
 © 2015, IJCSE All Rights Reserved 175

 International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Review Paper Volume-3, Issue-5 E-ISSN: 2347-2693

Reverse Proxy Based XSS filtering

K.S. Wagh, Vishal Jotshi*, Harshal Dalvi, Manish Kamble
Department of Information Technology, University of Pune, Pune

Received: Apr/26/2015 Revised: May/06//2015 Accepted: May/22/2015 Published: May/30/ 2015

ABSTRACT
Due to the increasing amount of Web sites offering features to contribute rich content and the frequent failure of

Web developers to properly sanitize user input, cross-site-scripting prevails as the most significant security threat to

Web applications. Using cross-site scripting techniques, a malicious user can hijack Web sessions, craft credible

phishing sites and using the browser based exploits can have complete access to victim machine. Previous work

towards protecting against cross-site scripting attacks suffers from various drawbacks, such as practical infeasibility

of deployment due to the need for client-side modifications, inability to reliably detect all injected scripts, and

complex, error-prone parameterization. In this paper, we introduce a server-side solution for detecting and

preventing cross-site scripting attacks using reverse proxy that intercepts all HTML responses, and allow or deny

the request based on filtering techniques using regular expressions and blacklisting techniques.

Keywords – HTTP header filtering, Regular expression, Reverse proxy , XSS, XSS firewall,

I. INTRODUCTION

Now-a-days, Cross Site Scripting attacks on websites

are rising at a high speed. Different methods are being

applied for protection of websites against Cross Site

Scripting attacks. Most of the methods are based on

individual website protection. But some sites are

providing good filters, while the others are lacking

protection. So in order to have a common solution for

protection against attacks, we are implementing a

reverse proxy based XSS filtering firewall which will

prevent the XSS attacks on the server side itself.

 The problem of XSS arises when a malicious user

tries to give malicious input to a web application. This

input is an executable code which may get executed on

several other clients’ browsers. On execution, the code

may try to steal legitimate users sessions which may

cause unauthorized account access.

II. Cross Site Scripting (XSS)

Cross-Site Scripting (XSS) attacks are a type of

injection, in which malicious scripts are injected into

otherwise benign and trusted web sites. [1] XSS attacks

occur when an attacker uses a web application to send

malicious code, generally in the form of a browser side

script, to a different end user. Flaws that allow these

attacks to succeed are quite widespread and occur

anywhere a web application uses input from a user

within the output it generates without validating or

encoding it.

An attacker can use XSS to send a malicious script to

an unsuspecting user. The end user’s browser has no

way to know that the script should not be trusted, and

will execute the script. Because it thinks the script

came from a trusted source, the malicious script can

access any cookies, session tokens, or other sensitive

information retained by the browser and used with that

site. These scripts can even rewrite the contents of the

HTML or dynamic webpage.

[2]This is a sequential flow of a Cross Site Scripting

attack. In this diagram, the hacker first of all finds a

vulnerable point in a third party website and tries to

inject his own XSS code at the vulnerable point of the

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(175-180) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 176

III. Types of Cross Site Scripting

Early on, two primary types of XSS were identified,

Stored XSS and Reflected XSS. In 2005, Amit Klein

defined a third type of XSS, which he coined DOM

Based XSS. These 3 types of XSS are defined as

follows:

• Stored XSS (Persistent or Type I)

Stored XSS generally occurs when user input is stored

on the target server, such as in a database, in a message

forum, visitor log, comment field, etc. And then a

victim is able to retrieve the stored data from the web

application without that data being made safe to render

in the browser. With the advent of HTML5, and other

browser technologies, we can envision the attack

payload being permanently stored in the victim’s

browser, such as an HTML5 database, and never being

sent to the server at all.

• Reflected XSS (Non-Persistent or Type II)

Reflected XSS occurs when user input is immediately

returned by a web application in an error message,

search result, or any other response that includes some

or all of the input provided by the user as part of the

request, without that data being made safe to render in

the browser, and without permanently storing the user

provided data. In some cases, the user provided data

may never even leave the browser .

