

 © 2018, IJCSE All Rights Reserved 201

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Vol.-6, Issue-6, June 2018 E-ISSN: 2347-2693

Pruning and Ranking Based Classifier for Efficient Detection of Android Malware

 Ramisetti Uma Maheswari

1
, R Raja Sekhar

2

1,2

Dept. of CSE, JNTUCEA, Ananthapuramu, Andhra Pradesh, India

Available online at: www.ijcseonline.org

Accepted: 07/Jun/2018, Published: 30/Jun/2018

Abstract—Mobile devices that run Android operating system are widely used. The applications running in Android mobiles

can have malicious permissions due to malware. In other words, Android applications might spread malware which can

sabotage valuable data. Therefore it is essential to have mechanism to classify malware and benign mobile applications running

in Android phones. Since Android mobile applications run in the confines of mobile devices and associated servers, it is very

challenging task to detect Android malware. Many solutions came into existence to detect malware applications. Of late

Abawajy et al. proposed a technique known as Iterative Classifier Fusion System (ICFS) which employs classifiers iteratively

with fusion to generate a final classifier for effective detection of malware. They combined NB tree classifier, Multilayer

perception and Lib SVM with polynomial kernel to achieve this. However, the system does not focus on reduction or pruning

of Android application permissions so as to build a classifier that reduces time and space complexity. In the proposed system, a

methodology is proposed that focuses on reduction or pruning of android application permissions and ranking them in order to

build a classifier that reduces time and space complexity. The classifier modelled with best ranked permissions can be

representative of all permissions as least significant permissions are pruned to reduce search space. This paper built a prototype

application to demonstrate proof of the concept. The experimental results revealed that the proposed system performs better in

improving detection accuracy besides precision and recall measures.

Keywords—Malware, malware detection technique, pruning, ranking

I. INTRODUCTION

Android malware has become a potential risk to mobile

applications. Due to the increase in the usage of Android

mobile applications in the world, the attackers target it to

spread malware. Malware is the malicious software that can

cause damage to a system of mobile device in terms of

removing data or denying a service and so on. Malware can

be one of the forms of cyber security threats. It has history

of damaging potential applications in the real world. The

cyber security threat landscape is increased drastically with

the presence of Android malware. The rationale behind this

is that people of all walks of life started using Android smart

phones for virtually any operation including banking and

shopping.

As the mobile smart phones and associated sensors

produce huge amount of data known as big data, it became

crucial to protect Android applications from malware. Big

data has become an important buzzword and there are

enterprises that depend on the business intelligence acquired

from big data for decision making. In this context, it is

important to have an efficient mechanism to detect and

prevent Android malware. Many approaches came into

exultance as found in the literature. They include signature

based approaches [1], commercial malware detection

methods [2], detection methods that also support Dalvik

byte code transformations [4], data flow path based

solutions [5] and [6], characterization of malware through

system calls [9] and a hybrid approach that combines both

API-calls and permission based approaches. In [12] an

iterative approach is followed with multiple classifiers to

detect malware. From the literature it is found that the

methods are focusing more on accuracy of the solution

rather than the computational complexity. In this paper we

proposed an approach that focuses more on reducing

computational complexity and increasing accuracy of the

detection method. Our contributions are as follows.

 We proposed a framework to have a systematic approach in

Android malware detection. It is based on the significant

permission based permission reduction, pruning and

ranking approaches.

 We proposed an algorithm known as Permission

Significance-based Pruning for Android Malware

Detection (PSP-AMD) to build a classifier that provides

accuracy of detection and reduces computational

complexity.

 We built a prototype application that demonstrates proof of

the concept. The empirical results revealed the utility of the

proposed solution which is light weight and focuses not

only on the accuracy but also reduction of computational

complexity.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 202

Section I contains the introduction, Section II contains the

related work, Section III contain the proposed methodology,

and Section IV contain the conclusion and future scope.

II. RELATED WORK

This section provides review of literature on the malware

detection methods and related works. As the Android mobile

platform became popular, adversaries are targeting

spreading of malware through Android mobile apps. There

is a good survey on the current methods to detect malware in

Android applications is found in [1]. There are signature

based methods that are used to make use of malware

signatures for detection. Signature based approaches are

more prevalent among solutions available. Zhou et al. [2]

