

 © 2019, IJCSE All Rights Reserved 184

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-3, March 2019 E-ISSN: 2347-2693

A Systematic Review of Feature Location Techniques under Software

Change Impact Analysis

Ankit Dhamija

1*
, Sunil Sikka

2

1,2

School of Engineering & Technology, Amity University Haryana, Gurgaon, India

*Corresponding Author: adhamija@ggn.amity.edu, Tel.: 9729658806

DOI: https://doi.org/10.26438/ijcse/v7i3.184192 | Available online at: www.ijcseonline.org

Accepted: 14/Mar/2019, Published: 31/Mar/2019

Abstract— The possibility of introduction of a change in software cannot be denied as the request for upgrades and improved

functionality keeps coming on. Implementing these changes require a systematic Change Impact Analysis (CIA) which is a

step by step process under software maintenance. However, the most difficult phase in this systematic CIA process is the

identification of an initial location of initiating the proposed change. Various techniques have been proposed to identify this

initial location which comes under Feature Location Techniques. These techniques are aimed at finding areas in the software

code and other software artifacts that implement a feature. The paper attempts to organize and structure existing work in the

field of feature location by presenting a literature survey of recent feature location techniques whereby the techniques have

been categorized according to the methodology followed, the tools proposed and their impact. The paper also discusses open

issues and defines future directions in the field of feature location.

Keywords—change impact analysis, feature location, software maintenance,concept location

I. INTRODUCTION

Software maintenance is the most costly process in the entire

software life cycle [1] where modifications to the software

keep on coming due to various reasons like error correction,

adapting to a different environment and for adding new

functionality. The major effort in software maintenance goes

into the bringing change in the software code, the way

different software components interact and its corresponding

software architecture. Analyzing these changes,

implementing the necessary ones and ensuring the

consistency of software with other interacting entities is a

very challenging task. To make sure that the software

functions as desired, even after the introduction of changes, a

systematic and careful Software Change Impact Analysis

(CIA) is required, so that effects of the change can be

predicted and accordingly, further actions can be initiated. It

includes a variety of techniques that are used for finding out

the possible effects a change may bring on the introduction

of a proposed change on other software elements. It can be

used for predicting change impacts, making cost estimates

and for program understanding before implementing a

proposed change. It can also be used for analyzing the

adverse & ripple effects on other software elements, for

selecting test cases and for performing change propagation,

after change implementation. Several definitions have been

proposed by earlier researchers. The most widely recognized

and quoted definition was proposed by Bohner et al [2] in

1996, where CIA is defined as “the process of identifying the

potential consequences of a change, or estimate what needs

to be modified to accomplish a change”. Prior to them,

Pfleeger et al [3], in 1990 defined CIA as “the evaluation of

the many risks associated with the change, including

estimates of the effects on resources, effort, and the

schedule”. Before that, in 1986, Horowitz et al [4] defined

CIA as “an examination of an impact to determine its parts

or elements”. Thus over the past 30 years, so many

definitions and techniques have been proposed by earlier

researchers.

 The first step in CIA is to identify an initial location in the

source code that corresponds to a specific functionality,

which is known as feature (or concept) location. Wilde &

Scully [5] defined feature location as “the activity of

identifying the source code elements (i.e., methods) that

implement a feature.” It can be considered as a process of

finding out the starting location in the code implementing

some functionality or feature. A lot of information regarding

this can be found from the comments written by the code

developers; and also from the identifiers used in the code.

Such information may reveal a lot about the design of a

software system but this information is available in

unstructured form. Therefore techniques are proposed to

identify the relevant areas in the source code that implements

a feature. It is one of the most frequent maintenance

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 185

activities undertaken by developers because it is a part of the

incremental change process [6]. During the incremental

change process, programmers use feature location to find

where in the code the first change to complete a task needs to

be made. The full extent of the change is then handled by

impact analysis, which starts with the source code identified

by feature location and finds all the code affected by the

change. Feature location is one of the most important and

common activities performed by programmers during

software maintenance and evolution. No maintenance

activity can be completed without first locating the code that

is relevant to the task at hand, making feature location

essential to software maintenance. As the change request

comes to the maintenance team, they are supposed to find out

the areas in the software code to initiate a change. However,

due to lack of documentation, the maintenance team is forced

to perform a manual search using pattern matching

techniques which is very time consuming. Thus, the

researchers in academics and industry have been proposing

various Feature Location techniques which are unique in

every sense- their input requirements and the algorithms they

use.

In this paper, a comprehensive literature review of the recent

innovations in feature location techniques (FLT) is presented.