• DOM Based XSS (Type-0)

As defined by Amit Klein, who published the first

article about this issue [3], DOM Based XSS is a form

of XSS where the entire tainted data flow from source

to sink takes place in the browser, i.e., the source of the

data is in the DOM, the sink is also in the DOM, and

the data flow never leaves the browser. For example,

the source (where malicious data is read) could be the

URL of the page (e.g., document.location.href), or it

could be an element of the HTML, and the sink is a

sensitive method call that causes the execution of the

malicious data (e.g., document.write)."

IV. Reverse Proxy based filtering

In computer networks, a reverse proxy is a type of

proxy server that retrieves resources on behalf of a

client from one or more servers. These resources are

then returned to the client as though they originated

from the proxy server itself. [4] While a forward proxy

acts as an intermediary for its associated clients to

contact any server, a reverse proxy acts as an

intermediary for its associated servers to be contacted

by any client.

 In our project, We are using reverse proxy based

HTTP headers filtering mechanism for detecting the

XSS payloads in the incoming requests. This is an

efficient method of attack detection.

Figure: Reverse Proxy Architecture

[5]Application firewall features can protect against

common web-based attacks. Without a reverse proxy,

removing malware or initiating takedowns, for

example, can become difficult.

In the case of secure websites, a web server may not

perform SSL encryption itself, but instead offloads the

task to a reverse proxy that may be equipped with SSL

acceleration hardware.

A reverse proxy can distribute the load from incoming

requests to several servers, with each server serving

its own application area. In the case of reverse

proxying in the neighborhood of web servers, the

reverse proxy may have to rewrite the URL in each

incoming request in order to match the relevant

internal location of the requested resource.

Reverse proxies can perform A/B testing and

multivariate testing without placing JavaScript tags or

code into pages.

V. Android Notification Service

For security auditing purpose, we are using the android

notification service to implement the sending of

security audit reports from the firewall to the admins

android mobile client application. The server admin

will be having an android application which will act as

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(175-180) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 177

a client and will be connected to the server for fetching

the

Audit reports.

The application tier will generate a request if it is

having a high priority or the user has demanded the

attack report.

This request will be forwarded to an auditing server

which will generate the proper format of the report and

that report will be deployed to the Administrator.

VI. Cross Site Scripting Payloads

Cross site scripting is having a large number of

payloads. Most of them are defined on OWASP as

Cheat Sheet which contains a lot of methods and

payloads to bypass the XSS filters.

The attack starts mostly when the attacker is successful

in closing the parameter string and developing payload

as an executable object code.

Here are some methods or events when XSS can occur

on a website[6].

- Image XSS using the JavaScript directive

- No quotes and no semicolon

- Case insensitive XSS attack vector

- HTML entities

- Grave accent obfuscation

- Malformed A tags

- Malformed IMG tags

- fromCharCode

- Default SRC tag to get past filters that check

SRC domain

- Default SRC tag by leaving it empty

- Default SRC tag by leaving it out entirely

- On error alert

- Decimal HTML character references

- Decimal HTML character references without

trailing semicolons

- Hexadecimal HTML character references

without trailing semicolons

- Embedded tab

- Embedded Encoded tab

- Embedded newline to break up XSS

- Embedded carriage return to break up XSS

- Null breaks up JavaScript directive

- Spaces and meta chars before the JavaScript in

images for XSS

- Non-alpha-non-digit XSS

- Extraneous open brackets

- No closing script tags

- Protocol resolution in script tags

- Half open HTML/JavaScript XSS vector

- Double open angle brackets

- Escaping JavaScript escapes

- End title tag

- INPUT image

- BODY image

- IMG Dynsrc

- IMG lowsrc

- List-style-image

- VBscript in an image

- Livescript (older versions of Netscape only)

- BODY tag

- Event Handlers

- BGSOUND

- & JavaScript includes

- STYLE sheet

- Remote style sheet

- Remote style sheet part 2

- Remote style sheet part 3

- Remote style sheet part 4

- STYLE tags with broken up JavaScript for XSS

- STYLE attribute using a comment to break up

expression

- IMG STYLE with expression

- STYLE tag (Older versions of Netscape only)

- STYLE tag using background-image

- STYLE tag using background

- Anonymous HTML with STYLE attribute

- Local htc file

- US-ASCII encoding

- META

 -.1 META using data

 -.2 META with additional URL parameter

- IFRAME

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(175-180) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 178

