

 © 2015, IJCSE All Rights Reserved 165

 International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Review Paper Volume-3, Issue-5 E-ISSN: 2347-2693

Implementation insight for High Performance Messaging Solution

Muralidaran Natarajan
1*

, Nandlal L. Sarda
2
 and Sharad C. Srivastava

3
1*,3

BIT Mesra
,
India

2
IIT Bombay, India

www.ijcseonline.org

Received: Apr/22/2015 Revised: May/01//2015 Accepted: May/20/2015 Published: May/30/ 2015

Abstract—This paper addresses the messaging needs of decomposed multi-tier applications to support high performance. In

the transformation exercise, the applications are getting decomposed into multiple logical tiers and get deployed in clusters

to take advantage of computing power available in multi-core commodity hardware. In such deployments the

communication between the tiers or layers within the deployment is critical for such transformations, as there are millions of

small packets moving across these tiers and gets processed at different stages. It is important that a suitable messaging

middleware is put to use for the success of such transformation exercise to address the transportation of messages across

tiers. This study provides an insight to the developer community on, (a) various communication protocols current and

emerging ones that can be used given a problem situation and the deployment nuances of these protocols (b) messaging

models and middleware available for such deployment (c) key factors that are to be kept in mind for selection of such

commercially available messaging middleware and (d) finally, approach towards deployment of such middleware and key

parameters that are available for fine tuning to achieve the desired scalability and latency.

Keywords—Messagin middleware; Messaging for high performance; Messaging models; Ultra-low latency messaging; ; Thin stream

I. INTRODUCTION

Historically, the real-time applications that are used for

high performance systems like banking, financial systems

and avionics systems have remained as specialized custom

developments to meet the stringent QoS needs[1] [2]. Due

to the tightly coupled nature of these applications with the

hardware platforms as well as the operating environment,

the development requires specialized resources and is time-

consuming, expensive and so do maintenance [3]. The

vertical scalability is achieved by hardware upgrades to a

limited extent but the horizontal scalability is custom-built

which limits the time to market.

In the next generation of real-time applications, which are

driven by the straight through processing demands of the

market with inter-connected systems, performance

expectations of business have increased multi-fold. The

QoS expectations such as near 100% Uptime with response

times of the order of microseconds, have transformed the

application architectures to cater to the increasing demands

for processing power and memory bandwidth and to meet

the business needs [2][4].

With the Message Passing Interface (MPI) becoming the

standard for high performance and parallel computing, lot

of research has been happening on the techniques that can

be used for message passing. Based on these researches, the

commercial messaging products are continuously getting

evolved. In multi-tiered architecture, the performance of

the messaging system is the key to guarantee delivery,

throughput and response time of transactions.

This paper discusses our review on the various messaging

protocols, messaging models with the techniques that are

used for large scale business services. The study includes:

(a) messaging protocols such as Transmission Control

Protocol (TCP), User Datagram protocol (UDP) in unicast,

multicast and broadcast modes and new protocols for

extended services (b) Various models such as point-to-

point, Topic based publish-subscribe (c) Messaging

middleware and protocols for meeting the business needs

such as Ultra-Low Latency and High Throughput mission

critical transaction processing, Large scale information

distribution with resilience.

II. NEED OF MESSAGING SOLUTION FOR

SCALABILITY
This section of this paper discusses the essentials of

messaging in the transformed systems using the DSP

models for very high throughput and low latency.

A. Need for Scalable Messaging

With the advent of high performance computing in major

industries such as finance, telecom, aviation majority of the

real-time applications are enabled for straight through

processing (STP). The exchange of goods as well as funds

is based on sequence of events, seamlessly completing the

entire transaction with interfaces communicating across the

systems. In such a model, the messaging layer is the key

component for the systems integration to ensure reliability

and accuracy of the business process chain. One complete

transaction involves exchange of hundreds of messages.

More important and an essential feature is therefore the

scalability of the messaging layer for the sustainability of

the messaging when a new system is interfaced or when

business expands multi-fold.

B. Need for Optimal Resources Utilization and Minimal

Overheads for Performance

A scalable messaging, an important aspect of motivation

for the messaging choice, normally gets limited by the

resources utilization as the application eco-system grows

and expands. As we progress towards the world of micro-

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 166

second services combined with high throughput, the need

for differential techniques using optimal resources is

needed. Further these are supposed to have minimal

overheads to offer predictable latency and eliminate

outliers. The traditional method of offering reliability with

connection oriented transport suffers from the drawback

that the resource usage increases linearly with increase in

number of processes. The connection-less datagram service

maintains near constant resource usage and overheads. The

connection-less protocols therefore become natural choice

for larger systems that can handle losses with application-

level services and speed is of paramount importance [5].

C. Ultra-Low Latency and High Throughput for Thin

Stream Applications with Reliability

With the growing end-user driven applications and internet

proliferation, the applications are highly interactive

requiring higher levels of QoS (Quality of Service) [2]. The

data produced by such real-time applications are bursty

with high rate of small packet sizes. The user experience in

such applications is driven by the response time. The

reliable protocols work well on continuous, uniform data

streams as these are built with optimal timing for re-

transmission and congestion control to maximize the

throughput; Offering both ultra-low latency and high

throughput for thin stream applications has always

remained a challenge petlun [6].

D. Guaranteed Delivery in Mission Critical Transaction

Processing Applications

Large real-time transaction processing systems require high

throughput with guaranteed delivery and latency of the

order of micro-seconds [2]. Such a demanding business

requirement would need the messaging protocol to ensure

that there are no duplications, no losses, no corruption and

in case of any error, reporting and correcting time in sub-

microseconds. In case of any of these above situations the

system will go into recovery and the same will directly

affect the predictability of delivery and latency.