Section II presents the systematic CIA process, section III

presents the research methodology, section IV presents the

detailed literature review of advancements in feature location

techniques, section V performs the comparative analysis of

the various FLT, section VI presents the open research areas

in feature location and section VII concludes the paper.

II. SYSTEMATIC CIA PROCESS

It is very seldom that software has been designed, developed,

tested well and delivered to the client without any requests

for modifications. The requests to developers for change in

software are natural and every new release of software is

bound to have some or the other change in its functionality.

However, these change requests must be carefully

understood and the impact that it will make on software and

how the other associated parts of software will be affected

must be thoroughly analyzed by the development team

before proceeding towards implementing the change

requests. In short, a careful and systematic Change Impact

Analysis is required. The most widely used systematic CIA

process is presented in figure 1 [7].

Figure 1: Systematic CIA Process[7]

STEP 1: Analyze both, the software and the change

request.
CIA process begins by analysis of change requests and

identification of areas in source code that may be affected

due to introduction of change. Here, a set called Change Set

is prepared which includes the tentative impacted areas due

to change introduction. This identification of an initial

location in source code is called feature location [8].

STEP 2: Estimate change effects

In the second step, impact of the changes on other elements

in the software are estimated using various change impact

analysis techniques and a set known as Estimated Impact Set

(EIS) is created.

STEP 3: Implement change request

 Here, the actual implementation of changes is done to fulfil

the client’s request and the components are actually modified

in the Actual Impact Set (AIS). Thus, AIS includes areas

where the changes have been actually implemented.

Two parameters are generally used to judge the CIA

effectiveness:

False Negative Impact Set (FNIS)

FNIS is a set of number of extra elements impacted by CIA

process that were not estimated by EIS. It means that while

change implementation, developers may come across some

areas in software that were initially not considered to be part

of EIS but not during change implementation, they are being

discovered. Thus FNIS denotes an under estimation of

impacts.

False Positive Impact Set (FPIS)

FPIS is a set of number of extra elements included in EIS

that don’t require any modifications.

It means that while change implementation, developers

realize that some areas that were considered as requiring

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 186

changes don’t need to be modified at all. Thus, FPIS denotes

the over-estimation of impacts.

The ultimate objective of carrying out CIA is to make sure

that the difference between EIS and AIS is minimized. The

relationship among all these sets can be represented as:

(EIS+FNIS)-FPIS=AIS Eq (1)

The above equation is the expected and best case scenario

but it’s seldom achieved. This is because of the reason that

identifying the various sets like change set, EIS; AIS etc

require the selection of most appropriate CIA techniques and

tools. Thus, it can only be achieved through proper

understanding of the software, various types of CIA

techniques available and a judgment about the best possible

combination of CIA techniques for a particular project. [26]

Presented an analysis of various software metrics for object

oriented development where they provided a basis for

measuring all of the characteristics like size, complexity,

performance and quality.

III. METHODOLOGY

Following research questions are formulated to obtain the

current state of Feature Location Techniques:

 RQ1: What are the recent advancements and trends

in the field of Feature Location?

 RQ2: Which properties can be identified from the

recent feature location techniques?

 RQ3: What are the future areas of research in

feature location?

Figure 2 presents the approach planned to answer the above

research questions:

Figure 2: Methodology for Paper Selection

1. Literature Survey: This is carried out through extensive

search in electronic databases like IEEE Computer Society,

ACM, Elsevier, Springer etc.

2. Keywords Search: In the second stage, various

appropriate keywords were used to search the required

research contents.

3. Paper Filtration: In this stage, the papers were filtered

based on the paper title and its relevancy and the abstract.

4. Detailed Study: In fourth stage, the papers filtered were

studied in full depth.

Following the above mentioned methodology, a total of 46

research papers were found from various research

repositories and after proper filtration, 18 papers were

considered into consideration for the review. Table 1

presents the data about the research paper collection.

Table 1: Paper Selection Statistics

Database “Change Impact Analysis” +

“Feature Location”

IEEEXplore 16

ACM Digital Library 0

Springer 14

Elsevier 13

Others 3

Total 46

Suitable papers after Filtration

Process

18

From the selected papers, some basic information is

extracted as shown in figure 3.

Figure 3: Research Repositories Categorization

IV. RELATED WORK

In this section, the researcher will review the various Feature

Location Techniques proposed by fellow researchers till now

and a careful analysis of all the techniques on the following

parameters is performed to judge the viability of the

techniques:

1. Technique type

2. Experimental / Empirical or Case Based

3. Tool Support

As it is very difficult and time consuming process to fetch

each research paper from the repositories, therefore, during

search, the researcher also took into consideration the review

papers based on feature location. A total of 04 review papers

were found which presented the complete review of feature

location techniques up to the year in which these review

papers got published. The following are details of these

papers:

Table 2: Summary of Review Papers based on FLT

Year &

Reference

Description Techniques Discussed Results

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 187

2009,

M.Revelle et al

[9]
ICPC, IEEE

Presents exploratory study

of 10 FLT’s performing

performs textual, dynamic
and static analysis in

various combinations.