- IFRAME Event based

- FRAME

A basic test to find the vulnerability is to locate the

parameter where an attacker can put the payload. Eg:

• XSS Locator

Inject this string, and in most cases where a script is

vulnerable with no special XSS vector requirements

the word "XSS" will pop up. Use this URL encoding

calculator to encode the entire string. Tip: if you're in a

rush and need to quickly check a page, often times

injecting the depreciated "<PLAINTEXT>" tag will be

enough to check to see if something is vulnerable to

XSS by messing up the output appreciably:

';alert(String.fromCharCode(88,83,83))//

';alert(String.fromCharCode(88,83,83))//

";

alert(String.fromCharCode(88,83,83))//";

alert(String.fromCharCode(88,83,83))//--

></SCRIPT>">'><SCRIPT>alert(String.fromC

harCode(88,83,83))</SCRIPT>

• XSS locator 2

If you don't have much space and know there is no

vulnerable JavaScript on the page, this string is a nice

compact XSS injection check. View source after

injecting it and look for <XSS verses <XSS to see if

it is vulnerable:

'';!--"<XSS>=&{()}

• No Filter Evasion

This is a normal XSS JavaScript injection, and most

likely to get caught but I suggest trying it first (the

quotes are not required in any modern browser so they

are omitted here):

<SCRIPT

SRC=http://ha.ckers.org/xss.js></SCRIPT>

• Malformed A tags

Skip the HREF attribute and get to the meat of the

XXS... Submitted by David Cross ~ Verified on

Chrome

xxs

link

or Chrome loves to replace missing quotes for

you... if you ever get stuck just leave them off and

Chrome will put them in the right place and fix

your missing quotes on a URL or script.

xxs

link

• fromCharCode

If no quotes of any kind are allowed you can

eval() a fromCharCode in JavaScript to create any

XSS vector you need:

<IMG

SRC=javascript:alert(String.fromCharCode

(88,83,83))>

• Embedded tab

Used to break up the cross site scripting attack:

These kind of payloads have higher chances of getting

past from firewalls.

VII. XSS PREVENTION RULES

The following rules are intended to prevent all

XSS in your application. While these rules do not

allow absolute freedom in putting untrusted data

into an HTML document, they should cover the

vast majority of common use cases. You do not

have to allow all the rules in your organization.

Many organizations may find that allowing only

Rule #1 and Rule #2 are sufficient for their
needs.

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(175-180) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 179

Do NOT simply escape the list of example

characters provided in the various rules. It is NOT

sufficient to escape only that list. Blacklist

approaches are quite fragile. The whitelist rules here

have been carefully designed to provide protection

even against future vulnerabilities introduced by

browser changes.

• RULE #0 - Never Insert Untrusted Data

Except in Allowed Locations

The first rule is to deny all - don't put untrusted data

into your HTML document unless it is within one of

the slots defined in Rule #1 through Rule #5. The

reason for Rule #0 is that there are so many strange

contexts within HTML that the list of escaping rules

gets very complicated. We can't think of any good

reason to put untrusted data in these contexts. This

includes "nested contexts" like a URL inside a

JavaScript -- the encoding rules for those locations are

tricky and dangerous. If you insist on putting untrusted

data into nested contexts, please do a lot of cross-

browser testing and let us know what you find out.

 <script>...NEVER PUT UNTRUSTED DATA

HERE...</script> directly in a script

 <!--...NEVER PUT UNTRUSTED DATA

HERE...--> inside an HTML

comment

 <div ...NEVER PUT UNTRUSTED DATA

HERE...=test /> in an attribute

name

 <NEVER PUT UNTRUSTED DATA HERE...

href="/test" /> in a tag name

 <style>...NEVER PUT UNTRUSTED DATA

HERE...</style> directly in CSS

Most importantly, never accept actual JavaScript code

from an untrusted source and then run it. For example,

a parameter named "callback" that contains a

JavaScript code snippet. No amount of escaping can fix

that.

• RULE #1 - HTML Escape Before Inserting

Untrusted Data into HTML Element

Content

Rule #1 is for when you want to put untrusted data

directly into the HTML body somewhere. This

includes inside normal tags like div, p, b, td, etc. Most

web frameworks have a method for HTML escaping

for the characters detailed below. However, this is

absolutely not sufficient for other HTML contexts.