studied commercial malware detection systems that are

popular. Their studies revealed the fact that the detection

rate of the method is between 20.2% and 78.6%. Similar

kind of work is made in [3] where experimental results are

provided for man popular anti-malware approaches

associated with cloud. For many modern computers, the

previous solutions were found inadequate. The work is to

know whether the current anti-malware detection methods

can handle Dalvik byte code transformations. Their

experiments proved that there was further research needed to

define methods to handle obfuscation. In [4] an advanced

detection method that is behaviour-based is presented. It

could prevent the vulnerability known as system-call

injection. Asymptotic equi-partition property is used by their

method in order to extract important call sequences to detect

malware. A framework for automated analysis for detection

of malware in Android applications is proposed. The

framework identified malicious behaviours automatically by

simulating intent broadcasts and user-interface events. Both

static and dynamic analyses are combined in [5] while [6]

make use of data flow path to distinguish benign apps from

malicious ones. They made experiments on a large dataset

and found that there was classification accuracy of 96% with

benign apps and 98% with malware apps. In [7] a new

approach is proposed to make use of system call in order to

detect malware by characterizing malware behaviour. In [8]

a static approach is proposed based on the API-call based

and permission-based approaches. It uses a multi-classifier

system and follows a collaborative approach based on

probability theory that combines decisions of multiple

classifiers. There are many approaches that exist in the

literature. There are ensemble- classifiers that utilize

approaches. In [9] pruning ensemble classifiers are studied.

A multi-level system is proposed for detection of Android

malware while focuses on an iterative multi-tier ensemble

classifiers to do the same. In [10] another multi-classifier

system is built with high accuracy. These solutions have

used multi-classifier systems to increase accuracy in the

detection of malware when compared with the solutions that

used single-classifiers. The problem with these systems is

that they are very huge and cannot be directly used for smart

phone applications. They need more processing power and

storage capacities besides causing much communication

overhead as explored in [9]. These approaches focused on

detection accuracy but they did not consider computational

cost. There are some features of malware that are generally

used to characterise them. In [11] multiple features are used

to detect malware. They used feature selection algorithms to

do so. There are some limitations in the feature selection

methods too as they give emphasis on the algorithm that is

specific. In [12] an iterative classifier fusion method is

employed where multiple classifiers are involved. It is found

to be complex and it can be optimized further. In this paper

we proposed a light weight approach known as permission

reduction, pruning and ranking based classifier for efficient

detection of Android malware.

III. PROPOSED METHODOLOGY

In the proposed system, an alternative methodology is

proposed. This consists of reduction or pruning of Android

application permissions and ranking them in order to build a

classifier that reduces time and space complexity. The

classifier modelled with best ranked permissions can be

representative of all permissions as least significant

permissions are pruned to reduce search space. Thus the

proposed system is expected to have better performance

besides minimizing overhead.

METHODOLOGY

A dataset of around 5000 malware Android apps

are collected. There are around 135 permissions that can be

used by any Android app. The 135 permissions are taken as

reference list of permissions. An excerpt from the list of

Android permissions is given in Listing 1

<Uses-permission android: name="android .Permission .INTERNET"/>

<Uses-permission android: name="android .Permission. READ_PHONE_STATE"/>

<Uses-permission android: name="android .Permission. READ_LOGS"/>

<Uses-permission android: name="android .Permission .VIBRATE"/>

<Uses permission android: name="android .Permission.

RECEIVE_BOOT_COMPLETED"/>

<Uses-permission android: name="android .Permission .WAKE_LOCK"/>

<Uses-permission android: name="android .Permission. ACCESS_NETWORK_STATE"/>

Listing 1: Permissions used by one of the malicious app

Each dataset contains a list of permissions used.

Once the dataset is loaded, the proposed system takes all

malicious app names and corresponding permissions.

Permission reduction, pruning and ranking based approach

are used to build a classifier. Initially 135 total permissions

are available. These permissions are subjected to pruning.

Any permission which has least usage in the malicious apps

is removed from the list. That way some of the permissions

are removed from the master list of permissions. Then

association rule mining is made on the malicious

permissions of all apps. When there are associations

(multiple permissions repeatedly occurring in apps), one of

them will be treated as representative for all permissions in

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 203

the given association while others are pruned from the

master list of permissions.

Figure 1: Overview of the proposed methodology.