III. MESSAGIN PROTOCOLS

This section discusses the messaging protocols. The

common end-to-end transport layer protocols today are

Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP). The choice of the messaging protocol

varies with the nature of services offered, the application

architecture and the system infra-structure. There are also

new protocols that extend the range of services to suit

specific application categories [7] [8].

• Transmission Control Protocol:Reliable and in-order

delivery of data with adaptive rate control.

• User Datagram Protocol:Unreliable but faster

delivery with datagrams.

• New Protocols:New protocols such as SCTP, DCCP

extend the transport services customized to handle

specific needs.

A. Reliable Transmission Control Protocol (TCP)

A reliable, connection oriented transport TCP is the most

commonly used protocol, is primarily designed for

transmission of bulk data from source to destination as fast

as possible to achieve maximum throughput. Because of

reliability and robustness, it is used for transactions

processing in many of the interactive applications. It is an

end-to-end protocol and is widely supported by all ISP

firewalls.

1) TCP Services

The transport services offered by TCP are: (a) Reliability

with retransmission (b) In-order delivery (c) Congestion

control by adjusting the send rate (d) Flow control to adapt

to receiver’s capacity (e) Error control with checksums. To

provide these services, the protocol keeps track of state

while transmitting each packet. For keeping track, a set of

information is to be included in the packet header for every

transmission. This results in large overheads as compared

to other simpler protocols. As the retransmissions, adaptive

rate control and ordering are designed to be handled per

connection; applications based on TCP can support

connections from various types of devices [9].

Reliability: TCP ensures delivery by way of positive

acknowledgements using sequence numbers. Sender

transmits the sequence number information in every packet

and receiver sends an ACK with the next in-order sequence

number expected. In case a particular sequence number is

missed, the receiver keeps sending the ACKs for the

received data with the expected in-order sequence number,

till the missed one is received. Once the missed one is

received, the receiver sends the ACK with the next in-order

packet expected that is after the successfully received

packets. If the sender does not receive ACK for a given

packet within a certain time (RTO-Re-transmit timeout),

the packet is re-transmitted.

In-Order Delivery: The protocol presents the data to the

receiver in the same order as generated by the sender. With

the sequence number that is transmitted with every packet,

the duplicates, misses, damages, out-of-order packets are

handled and the data is presented to the receiver and there

is no pairing of read/write operation. This makes it a true

streaming protocol suitable for high volume interactive and

bulk transfer applications.

Congestion Control: If the transmission rate is very high,

the packets may get queued at the routers and can get

discarded. The situation is further worsened by causing the

sender to initiate re-transmits and this condition is referred

to as ‘Congestion Collapse’. TCP uses four congestion

control algorithms viz. Slow start, Congestion Avoidance,

Fast Retransmit and Fast Recovery.

Flow Control: TCP uses the sliding window protocol to

adjust to the receiver’s capacity. Every packet received,

contains the receiver’s window advertisement. This

becomes the upper bound for the sender’s sliding window.

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 167

Error Control: Every TCP packet carries a checksum

which helps the receiver to detect the errors. TCP also

detects duplicate packets and drops already received

packets.

Reliable delivery of data in a packet switched network

supporting high volume real-time applications is a complex

task. The above mentioned transport services make TCP

the suitable protocol. However, the current generation high

volume mission critical applications require ultra-low

latency, combined with high throughput. These applications

are normally characterized as “thin data stream” due to the

following reasons: (a) the size of the data packet is much

smaller than the Maximum Transmission Unit (MTU) size

(b) fast retransmission is not triggered as the packet inter-

arrival time (IAT) is high. In such applications, the TCP

retransmission is initiated by timeout rather than by

feedback to trigger fast retransmission. Also, the protocol

invokes exponential back off when multiple losses occur

and this further increases the latency.

2) Tuning TCP for Ultra-low latency in thin stream

interactive DSP applications

The high-performance, high volume applications are thin

stream, the data stream is bursty in nature and performance

requirements are of the order of micro-seconds. This

section discusses the TCP settings that need to be modified

for thin stream DSP applications to provide ultra-low

latency [10].

Socket buffer sizes: The size of the socket buffers decides

the amount of data can be batched and sent to the receiver

to improve the throughput. Similarly, at the receiver,

batches the network operations to receive the data. It is

recommended to maintain these buffer sizes at optimal

level and not very high to have bounded latency. Also, the

send buffer size should be set within the limits of the

receiver buffer to minimize the losses.

Exponential back-off: If the number of packets in-flight

that are un-acknowledged is less than the thresholds

required for triggering fast re-transmit, the exponential

back off factor is disabled. If not, the factor is applied as

the chances for faster re-transmit is high and the bandwidth

consumption needs to be maintained at the optimal level,

which is applicable for thick-stream applications. Disabling

the back off for thin streams improves the response time by

reducing the latency. In thin streams, fast-retransmit does

not result in bandwidth issues.

Fast re-transmit and Selective ACK(SACK): The

receiver when receives a packet that has a sequence number

that is higher than the expected sequence number, sends a

duplicate ACK with the sequence number of the packet

expected. After the configured number of duplicate ACKs,

the receiver requests re-transmit and the sender re-transmits

the packets without waiting for the timeout. Also sends a

SACK to enable the sender to send only missing/dropped

packets and not the whole stream again. For thin streams,

the number of Duplicate ACKs required to trigger fast re-

transmit is set to a very low value so that the delay is

maintained within limits for thin stream interactive

applications, in case of any data loss. Enabling of SACK

improves the efficiency further as only necessary packets

are re-transmitted.

