available resource set. When the resource finishes the

assigned job then it moves to the set of available resources. If

this resource completes the allotted job in estimated time,

then its success rate value is incremented by 1, otherwise –1,

this value is considered for determining successful resource

in the future. With this approach no resource is overloaded.

Load balancing algorithm is an attempt to share the load

among all the available resources [13]. The algorithm used to

improve the utilization of resources with light load and

freeing the resources with heavy load. The two qualities of

service factors such as execution time and memory

requirement are used for load balancing and effective

utilization of resources [14].

The response time minimization algorithm is used to share

the load to the available virtual machine efficiently. It

minimizes the delay time and improves the response time.

Hence the load balancing is achieved. Several performance

metrics such as utilization, availability, and responsiveness

are used to investigate the impact of different strategies on

both provider and user point of views [15].

Balasangameshwara and Raju [16] proposed a fault tolerant

hybrid load balancing strategy namely AlgHybrid_LB, which

takes into account grid architecture, computer heterogeneity,

communication delay, network bandwidth, resource

availability, resource unpredictability and job characteristics.

AlgHybrid_LB juxtaposes the strong points of neighbour-

based and cluster-based load balancing algorithms.

They tackle fault tolerant load balancing by taking into

account all the factors pertaining to the characteristics of the

grid computing environment mentioned above. This

approach eliminates the complexity of a site to gather current

state information of the whole grid since real-time

monitoring of whole grid will cause system overhead and is

completely unrealistic in large-scale grid environment. A

well-designed information exchange scheduling scheme is

adopted to enhance the efficiency of the load balancing

model [16].

A. UMAX Grid Task scheduling Algorithm

The proposed UMAX algorithm concentrates to minimize

the overall execution time of given task and to maximize the

utilization of all possible resources. So as to improve the

utilization, the tasks are separated into three categories.

The tasks that have more load than any other available

resources, tasks that have less load among available

resources, and the tasks that have equal load among available

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1590

resources. The scheduling will be done first to the list that

contains more number of tasks. The UMAX algorithm is

explained below.

ETC has been generated for the given Tasks (T) and for the

given Resources (R). The overall ETC is segregated into

three etc[] at line 5. The segregated etc[] is ordered to

descending so as to keep the etc collection that has more task

in top. Then the threshold value of every etc in etc[]

collection is calculated at the beginning of scheduling of

corresponding etc.

The task of current etc in etc[] collection is further divided

into two with the threshold value and in algorithm it is

named aetc. The aetc, which is lesser to t threshold value is

applied with MinMin algorithm and the aetc which is higher

to t threshold value is applied with MaxMin algorithm.

UMAX Algorithm

1. Number of tasks (n), Number of machines (m),

2. Grid G = {M1, M2, ... ,Mm}, Tasks T = {T1, T2, ...

,Tn},

3. Machines availability R; Estimated time of computation

ETC.

4. t-Threshould value

5. etc[]<=Segregate(ETC)

6. OrderDescend(etc)

7. i = 0

8. do

9. aetc<=etc(i)

10.

where
E t

t t T
n

11. j = 0

12. do

13. if (E(t)<=t)

14. FS<=MinMin(aetc)

15. Else

16. FS<=MaxMin(aetc)

17. j = j+1

18. do step 12

19. i = i+1

20. do step 8

where,

etc[] is a collection of ETC

aetc an temporary etc

E(t) means Execution time of T

FS means Final Schedule

Figure 1. Flow chart of UMAX Grid Task scheduling Algorithm.

To prove the accuracy of the proposed algorithm, a java

application is developed with Grid Simulation framework;

the results are discussed here in next chapter.