Afterwards, the ranking of the remaining

permissions in the master list is made based on the

permissions present in all malicious apps. The best ranked

permissions are retained in the master list while the poorly

ranked ones are removed. Then a classifier is built to model

malicious behaviour of Android apps. This classifier is used

to test new apps to know whether they are malicious or

genuine. The pseudo code of the proposed algorithm known

as Permission Significance-based Pruning for Android

Malware Detection (PSP-AMD) is as shown below

Algorithm: PSP-AMD

Inputs: Malware apps M, master list of permissions MP

Output: Classifier for malware detection

1 Initialize malicious application permissions vector AP

2 Initialize map for holding apps and list of permissions MAP

3 For each malware app m from M

4 Extract permissions from m into AP

5 Add app name and AP to MAP

6 End For

7 For each permission p from MP

8 Analyze MAP for the presence of p

9 Remove p from MP if it has negligible frequency

10 End for

11 Perform association rule mining on permissions of malicious

apps (MAP)

12 Prune representative permissions from MP

13 For each permission p from MP

14 Perform ranking for p in the MAP

15 Prune the permission p if its ranking is negligible

16 End for

17 Build a classifier using MP which contains pruned list of

master list of permissions

18 Classifier is applied to new app to know whether it is malicious
The algorithm is built based on the proposed architecture as

shown in Figure 1.

The algorithm is meant for building a classifier

based on the significant permission selection pruning of

unwanted permissions besides ranking. Two matrices

representing malware apps (M) and benign apps (B) are

used. The difference between them is computed as follows.

The threshold value for the difference is set to .

 () ()

If the difference is very smaller than the threshold, it is

important to implement the pruning method as follows.

∑ ∑

∑ ∑

Then the balancing of matrices in spite of changes in size is

done using the following equation.

 ()
∑

 ()
 ()

Here the SB (Pj) denotes the support of jet permission

pruning is implemented as the modified equation shown

below.

∑ ()

∑ ()

The algorithm is implemented with a prototype application

shows in the following section. The algorithm results

showed that the proposed methodology is effective as it

considering the significant permission based pruning and

ranking to build a classifier. The proposed classifier is found

to be computationally effective.

PROTOTYPE AND EXPERIMENTAL RESULTS

We built a prototype application to demonstrate

proof of the concept. The application is built using Java

platform. Java Swing API is used to have intuitive user

interface while the IO mechanisms are used to deal with file

handling. The detection of malware is preceded by the

classifier building with proposed pruning approach.

Figure 2: Shows Android mobile app permissions.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 204

As can be shown in Figure 2, there are around 135

Android permissions taken as initial input. Afterwards based

on the significance in detecting malware, they are pruned

further.

Figure 3: After completion of pruning the remaining

permission are given ranking.

As shown in Figure 3, it is evident that every permission is

given ranking. The permissions that remained after pruning

process are considered to give ranking.

EVALUATION

We evaluated the proposed methodology with an

empirical study. The detection accuracy of different

algorithms is presented in Table 1.

Table1: Detection accuracy comparison.

Algorithms Detection Accuracy

Lib SVM 0.6

J48 0.8

ICFS 0.93

PSP-AMD 0.97

As can be seen in Table 1, the detection accuracy of the

algorithm is compared. The proposed algorithm exhibited

0.97 Accuracy in detection of malware. It is comparatively

better performance when ICFS, J48 and Lib SVM are

considered

Figure 4: Malware detection accuracy.

As presented in Figure 3, it is evident that there are

many classifiers compared with the proposed one. The Lib

SVM showed lest accuracy while proposed method showed

highest accuracy.

Table2: Evaluation of the proposed algorithm.

No. of Features Precision Recall

5 91.29% 83.90%

10 90.21% 90.24%

15 90.21% 91.21%

20 90.47% 91.65%

25 90.64% 91.77%

30 91.27% 90.58%

35 91.83% 90.05%

40 96.28% 86.19%

45 96.28% 85.94%

50 96.34% 85.82%

55 96.35% 85.80%

135 98.81% 83.73%

The proposed algorithm is evaluated with measures

like precision and recall. A shown in Table 2, the precision

and recall values are presented against number of features

considered.

Figure 5: Precision and recall of the proposed algorithm

against number of features.

0

1

2

LibSVM J48 ICFS proposed

D
e

te
ct

io
n

 A
cc

u
ra

cy

Classifiers

Malware Detection
Accuracy

70.00%

80.00%

90.00%

100.00%

5 15 25 35 45 55

P
re

ci
si

o
n

/R
e

ca
ll

V
al

u
e

No. of Features

Evaluation of Proposed Methodology

Precision

Recall

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 205

As can be seen in Figure 4, the number of features is

presented in horizontal axis. The values are taken from 5 to

135 incremental by 5 gradually. The precision and recall

values showed in vertical axis are showing the performance

of the proposed method. The precision and recall will have

trade-offs. It does mean that when precision is decreasing

recall increase and vice versa.