Redundant bundling TCP to reduce latency: This

technique is proposed by Petlund et.al. to reduce the

latency[86]. It involves redundant transmission of

unacknowledged data by copying the data from send

buffer. In case of any data loss, the next packet received

would already contain the data. Thus latency is reduced by

the redundant sending of data.

TCP is a widely used protocol for interactive real-time

applications as well as high volume bulk data applications.

While the protocol is designed for high throughput, the

settings and tuning methods described above improve the

response time for thin-streams by trading off bandwidth

due to faster re-transmissions. However, this does not pose

a problem as these thin-stream applications rarely use the

full bandwidth available. The changes are transparent to the

receiver and effective only when the stream is thin and not

affecting the TCP behavior when the stream is not thin.

Thus the bulk transfer applications will continue to have

the benefits offered by TCP.

B. User Datagram Protocol (UDP)

UDP is a connection-less, unreliable, simple message

oriented protocol. It is faster than TCP because of the

minimal transport services that it offers. Voice and Video

traffic are common handled using UDP [11]. VoIP

application, in which latency and jitter are required to be

minimal and application handles misses and damages, UDP

is used; but is not used for applications that require a very

high level of reliability. When loss on a network is

negligible, UDP is the most suited protocol. Unix Network

File System (NFS) is an example one such application that

uses UDP when it operates on LAN with its own

mechanisms for handling reliability tuned to the application

needs. UDP is widely used in applications such as SNMP,

TFTP, DNS, Internet telephony and multi-media

applications that require speed [11].

1) UDP Services

Unicast, Multicast and Broadcast: UDP support all three

forms of data transfer – Unicast, Multicast and Broadcast

mode of transmission. Depending on the application’s need

and the system infra-structure, services can be used.

Datagram service: The protocol supports delivery of

datagrams and preserves message boundaries; useful for

internet based request-response applications.

Stateless: It is a connection less and stateless protocol and

hence resources usage is optimal; suitable for internet based

applications with very large number of clients

Data integrity: Provides checksums for data integrity; but

no error correction.

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 168

No re-transmission delays: Does not support guaranteed

delivery, error correction and hence no retransmission

delays; suitable for application that cannot tolerate jitters

but can handle losses.

2) UDP with application layer reliability services for

VoIP/multi-media applications

As discussed in the previous section, UDP is used by

applications that require speed but can handle losses and

damages. However, there are applications that prefer to use

UDP for speed but also require trivial level of reliability. In

some cases, the extended transport protocol services such

as SCTP, DCCP can be used. In certain categories of

applications, it may be desirable to build the necessary

services at the application layer with UDP, to provide

services specific to the application’s need. There are

frameworks available such as Enet, UDT with UDP as the

underlying protocol [13].

Enet: It is a small library designed for on-line gaming

support. It is a simple, robust interface that offers partial

reliability with in-order delivery of data. Retransmissions

are based on timeout. Delivery can be configured to be

message-oriented or stream-oriented. It cannot be

considered as a middleware platform as the level of

abstraction is very minimal [14].

UDT: It is a comprehensive library designed for high-speed

nets and provides various features based on UDP. The

congestion control algorithm enables UDT to utilize high

bandwidth links effectively. Partial reliability and in-order

delivery are supported. It uses timer-based, selective

acknowledgement to save bandwidth. However, at very low

bandwidth it ACKs every packet that reduces the latency.

Retransmissions are managed like TCP but with

additionally using negative acknowledgements. Though

reliability requirements can be built, building a complete

set of services on UDP will be on similar lines as TCP and

will result in the same performance if not worse. For such

applications, it is normally preferred to tune the TCP

settings to offer the desired performance.

3) UDP for sending information to many users in

mission-critical e-commerce applications:

The previous paragraph discussed the use of UDP for

point-to-point to communication i.e. in unicast mode. The

other two modes multicast and broadcast are normally used

for sending out information to many users (one to many)

without having to write to each user individually.

UDP Broadcast: UDP Broadcast allows sending of

packets to a particular network eg. all the machines/devices

on a local network. It is a primitive facility and there is no

way of segregating the messages into groups. ISPs block

the UDP broadcast traffic, as it can congest the entire

network. Broadcast can also be a “Directed Broadcast” to

send to all hosts on a remote network. Such broadcasting is

the primary mode of operation for the physical layer in

devices like shared Ethernet, Wireless links and Optical

networks.

UDP Multicast: [15] Similar to UDP broadcast, but users

subscribe to specific multicast groups, therefore are not

bombarded with all the broadcast messages.

With the growth of internet, E-commerce applications,

information services have grown extensively and it has

become the major medium of corporate communication.

Large scale broadcasting of news and events and band

width hungry multi-media based live transmissions poses

major challenges to the network operators and application

designers. One solution that will allow broadcasting to

multiple users without escalation in network traffic is

multicasting. Hence the best protocol for scalability

assurance is multicast. The multicasting technology offers

the following advantages: (a) Improved efficiency through

reduction of network traffic and server load (b) Improved

performance because of elimination of redundant traffic (c)

Facilitates Distributed Applications Architecture.

Multicast has three essential components: (a) Multicast

addressing (b) Multicast Group Management Protocol

(IGMP) (c) Multicast Routing. Multicast addresses

follow Class – D addressing scheme. Any packet sent to a

multicast address is forwarded to all the users who have

joined that multicast group. The router and the switch

selectively duplicate and transmit the data; data can be

transmitted to multiple hosts belonging to the group

without affecting the hosts that are not part of the group.