Evaluates approaches to

find several relevant

methods.

A new approach involving

textual analysis is
proposed.

1. Latent Semantic Indexing (LSI) based on Textual Analysis

2. Other Textual Analysis techniques: Information Retrieval,

independent component analysis and Natural Language
3. Dynamic Analysis using scenarios and collecting traces

including full traces and marked traces. Others include software

reconnaissance, SPR to rank methods
4. Static Analysis using Program Dependency Graphs (PDG)

5. Textual analysis using nl-queries and method queries.

6. Hybrid approaches: CERBERUS

Method-queries perform better
than human formed queries.

2011

Dit et al [8]

CRC to Journal

of Software

Maintenance and

Evolution:

Research and
Practice

Presents a systematic

survey of 89 articles and
classify them according to

their category.

Analyze them according to

seven dimensions where

each dimension has its

associated set of attributes.

Also presents issues and

future directions in feature
location CIA.

1. Dynamic Techniques: software reconnaissance, Dynamic

Feature Traces (DFT), execution slices based, feature
component maps, applying data mining on execution traces,

minimally intrusive instrumentation technique called minist.

2. Static Techniques: Abstract System Dependence Graphs

(ASDG), Concern Graphs Representation, FRAN (Finding with

RANdom walks), topology analysis, static dataflow analysis

3. Textual Techniques: grep pattern matching, Formal Concept
Analysis (FCA), information retrieval, Independent Component

Analysis , NLP, Action-Oriented Identifier Graph (AOIG),

Resource Description Framework Graphs (RDF)

 Increased Overheads in

using dynamic techniques.

 Results produced by Textual

techniques are dependent on
the quality of the queries

used.

 Mixed approaches are being
proposed more by

researchers.

 Limited comparisons

between existing and new

approaches and limited
benchmarks for comparison.

2013

J Rubin et al
[10]

SPRINGER

Focus on automated

FLT’s and describes the
implementation strategies

of existing FLT’s.

Presents their pros & cons
and provides

circumstances where each

technique is to be used.

1. Term frequency inverse document frequency (tf-idf)

 2. Program dependence analysis (PDA)Formal Concept
Analysis

 3. Latent Semantic Indexing (LSI)

4. Hyper-link Induced Topic Search (HITS)

 No single technique is best
fit for all cases.

 Analyzed techniques on

several criteria: strongly
coupled implementation,

meaningful names, and

change history and
execution scenarios.

2013

N Alhindawi et
al [11]

JSEA SciRes

Provides review of

enhancement techniques
related to feature location

and emphasizes its role in

and maintenance &
program comprehension.

1. Same techniques as in above review papers. Scope of improvement in the

accuracy of methods proposed by
earlier researchers.

Out of the four review papers, the researcher found that two

of them have done very exhaustive literature survey of

existing FLT’s and have tried to give a comprehensive

analysis of the techniques. However, the conclusion that can

be deduced from all these review papers is that no single

approach or technique can be declared to be the best one or

most suitable for all software projects; Thus, all of them have

asserted that a proper mix of static, dynamic and textual and

historical techniques is needed to perform Feature Location

tasks.

The above survey papers covered publications up to year

2013 and therefore, in the below section, we will discuss new

and innovative FLT’s proposed during 2014 till early 2017.

The papers referred are from repositories including IEEE

Computer Society, ACM, Springer and Elsevier.

E. Hill et al [12] proposed the use of positional proximity

within natural language phrases (NL) using ad hoc

considerations and Markov Random Field (MRF) modelling

which they applied in five open source Java Systems to

identify over 200 features. Their results indicated that larger

variations exist for the ad-hoc positional-proximity based

approaches than based on MRF based approaches.

F.Beck et al [13] introduced a fresh GUI for feature location

and implemented as an Eclipse Plugin, called In Situ Impact

Insight (I3), which assisted developers in exploring and

examining the fetched code elements. It allows Developers in

fetching textual similarity details of a code entity to the

search query and also the valuable information on co-

changed elements from a project’s history. In their paper,

they performed three feature location tasks from jEdit open

source software and results showed the intuitiveness of I3

and proved that it provides developers the much needed

information whenever they need it.