IV. CONCLUSION AND FUTURE SCOPE

Android malware became potential risk to smart phone

applications. The rationale behind this is the unprecedented

popularity of Android platform for mobile phones. In this paper

we studied different Android malware detection approaches in

the literature and found the need for an approach that is cost

effective besides increasing accuracy of prediction. We

proposed a framework for building a classifier that takes care of

malware detection. The proposed approach is based on the

permissions of Android mobile apps. We proposed an

algorithm known as Permission Significance-based Pruning for

Android Malware Detection (PSP-AMD) that identifies

significance of permissions based on the given dataset and

perform pruning and ranking in order to build a final model that

can be used to detect Android malware. Experiments are made

with malware dataset collected from Virus Total. We built a

prototype application to demonstrate proof of the concept. The

empirical results revealed that the proposed solution is effective

in detection of Android malware. In future we investigate

further in the permission pruning and ranking to optimize our

solution. We also find it interested to work with other datasets

to generalize our findings.

REFERENCES

[1] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M.

Conti, and M. Rajarajan, ―Android security: A survey of issues,

malware penetration, and defences,‖ IEEE Communications

Surveys and Tutorials, vol. 17, pp. 998–1022, 2015.

 [2] Y. Zhou and X. Jiang, ―Dissecting Android malware:

Characterization and evolution,‖ in Proceedings of the 33rd IEEE

Symposium on Security and Privacy, San Francisco, CA, pp. 95–

109, 2012.

[3] J. Walls and K.-K. R. Choo, ―A review of free cloud-based

antimalware apps for Android,‖ in Proceedings of 2015 14th

IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, Trust Com 2015, vol. 1, pp.

1053–1058, 2015.

 [4] S. Naval, V. Laxmi, M. Rajarajan, M. S. Gaur, and M. Conti,

―Employing program semantics for malware detection,‖ IEEE

Transactions on Information Forensics and Security, vol. 10, no.

12, pp. 2591–2604, 2015.

[5] P. Faruki, S. Bhandari, V. Laxmi, M. Gaur, and M. Conti, ―Droid

analyst : Synergic app framework for static and dynamic app

analysis,‖ Studies in Computational Intelligence, vol. 621, pp.

519–552, 2015.

[6] L. Sinha, S. Bhandari, P. Faruki, M. S. Gaur, V. Laxmi, and M.

Conti, ―Flow Mine : Android app analysis via data flow,‖ in

Proceeding of the 13th IEEE Annual Consumer Communications

and Networking Conference, CCNC 2016, pp. 435–441, 2016.

[7] J. Abawajy, M. Chowdhury, and A. Kelarev, ‖Hybrid Consensus

Pruning of Ensemble Classifiers for Big Data Malware

Detection,‖ IEEE Transaction on Cloud Com put 3(2):111, 2017.

[8] S. Sheen, R. Anitha, and V. Natarajan, ―Android based malware

detection using a multi feature collaborative decision fusion

approach,‖ Neuro computing, vol. 151, pp. 905–912, 2015.

[9] S. Naval, V. Laxmi, M. S. Gaur, S. Raja, M. Rajarajan, and M.

Conti, ―Environment-reactive malware behaviour: Detection and

categorization,‖ in Data Privacy Management, Autonomous

Spontaneous Security, and Security Assurance, ser. LNCS, vol.

8872, pp. 167–182, 2015.

[10] F. Daryabar, A. Dehghantanha, F. Norouzi, and F. Mahmoodi,

―Analysis of virtual honey net and vlan-based virtual networks,‖

in International Symposium on Humanities, Science and

Engineering Research, SHUSER 2011, pp. 73–77, 2011.

[11] K. Zhao, D. Zhang, X. Su, and W. Li, ―Fest: A feature extraction

and selection tool for Android malware detection,‖ in 20th IEEE

Symposium on Computers and Communication, ISCC 2015, pp.

714–720, 2015

[12] J. Abawajy, A. Kelarev ―Iterative Classifier Fusion System for the

Detection of Android Malware‖. IEEE Transactions on Big Data,

Vol. 5, No. 4, p1-12, 2017.

Authors Profile

Ms Ramisetti Uma Maheswari recieved the

Bachelor of Computer Science engineering

degree from Sri Padmavati Mahila

Visvavidyalayam, tirupati, andhra pradesh, india

in 2016.She is currently pursuing Master of

Computer Science engineering from JNTUCEA,

Ananthapuramu in year 2018.

Dr R Raja Sekhar received the Ph.D. degree

from JNTU College of Engineering,

Ananthapuramu, Andhra Pradesh, India in 2018.

He is currently an Associate Professor with the

Computer science and Engineering, JNTU

College of Engineering. His current research interests Mobile

Ad-hock Networks, Compilers and algorithms include digital

multimedia forensics.