IGMP is a simple protocol for supporting the subscribers to

a multicast group like joining a group, leaving a group,

routers to query a membership etc. Multicast routing

protocols enable the routing of multicast packets across the

routers using optimal paths discovered. Multicasting is the

most commonly used technology for video conferencing.

Multicast is a mode of group communication. With

multicast, any machine can join and leave a group

dynamically and all members of a group receive all the

packets, without any filtering. Due to the benefits,

substantial work has gone into the implementation of

multicast protocols such as single source multicast, reliable

multicast and end-to-end multicast [16][17] [18] [19]. As

multicast does not guarantee delivery and does not support

access control or security, it is not used for mission-critical

transaction processing.

4) Challenges with multicast

In large volume systems, as the business expands, the

challenges associated with multicast correspondingly

increase. Network traffic does not remain steady as it is

completely driven by the business activities. When the

business activities are high, information that is multicast

increases and hence the traffic pattern is dynamic in nature.

Consistency in response time/latency can be achieved with

multicast only when the message rate and size remain

almost constant [20].

In case of customized reliable Multicast, slow subscribers

become a problem, as the publishers have to be sent NACK

(Negative Acknowledgement). The processing of the

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 169

NACK increases the processing overhead for the publishers

and affects the other subscribers. This additional overhead

increases the latency spike in the application.

C. New Protocols

With the growth of internet applications, new protocols that

extend the services and the flexibility of the transport layer

to suit very specific application categories. This section

discusses a few of such protocols.

Stream Control Transmission protocol (SCTP): The

SCTP was originally designed for transporting Public

Switched Telephone Network (PSTN) signaling traffic over

Internet protocol (IP) networks by the IETF signaling

transport (SIGTRAN) working group. SCTP supports a

range of functions that is critical to message-oriented

signaling transport but over time, features that are useful

for other applications also [8][21].

Datagram Congestion Control Protocol (DCCP): The

DCCP provides congestion control on UDP like TCP but

without reliability. This is useful for time-sensitive

applications that need to control delivery timing, without

having to implement congestion control at the application

[22].

Game Transport Protocol (GTP): The GTP is designed

for the transmission of event data used by multimedia on-

line game (MMOG) with minimal latency. GTP uses a

packet-based window scheme instead of a byte-based

window scheme, suitable for small-sized event data. It also

does session management and an adaptive retransmission

using GTP control blocks. Although it is a specialized

protocol for MMOG, it can also be used for other on-line

multimedia applications [23].

D. Messaging Models

With the above messaging protocols, messaging models

emerged towards meeting the non-functional requirements

of business systems. This section provides information on

those models [24]:

Request-response for reliable one-to-one interactive
applications: This is one of the basic models used for

message between two applications/modules. It can be a two

way communication and hence when implemented over a

reliable protocol TCP, it is very powerful for guaranteed

delivery and a variety of other transport features such as

rate adaptation to support connections from various

devices. The messaging solutions, combine queuing with

Request-Response to support large systems that support

high volume of transactions by overcoming the limits of

point-to-point communication.

Scalable Publish-Subscribe for many-to-many loosely
coupled applications:This is a model in which the

publishers (senders) and subscribers (receivers) are loosely

coupled; the publisher need not know about the subscriber

and is also independent of the number of subscribers. This

model provides much higher scalability than Request-

Response model. In messaging systems that support large

volume, the publisher sends to an intermediate broker and

subscribers register themselves with the broker for the

category of messages that they require. The filtering of

messages for the subscriber could be based on topics or

content or both. The choice of protocol for the intermediate

broker TCP or multicast is dependent on the reliability

needs of the business requirement. The decoupling nature

of publish-subscribe model makes it more suitable for low

latency requirements as it allows for quick re-configuration

of the path across multiple network domains, when issues

are detected in the network.

IV. MESSAGING MIDDLEWARE EVALUATION

The growing need for messaging solutions towards

scalability and security resulted in software vendors

providing products with interfaces between applications

and between modules in large business systems. The

enterprise backbone of the middleware enables integration

across heterogeneous IT platforms with distributed

computing environments, allowing real-time data exchange

asynchronously without the need for a synchronous sender-

receiver. The middleware program supports features like

store and forward with powerful persistence that guarantees

delivery even though receiver is not up when the sender

sends the data. These features are configurable and

therefore can be turned on-off depending on the criticality

and the business need. Being standards based, the

middleware greatly eliminates proprietary dependencies,

minimizes the deployment cost and time to market.

This subsection provides insight into selection of a suitable

messaging middleware based on the followingaspects:

• Features of messaging middleware

• Selection criteria for high throughput ultra-low

latency systems

• Implementation considerations for a typical DSP

• Key parameters tuningfor high throughput and ultra-

low latency

• A simulation exercise to arrive at appropriate SSB

and RSB setting

A. Features of Messaging Middleware

This section describes the features of the COTSmessaging

middleware that are essential [25][26] for supporting any

business application. Evaluation must ensure that the

support for these features is mandatory.

1) The middleware to provide comprehensive support for

messaging standards such as JMS, J2EE, JTA XA

API, XML, SOAP, HTTP, HTTPS, SSL and TCP/IP.

2) The message queuing or publish-subscribe, is

expected to support high volume and low latency on

demand. The middleware to support high performance

enabling features such as connection pooling, in-

memory storage, efficient persistence and horizontal

scalability to deliver ScalabilityQoS [27].

3) To support High Availability(HA), Fault Tolerance

(FT) and load balancing to meet the ResilienceQoS of

the business.[28].