III. EVALUATION AND RESULTS

To show the accuracy of proposed algorithm, the sample

input and results are given below. Table 1 shows the task

table which has 10 tasks and 3 resources.
\

Table 1. Task table

Number of tasks 10

Number of resource 3

Task table

ID Index Load

T1 1 493

T2 2 5,930

T3 3 7,985

T4 4 7,433

T5 5 6,170

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1591

T6 6 2,180

T7 7 9,989

T8 8 8,245

T9 9 8,678

T10 10 5,911

Table 2. Resource table

Resource table

ID Index Load

R1 1 958

R2 2 232

R3 3 260

Table 3. Generated ETC matrix from given inputs

Generated ETC from given inputs

Task Resource R1 Resource R2 Resource R3

T1 294.4542852 934.7201808 1,022.437468

T2 1,215.573243 1,748.851374 1,903.542347

T3 1,110.858255 1,364.217349 1,440.423005

T4 674.0213821 1,262.708893 1,648.849057

T5 690.8878372 1,111.471234 1,135.652767

T6 1,120.56217 1,151.878974 1,714.133885

T7 1,048.29944 1,352.554074 1,581.813914

T8 615.3903528 662.526237 828.622274

T9 920.5175737 1,368.532292 1,562.029257

T10 1,061.809359 1,327.687129 1,555.508831

For the above inputs, the MaxMin scheduling is given below:

Table 4. Result of MaxMin Grid task scheduling algorithm

MaxMin

Task Resource
Start time (in

milliseconds)

End time time (in

milliseconds)

T8 R3 0 828.62227

T1 R3 828.622274 1,851.0597

T5 R3 1,851.059742 2,986.7125

T3 R3 2,986.712509 4,427.1355

T10 R3 4,427.135514 5,982.6443

T9 R3 5,982.644345 7,544.6736

T7 R3 7,544.673602 9,126.4875

T4 R3 9,126.487515 10,775.337

T6 R3 10,775.33657 12,489.47

T2 R3 12,489.47046 14,393.013

MakeSpan: 14,393.012805359922

For the above inputs the UMAX scheduling is given below:

Table 5. Results of UMAX Grid task scheduling algorithm

UMAX

Task Resource Start time End time

T2 R3 0 1,440.423

T3 R3 1,440.423005 2,995.9318

T4 R3 2,995.931836 4,557.9611

T6 R3 4,557.961093 6,139.775

T7 R3 6,139.775007 7,788.6241

T9 R3 7,788.624064 9,502.7579

T10 R3 9,502.75795 11,406.3

T1 R1 0 294.45429

T5 R1 294.4542852 909.84464

T8 R1 909.844638 1,600.7325

MakeSpan: 11,406.300296780904

The results given by the tool developed for various

inputs is given in Table 1. Makespan produced by MaxMin

and UMAX algorithm is given in milliseconds. Even the

numbers shows that the proposed algorithm yields best result

than the traditional MaxMin algorithm.

Table 6. Results of MaxMin and UMAX algorithm for various inputs

No. of tasks &

resource

MaxMin (in

milliseconds)

UMAX (in

milliseconds)

50 × 5 68,910.2891 44,152.20595

100 × 10 142,593.911 85,314.16829

500 × 50 730,342.207 428,401.9082

1,000 × 50 1,500,993.91 878,847.0089

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1592

Figure 2. Comparison of MaxMin and UMAX Grid task scheduling

algorithm. In nature, everything has its own negatives. Similar to that, the
proposed UMAX algorithm generates good result for high number of tasks

but in case of minimum number of tasks, the proposed algorithm has yielded

high makespan than MaxMin.

In nature, everything has its own negatives. Similar to that,

the proposed UMAX algorithm generates good result for

high number of tasks but in case of minimum number of

tasks, the proposed algorithm has yielded high makespan

than MaxMin.

IV. CONCLUSION
One of the most important issues in grid computing is

scheduling, which is an allocation of jobs on the available

network resources in order to accomplish the tasks in the

shortest possible time. It is one of the most difficult tasks in

the grid computing. This paper proposed a new job

scheduling algorithm UMAX. This algorithm is able to

provide good results in terms of makespan and resource

utilization.

REFERENCES
[1] W. Gentzsch, “DOT-COMing the GRID: Using Grids for

Business”, Sun Microsystems Inc, Palo Alto, California, USA, pp.

1–3, 2002.

[2] A News Article Web Page in “Nature”, Available at:

http://www.nature.com/nature/webmatters/grid/ grid.html.

[3] M. Baker, R. Buyya, D. Laforenza, “The Grid: International

Efforts in Global Computing”, SSGRR 2000 The Computer &

eBusiness Conference, l`Aquila, Italy, July 31 2000 – August 6

2000.