You need to implement the other rules detailed here as

well.

 <body>...ESCAPE UNTRUSTED DATA BEFORE

PUTTING HERE...</body>

 <div>...ESCAPE UNTRUSTED DATA BEFORE

PUTTING HERE...</div>

 any other normal HTML elements

Escape the following characters with HTML entity

encoding to prevent switching into any execution

context, such as script, style, or event handlers. Using

hex entities is recommended in the spec. In addition to

the 5 characters significant in XML (&, <, >, ", '), the

forward slash is included as it helps to end an HTML

entity.

& --> &

 < --> <

 > --> >

 " --> "

 ' --> '

 / --> /

• RULE #2 - Attribute Escape Before

Inserting Untrusted Data into HTML

Common Attributes

Rule #2 is for putting untrusted data into typical

attribute values like width, name, value, etc. This

should not be used for complex attributes like href, src,

style, or any of the event handlers like onmouseover. It

is extremely important that event handler attributes

should follow Rule #3 for HTML JavaScript Data

Values.

 <div attr=...ESCAPE UNTRUSTED DATA

BEFORE PUTTING HERE...>content</div>

inside UNquoted attribute

 <div attr='...ESCAPE UNTRUSTED DATA

BEFORE PUTTING HERE...'>content</div>

inside single quoted attribute

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(175-180) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 180

 <div attr="...ESCAPE UNTRUSTED DATA

BEFORE PUTTING HERE...">content</div>

inside double quoted attribute

Except for alphanumeric characters, escape all

characters with ASCII values less than 256 with the

&#xHH; format (or a named entity if available) to

prevent switching out of the attribute. The reason this

rule is so broad is that developers frequently leave

attributes unquoted. Properly quoted attributes can only

be escaped with the corresponding quote. Unquoted

attributes can be broken out of with many characters,

including [space] % * + , - / ; < = > ^ and |.

See the ESAPI reference implementation of HTML

entity escaping and unescaping.

String safe =

ESAPI.encoder().encodeForHTMLAttribute(

request.getParameter("input"));

• Bonus Rule #1: Use HTTPOnly cookie

flag

Preventing all XSS flaws in an application is hard, as

you can see. To help mitigate the impact of an XSS

flaw on your site, OWASP also recommends you set

the HTTPOnly flag on your session cookie and any

custom cookies you have that are not accessed by any

Javascript you wrote. This cookie flag is typically on

by default in .NET apps, but in other languages you

have to set it manually. For more details on the

HTTPOnly cookie flag, including what it does, and

how to use it, see the OWASP article on HTTPOnly.

• Bonus Rule #2: Implement Content

Security Policy

There is another good complex solution to mitigate the

impact of an XSS flaw called Content Security Policy.

It's a browser side mechanism which allows you to

create source whitelists for client side resources of

your web application, e.g. JavaScript, CSS, images,

etc. CSP via special HTTP header instructs the browser

to only execute or render resources from those sources.

For example this CSP

Content-Security-Policy: default-src: 'self'; script-src:

'self' static.domain.tld

will instruct web browser to load all resources only

from the page's origin and JavaScript source code files

additionaly from static.domain.tld. For more details on

Content Security Policy, including what it does, and

how to use it, see the OWASP article on

Content_Security_Policy

VIII. CONCLUSION

After implementing the reverse filtering proxy, the

proxy server will accept the connections, filter them

and then forward them to the actual server to complete

the request.

The filtering module will filter the requests and log the

attacks, and will remove the XSS attack payload.

The attack notifications will be sent to the admin`s

android mobile.

IX. REFERENCES

[1] “DOM Based Cross Site Scripting or XSS of the Third

Kind” (WASC writeup), Amit Klein, July 2005

 [2] Cross Site Scripting Definiton ,Web application

Vulnerabilities Wikipedia.

 [3] http://www.cgisecurity.com/xss-faq XSS attacks.

 [4] Mattison Ward, “Using A Reverse Proxy To

Filter HTTP and HTTPS” , GIAC Security

Essentials Certification (GSEC), 2012

 [5] XSS payloads, OWASP Cheat Sheet for xss

attacks.

[6] XSS prevention Rules,OWASP rules for XSS.