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 170

4) To meet the confidentiality and SecurityQoS of

business, messaging products should support strong,

industry-standard authentication, authorization,

transport security and data security. For authentication

and authorization, support interfacing with LDAP,

NT/UNIX realms and databases. The transport

security is provided with SSL for both TCP and HTTP

and digital certificates. The data security is guaranteed

with strong encryption algorithms. Security standards

include SSL, TLS, JCE, LDAP and PKCS [29].

5) To support wide variety of IT platforms running

various Operating Systems and devices such as web,

mobile devices with these solutions.

6) Multi-protocol support: The message broker in a

middleware supports multiple protocols, to suit the

needed quality of service levels and deliver the best

performance in terms of throughput and latency.

After selecting a messaging middleware, the

application architect must choose the protocols needed

by the application suiting the business requirement

and the operating environment. The most commonly

used TCP/IP based protocols used by message brokers

are [30] [31].

• AMQP (Advanced Message Queuing Protocol) to

support reliability and interoperability

• It provides a wide range of features messaging,

reliable queuing, topic based publish-subscribe,

dynamic routing, transaction processing and

security. It is a good choice for building large

scale, reliable and resilient mission-critical

messaging applications.

• MQTT (Message Queue Telemetry Transport) to

support high latency, low bandwidth networks

• It provides publish-subscribe model with low

footprint suitable for mobile and “Internet Of

Things” applications with message pushing needs,

to support many thousands of concurrent device

connections such as mobile notifications, weather

updates, market updates etc.

• STOMP (Simple/Streaming Text Oriented

Messaging Protocol) to support text based

messaging.

• It does not operate with topics or queues, but deals

through “destination string”. Since there are no

standard specifications, the vendor

implementations are not standardized and there

are different flavours. However, it is simple and

light-weight making it suitable for simple

browser/web update applications.

B. Selection Criteria for High Throughput, Ultra-low

Latency Systems

This section discusses the key functional as well as non-

functional factors based on which messaging middleware

are to be evaluated for a high throughput, ultra-low latency

mission critical DSP system.

1) Message throughput: The applications that handle

high volumes with thousands of connected

users/devices need to handle millions of

messages/second. Connection and message handling

capacity is the foremost selection criteria.

2) Ultra-low latency: Time critical interactive

applications; require the response time to be of the

order of micro-seconds for a good user experience.

The facilities supported by the middleware for the

protocols, the intermediate in-memory storage, speed

of persistence/recovery and the parameters towards

achieving low latency for transaction execution need

to be evaluated.

3) Guaranteed delivery: Mission critical applications

require assured delivery. Towards the same the

middleware needs to offer support for ‘No loss’, ‘No

Duplication’, ‘No Corruption’. Commercial products

offer 3 levels of QoS: persistent, non-persistent and

transactional.[32].

4) Scalability and Resiliency: For mission critical

systems, the scalability and high availability/fault

tolerance features of the messaging system are studied

to suit the requirements. This will help in deciding the

ease of capacity upgrade when the volume increases

and system uptime in case of failures. With the growth

of IOT, messaging technologies have extended their

services with multicast, as multicast is the best way to

guarantee scalability. Support for multicast protocol is

to be included as part of the scalability evaluation

criterion.

5) Choice of platform for the middleware: Industry

reports often indicate that there is a variation in

performance across various hardware platforms. The

evaluation needs to be done for choosing the right

combination of middleware, the hardware and the

application services.

6) Choice of protocol: Depending on the application

requirements, the appropriate protocol is to be chosen

for each layer and tests are to be done for the above

mentioned factors with fine tuning of the parameters.

The cases where guarantee of every message is of

utmost importance, TCP with its customized

parameters is to be evaluated. There could be needs

where the message delivery to the users is highly time

sensitive but with compromised reliability. In such

cases, the multicast features or Reliable UDP unicast

are to be evaluated thoroughly.

C. Implementation Approach for DSP

Once the messaging middleware choice is done as

described in the previous section, the next step is to

configure the middleware for the implementation. The

messaging middleware could be commercial products like

Tibco, 29West, Fiorano MQ, Reuters RMDS or an open

source platform like AMQP etc.,. The implementation of

any standardized middleware is discussed with respect to a

layered architecture that is designed to have a lean business

tier for best performance as elaborated in chapter 5. Design

of a high volume, ultra-low latency real-time processing

system involves choosing the right network transports

considering the QoS requirements. Different layers would

require the appropriate solution to be chosen depending on

the service needs. It therefore means to choose a hybrid of

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 171

network transports and implement with the techniques that

would be suited for that layer of the system. Integration is a

complex task that would require planned architecting. The

middleware deployed needs to be configured with the

chosen network transport for each layer.

1) UDP for input channels: The communication layer

receives the input from various channels. These

operate in highly parallel mode as the data is stateless

at this stage. The input channel receives streams of

data from various sources. The sources could be of

varying network capacity and speed. The streams

from these sources are validated for the stateless

conditions using the details in metadata repository.

This layer accepting the data from users can operate

using connection-less protocol such as UDP for high

performance.

2) TCP or Reliable Unicast for acknowledged data:
After validation, data accepted for processing is

forwarded to the ‘Business Processing Layer’. Once

accepted, the transactions are expected to be

guaranteed and processed with low latency. This

message passing is necessarily using a reliable

transport as the validated and accepted data is

presented for business processing. It is therefore

recommended to use Reliable Unicast or TCP for

reading the input without much delay and to write the

data to the ‘Business Processing Layer’. If the stream

is classified as thin, then the appropriate protocol

supported by the middleware to have low latency

needs to be chosen; in middleware like 29West LBM,

this is supported as ‘Latency bounded TCP’. Reliable

Unicast is the customized protocol built on UDP

supported by messaging middleware for reliability

with low latency.