[4] C. Germain, V. Néri, G. Fedak, F. Cappello, “XtremWeb:

Building an Experimental Platform for Global Computing”,

Grid2000, IEEE Press, December 2000.

[5] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations”, The International

Journal of High Performance Computing Applications, Vol. 15,

Issue. 3, pp. 200–222, 2001.

[6] I. Foster, C. Kesselman, Eds., “Computational Grids”, In: “The

Grid: Blueprint for a New Computing Infrastructure”, Morgan

Kaufmann, 1998

[7] D.C. Arnold, S.S. Vahdiyar, J. Dongarra, “On the Convergence of

Computational and Data Grids”, Parallel Processing Letters, Vol.

11, pp. 187–202, 2001, ISSN 0129-6264.

[8] P. Sessini, “Scheduling in Grid Computing Systems”, University

of Calgary, Alberta, Canada, 2015.

[9] C. Franke, U. Schwiegelshohn, R. Yahyapour, “Job Scheduling for

Computational Grids”, University of Dortmund, Germany.

[10] M. Hemamalini, M.V. Srinath, “Memory Constrained Load

Shared Minimum Execution Time Grid Task Scheduling Algorithm

in a Heterogeneous Environment”, Indian Journal of Science &

Technology, Vol. 8, 2015, ISSN (Print): 0974–6846, ISSN

(Online): 0974–5645.

[11] R.J. Wisnesky, “Evaluating Scheduling Algorithms on Distributed

Computational Grids”, 2002.

[12] K. Jairam Naik, K. Vijaya Kumar, N. Satyanarayana, “Scheduling

Tasks on Most Suitable Fault Tolerant Resource for Execution in

Computing Grid”, IJGDC, Vol. 5, pp. 121–132, 2012.

[13] M. Hemamalini, “Review on Grid Task Scheduling Algorithm in a

Distributed Heterogeneous Environment”, International Journal

of Computer Applications, Vol. 40, Issue. 2, pp. 24–30, 2012.

[14] M. Hemamalini, Dr. M.V. Srinath, “State of the Art: Task

Scheduling Algorithms in Heterogeneous Grid 0 50 100 150 200

250 Time in Milliseconds Response Time Minimization”,

International Journal of Computer Applications, Vol. 145 p. 14,

2016, “Computing Environment”, Elysium Journal of Engineering

Research Management, Vol. 1, August 2014.

[15] M. Hemamalini, M.V. Srinath, “Response Time Minimization

Task Scheduling Algorithm”, International Journal of Computers

and Applications, Vol. 145, pp. 9–14, 2016.

[16] J. Balasangameshwara, N. Raju, “A Hybrid Policy for Fault

Tolerant Load Balancing in Grid Computing Environments”,

Journal of Network and Computer Applications, Vol. 35, Issue. 1,

pp. 412–422, 2012.

 Authors Profile

Dr. M. Hemamalini pursued Masters Degree in
Computer Applications from A.V.C College
(Autonomous), Mannampandal, Bharathidasan
Univresity in the year 1999 and obtained Ph.d
in computer science from STET Women’s
college, sundarakkottai, Mannargudi,
Bharathidasan University in the year 2018. She
currently working as Assistant Professor in
Department of computer science, A.V.C
College (Autonomous), Mannampandal,
Mayiladuthurai, Tamil Nadu, India. She has published papers in
National and International journals and she also presented papers in
National and International conferences. Her research interests
include Grid Computing, Mobile Computing, Cloud Computing and
Data Mining. She has 17+ years of teaching experience.

Ms. K. Padma Priya pursued Masters Degree in
Computer Science from Bharathidasan
University, Trichy in the year 2017 and
Bachelor of Education degree from Indira
Gandhi National Open University, New Delhi
in the year 2005. She is currently pursuing
M.Phil (Part time) degree in A.V.C. college
(Autonomous), Mayiladuthurai, Bharathidasan
University and currently working as Computer
Instructor in Government Higher Secondary
School, Andarmullipallam, Cuddalore District, Tamil Nadu, India.
Her research interest focuses on grid computing. She has 20 + years
of teaching experience.