3) TCP or Reliable Unicast to handover to ‘Response
Service’:The ‘Business Processing Layer’ reads the

stream, using reliable protocol such as TCP as the

reliability and the order of input messages are

significant. For ultra-low latency the data is processed

in flight by passing through the rule engine; store-and-

forward is avoided. In parallel, the validated but

unprocessed data stream is sent to the ‘Data Object

Store’. In high performance systems, this data store

could reside in memory to be used during the course

of business processing. The processed data is sent to

the ‘Response Service’ using reliable protocol.

4) TCP for persistence:The processed information is

sent to the ‘Enterprise Persistent Store’ in parallel

using a ‘Daemon Service’ to ensure no impact on real-

time processing and timely response. Reliable ‘TCP’

is the protocol suited for the requirements of this layer

for reading the input and sending the output to

guarantee transactions.

5) Reliable multicast for transmitting to ‘Business

Processing Layer’ (Specialized variation
Implementation): However, there is a specific

category of applications where timeliness of the input

is the most important criterion such as avionic

systems, where data from sensors that is to be

processed by the alerting modules. In such systems,

reliable multicast is the preferred option to transmit

the data to the ‘Business Processing Layer’. The

reliable multicast offered by the middleware

technologies optimizes the traffic and the reliability is

offered by having more than one receiver. In case of

any miss detected by the receiving process, other

receivers are contacted and not the source to fill the

gap and to maintain the order of the latest information.

Contacting other receivers for missing information

reduces the load on the single source. Due to the

performance advantages, the multicast

implementation by the messaging middleware is

continuously getting evolved to have scalable ultra-

low latency. The topic and content based filtering

make the implementation further light and the

detection/recovery is handled by the subscribers. In

the business layer, the receiving processes subscribe

to the topics/contents for their need so that the load of

messages is optimum and CPU cycles are not wasted

in rejecting unwanted messages. The number of

publishers-subscribers, topics and the size of messages

need to be configured based on the test runs for the

best performance.

6) Latency Bound TCP or Multicast for ‘Response
Sender’: The ‘Response Sender’ layer runs multiple

threads/processes to maximize the throughput as the

data is stateless. This layer is configured to send the

data in parallel to the consumers using ‘Reliable TCP’

and unreliable multicast depending on the service.

The response to a transaction execution which is sent

over interactive channel is sent using ‘Reliable TCP’

and in latency sensitive applications that are thin

stream using ‘Latency bounded TCP’. The broadcast

information which is common to the entire

community of users is normally sent using unreliable

multicast as it is light-weight in terms of resources

consumption and latency. Also such information is

time-sensitive and the next update cycle would satisfy

the latest information needs, rather than re-sending the

obsolete information. The point-to-point delivery

mechanism is avoided as slow consumers will

cumulatively increase the latency and will overall

impact the performance. The multicast that is based on

publish-subscribe technology with topic/content based

filtering that is most suitable for all services other than

interactive individual transaction response.

The configuration parameters of the messaging middleware

have a profound impact on the messaging performance.

The parameters are fine-tuned towards achieving high

throughput combined with ultra-low latency and ensuring

reliability by avoiding losses. These parameters are to be

tested for performance in the benchmark setup under

various scenarios as the impact is due to the combination of

parameters. The fine-tuning of the configurable parameters

is explained in the next sub section.

D. Key Parameters Tuning for High Throughput and

Ultra-low Latency

This section discusses the impact of key parameters

supported by common middleware platforms on

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 172

performance. The values suggested are applicable for a

high performance system that handles messages of the

order of 40K/second with the lab tests conducted.

1) Receiver socket buffer size: TCP receive buffer size

sets the buffer allocated to the socket of the receiver.

TCP being a reliable, flow control based protocol, the

sender will send till there is space in the receive buffer

of the receiver. It is set equal to or more than the send

buffer of the sender. Increasing the size of this buffer

improves the throughput but affects the response time

i.e. negative impact on low latency requirements.

2) Sender socket buffer size:TCP send buffer size sets

the buffer allocated to the socket of the sender. TCP

being a reliable, flow control based protocol, the

sender will send till there is space in the receive buffer

of the receiver. It is set equal to or less than the

receive buffer of the sender. For optimal performance,

it is recommended that the sender operates within the

limits of the receiver capacity to minimize data loss

and latency. Increasing the size of this buffer in line

with receive socket buffer improves the throughput

but affects the response time i.e. negative impact on

low latency requirements.

These two parameters have a significant impact on

performance. The simulation exercise done for a typical

DSP application is described in sub section 6.4.5.

3) Packets rate interval: This option is not valid for

TCP; however, in case of multicast, controls the rate

at which information is transmitted. Along with

buffering this option helps to improve the

performance by minimizing congestion.

4) Packets rate limit:This option helps to set the

bandwidth limit such as 10Mbps, 100Mbps, 200Mbps

etc. Along with packet rate interval, this option assists

in achieving maximum throughput. While configuring

messaging middleware, this is set to a higher value of

the order of 1000Mbps for high throughput to

accommodate data as well as re-transmissions.

Default value is of the order of 10Mbps.

5) Batching size:This is the buffering option at the

messaging layer level as against the socket buffer size

which is at the kernel level to increase the throughput.

This can be increased from 2K to 32K depending on

the throughput need. If the kernel level option is used,

this should be turned off/fine-tuned so that latency is

controlled.

6) Batching interval:This option should be used along

with Batching size option.

7) Data buffering for transport session:This parameter

refers to the maximum amount of buffered data to be

retained at the source for re-transmission. It is

increased to minimize the losses. This parameter is

increased from 25Mb to 600Mb.

8) Window for re-transmission for reliable

multicast:The reliable multicast involves negative

ACKs for re-transmission requests either to the source

or the other multicast receivers. The re-transmission is

implemented as reliable unicast and this option sets

the re-transmission window to avoid congestion. This

is increased to reduce the unrecoverable loss.This is

set to be of the order of 512Mb as against default

value of 25Mb.

9) Initial and subsequent NAK delay:This option sets

the delay for the initial NAK in case of data loss for

reliable multicast. In low latency applications, the

initial NACK is set to a lower value than the default

value.The value is set to 10ms as against the default

value of 50ms for response critical applications.

Subsequent regeneration requests are delayed to avoid

unrecoverable burst loss errors. This parameter is

increased from 1 second to 60 seconds.

10) Max Burst lost size:Loss, more than this size is

declared as unrecoverable loss. To minimize

unrecoverable losses and to assist in recovery, the

value of this parameter is increased. Along with the

increased delay for retransmission requests, the burst

loss size is also increased.

E. Simulation Exercise for Tuning SSB and RSB

This sub section describes the simulation conducted to

arrive at the various buffer sizes to achieve the desired

throughput with optimal latency for a high performance

DSP.Table 6.1 shows the various configurations with the

resultant throughput, latency and the recommended

settings.

1) Run 1 is the baseline experiment for measuring the

throughput and latency with the initial configuration

for sender and receiver tasks.

2) Runs 2 and 3 are for fine tuning the transmit buffer

size (TRM_BUF) and to verify the impact on

throughput and latency. In run 2 and 3, the transmit

buffer size is reduced from the baseline configuration.

• In run 2, the transmit buffer of the sender is

reduced from 64K to 8K. With this change, the

response time improves but the throughput

reduces.

• Further reduction in the transmit buffer of the

sender, in run 3 from 8K to 512, improves the

response time due to reduced memory

consumption with no major impact on throughput

compared to Run 2.

3) Runs 4, 5 and 6 are for fine tuning the Send (SSB) and

Receive (RSB) socket buffers.

• In run 4, the SSB of the sender is increased from

4K to 8K. The throughput increases but the

response time degrades.

• In run 5, the TRM_BUF of the sender and receiver

are maintained at 512, the RSB of the receiver

(16K) is made higher than the SSB of the sender

(4K). This setup gives optimal throughput and

latency with reduced memory consumption.

• In run 6, the SSB and RSB of the sender are

increased by 4x and SSB and RSB of the receiver

are increased by 8x. Though this improves the

throughput, due to high memory consumption,

response time suffers.

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 173

Table 6.1 Buffer Size Fine Tuning for Performance

The recommendation for desired throughput with optimal

latency is therefore to have TRM-BUF, SSB and RSB

size for reduced memory consumption with RSB of the

receiver to be greater than the SSB of the sender.

V. CONCLUSION

A Perspective is presented on various messaging protocols,

extended protocols and new protocols of latest market

trends based on the study and survey of COTS middleware.

These are analyzed based on the category of business

applications that they are intended to support. With

growing requirement for ultra-low latency applications, low

latency requirements for thin streams are discussed in

detail. With these basics, the selection criteria for any

messaging middleware for high throughput, ultra-low

latency applications is discussed which would provide

guidance for the system designer. Also, the implementation

of typical high volume data stream processing application

based on a layered architecture is analyzed. The analysis

covers the messaging models and the protocols for various

business services covering both stateless and state-full

processing to maximize the performance. In a messaging

middleware, configurable parameters play a key role in

meeting the performance requirements of various types of

services. The fine tuning ofthesekey parameters is studied

and discussed to help the developer community with

respect to TCP/multicast protocols towards offering

reliability, high throughput and low latency.

ACKNOWLEDGEMENTS

The authors would like to thank the support of National

Stock Exchange of India Limited for the lab facilities for

the research work.

REFERENCES

 [1] A. R. Alkhawaja, L. L. Ferreira and M. Albano, “Message

Oriented Middleware with QoS Support for Smart Grids”,

INForum 2012 - Conference on Embedded Systems

and Real Time, 2012.

 [2] Holger Wunderlich, Diego Cardalliaguet, Russ Heald,

Tomokuni Shimizu and Dirk Ziesemann, “IBM, Building

Multi-Tier Scenarios for Web Sphere Enterprise

Applications”, An IBM Redbook Publications, 2003.
 [3] EDS, “Financial Services Legacy Modernization”, EDS

White Paper, 2007.

 [4] Shameem Akhter and Jason Roberts, “Multi-Core

Programming”, An Intel Press Publications, ISBN 0-

9764832-4-6,2006.

 [5] A Friedley, T Hoefler and ML Leininger, “Scalable High

Performance Message Passing over InfiniBand for Open

MPI”, e-reports.ext.llnl.gov, 2007.

 [6] Andreas Petlund, “Improving latency for interactive, thin-

stream applications over reliable transport”, Doctoral

Thesis, http://urn.nb.no/URN:NBN:no-24274, October

2009.

 [7] Ross Carter, “Microsoft Real-Time Communications :

Protocols and Technologies”, Microsoft TechNet Library,

July 2003.

 [8] Jan Newmarch, “Introduction to Stream control

Transmission Protocols”, Linux Journal, September 2007.

 [9] Mark Allman, “Improving TCP Performance over Satellite

Channels”, Doctorol Thesis, 1997.

 [10] A Petlund, K Evensen and P Halvorsen, “Improving

application layer latency for reliable thin-stream game

traffic”, Netgames `08Proceedings of the 7th ACM

SIGCOMM Workshop on Network and System Support

for Games, 2008, pp.91-96.

 [11] Mark A. Miller, “Voice Over IP Technologies : Building

the Convergent Network”, John Willy & Sons Inc.,

NY,ISBN:0764549073, 2002.

 [12] Manoj Bhatia, Jonathan Davidson, Satish Kalidindi,

Sudipto Mukherjee and James Peters, “VoIP: An In-Depth

Analysis”, Publication by CISCO Press, October, 2008,

pp.145-168.

 [13] PPK Lam, SC Liew, “UDP-Liter: an improved UDP

protocol for real-time multimedia applications over

wireless”,1st International Symposium on Wireless

Communication Systems, 2004, pp.314-318.

 [14] Mike Diehl, “Network Programming with Enet”, Linux

Journal, 2012.

 [15] PK Chrysanthis, V Liberatore and K. Pruhs, “Middleware

Support for Multicast-based Data Dissemination: A

working Reality”, Proceedings of the Eighth International

Workshop on IEEE Explore Object-Oriented Real-Time

Dependable Systems, (WORDS 2003), 2003, pp.265-272.

 [16] A. Tripathi, A.K. Gupta and Dr. D. Arora, “Comparative

Analysis of Quality Services of Dense and CBT Mode of

Multicast Routing Strategies”, International Journal of

Scientific and Research Publications, Volume 3, Issue 2,

February 2013.

 [17] D. Zappala and A. Fabbri, “Using SSM Proxies to Provide

Efficient Multiple- Source Multicast Delivery”,Global

Telecommunications Conference, GLOBECOM '01,

IEEE,Volume 3, 2001, pp.1590-1594.

 [18] L. Rizzo, L. Vicisano, “A Reliable Multicast data

Distribution Protocol based on software FEC techniques”,

The fourth IEEE Workshop on High-Performance

Communication Systems, 1997, pp.116-125.

 [19] Y.Chu, S. G. Rao, S. Seshan and H.Zhang, “Enabling

Conferencing Applications on the Internet using an

Overlay Multicast Architecture”, SIGCOMM’01,

2001,pp.55-67.

 [20] “The Advantage of Using Hardware-Based TCP Fanout for

High-Performance Messaging”,

http://www.solacesystems.com,Solace Systems.

RUN

T RM_

BUF
SSB RSB

TRM_

BUF
SSB RSB

AVG 90% 99%

1 64K 8K 64K 64K 64K 1M 1.4240 2.0240 2.9860

77.06

Kmsgs/sec,

315.6 Mbps

2 8K 4K 4K 64K 64K 1M 0.5352 0.6800 1.2220

42.14

Kmsgs/sec,

172.6 Mbps

3 512 4K 4K 64K 64K 1M 0.2958 0.3360 0.7300

37.39

Kmsgs/sec,

153.1 Mbps

4 512 8K 8K 64K 64K 1M 0.3704 0.3920 1.9430

52.39

Kmsgs/sec,

214.6 Mbps

5 512 4K 8K 512 8K 16K 0.2974 0.3390 1.5230

39.25

Kmsgs/sec,

160.8 Mbps

6 512 16K 32K 512 64K 128K 5.8230 0.6460 173.50

65.44

Kmsgs/sec,

268 Mbps

T hroughput

Pkt_size = 512 ; No of Pkts = 1M

Sender Receiver RT T LATENCY

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(165-174) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 174

 [21] “Stream Control Transmission Protocol: Past, Current, and

Future Standardization Activities”,IEEE Communications

Magazine, April 2011.

 [22] Mohammad Nayeem Teli, Endrit Thanasi, “Analysis of

Datagram Congestion Control Protocol (DCCP)”,

Colorado State University, 2005.

 [23] S Pack, E Hong, Y Choi, I Park, “Game Transport

Protocol: A Reliable Lightweight Transport Protocol for

Massively Multiplayer On-line Games

(MMPOGs)”,Proceedings of SPIE 4861, Multimedia

Systems and Applications, 2002.

 [24] E. C. Eugène and L.A.A. Frejus, “Asynchronous Message

Exchange System between Servers based on Java Message

Service API”, International Journal of Computer Science

Engineering (IJCSE), Volume 1, Issue 2, November 2012,

pp.144-152.

 [25] “Fiorano MQ Enterprise Messaging”, Fiorano, 2015.

 [26] “Messaging Middleware – a Technical Reference Guide

for Designing Mission-Critical Middleware Solutions”,

Microsoft, SQL Server 2012, 2012.

 [27] G Chen, Y Du, P Qin and L Zhang, “Research of JMS

Based Message Oriented Middleware for Cluster”,

International Conference on Computational and

Information Sciences, 2012, pp.1628-1631.

 [28] H Abie, RM Savola and I Dattani, “Robust, secure, self-

adaptive and resilient messaging middleware for business

critical systems”, Computation World, 2009, pp.153-160.

 [29] RS Wu, SM Yuan, “A Pluggable Security Framework for

Message Oriented Middleware”, 5th WSEAS International

Conference on Applied Computer Science, April 2006,

pp.1045-1050.

 [30] Andrew Foster, “Messaging Technologies for the

Industrial Internet and Internet of Things”, Prism Tech

Corp. White paper, May 2015.

 [31] D. Sangvikar, V. Tekale, “Multi Protocol Cross Platform

Communication”, IJERT,Volume 3, Issue 5, May 2014.

 [32] P Tran and P. Greenfield, “Behavior and Performance of

Message-Oriented Middleware Systems”, 22
nd

International Conference on Distributed Computing

Systems Workshops,2002, pp.645-650.