C.S. Corley et al [14] stated that Text retrieval based FLT’s

needs to be trained on source code snapshots which may lead

to model obsolescence and latest code snapshot needs to be

retained. Based on this need, they proposed FLT based on

topic modeling where source code history is used to build the

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 188

model incrementally. They showed that the accuracy of a

changeset-based FLT is similar to that of a snapshot-based

FLT, but without the retraining costs. In another paper [15],

they proposed a technique called Document Vectors (DV’s)

based on Deep Learning Models which according to them,

works well with source code as they both capture the

influence of context on each term in a corpus and map terms

into a continuous semantic space that encodes semantic

relationships such as synonymy. Their results show that

DV’s based FLT is better than Latent Dirichlet allocation

(LDA) based FLT.

M Chochlov et al [16] proposed the use of Changeset

Descriptions as a Data Source to assist Feature Location.

They stated that existing textual FLT’s based on Information

Retrieval depend on code comments and identifiers to

provide description of software entities. As an alternative to

this, they proposed the use of changeset descriptions of the

modified code in that changeset as a data source to describe

software entities. During empirical evaluation of the

proposed IR technique, their technique was found efficient in

terms of effort.

G Liang et al [17] advocated the use of automatic FLT’s to

enable developers to quickly locate program segments. The

existing FLT’s had limitations like less availability of

detailed sources, less analysis of internal behaviors and

ineffectiveness for service-relevant code entries

identification. Thus, they proposed a FLT based on

behavior model and implemented a tool BMLocator that

works in both online and offine mode and uses Natural

Language and code analysis in a static manner to retrieve

the of code behavior models. When a service description is

provided, the tool in the first step fetches the behavior model

and in second step, service relevant code units are suggested.

B.Dit et al [18] did an exploratory study on two FLT’s

founded on Information Retrieval and another one in

combination of IR with dynamic analysis. These two

techniques utilized three strategies for splitting identifiers to

find out the best technique for splitting identifiers to improve

accuracy. Their results show that FLT using IR can be

effective in some cases but the other technique’s results were

not that significant.

J Burke et al [19] proposed ways to reuse evolve and utilize

the feature location and enhancement techniques.

X Peng et al [21] presented an iterative approach with an

assumption that features are inter-related and the program

code is a resemblance of the features. The proposed approach

considers the structural similarity between a program

element and feature to ascertain significance and relation

between features and elements. Then it uses iterations for

distributing the importance of the feature-element mappings

to the close by features and program elements. Results

showed that their approach is robust, increase in the recall

and a minor decrease of precision.

T Eisenbarth et al [20] presents a static-dynamic

combinatorial and semi automatic approach that reconstructs

feature mapping and exhibit and observable behavior. The

proposed technique distinguishes between general and

specific computational units with respect to given set of

features and preserve the mental map of the analyst.

M D Almeida Maia et al [22] analyzed and presented the

results of an experiment emphasizing how the execution

traces can be helpful in maintenance tasks. Maintenance

activity time and greater accuracy were the outcomes of the

experiment that doesn’t seem quite useful in maintenance.

S Zamani et al [23] proposed text retrieval based approach

called term weighing that was used for adjusting a term

importance within a document. Their work followed a noun

based approach that considers the frequency of a term being

used in the repositories. Their results show that the time

usage in the weighting of terms, along with the usage of noun

terms, improves a FLT relying on textual information.

G Scanniello et al [24] tried to improve text based feature

location problem by utilizing dependencies between source

code elements. Link analysis algorithm and Dependency

information was used for ranking the document space and

improving the text retrieval based feature location. To

implement the approach, PageRank algorithm was used

which is also used for retrieving applications related to web

document retrieval. Their results showed better retrieval

performance than the previous ones.

K Damevski et al [25] performed a field study about the way

feature location within source code by developers, based on

two data sets. Their results suggested the urgency of

proposing more improved code search queries and there is a

lack of code search tools to handle both lookup and

exploratory queries. [27] proposed a tool for requirements

management in object oriented systems for maintaining the

status of requirements. As the requirements can also be

helpful in feature location, this tool can be very useful in

identifying an initial location of initiating a change.

The above information is summarized in the table below:

Table 3: Summary of Recent Research Papers based on FLT

Year &
Reference Description of Work Done

Technique/Tool Type of Project
Areas Focused Results

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 189

Publisher Proposed worked

2014, IEEE
E Hill et al
[12]

Used Positional proximity of
words in source code files

Positional Proximity
using Natural
Language based on
Ad-hoc and MRF
modeling

Open Source Java
Systems

Source code
search, Software
Maintenance

Consistent results
with MRF
modeling than Ad-
hoc

2015, IEEE
F Beck et al
[13]

Introduced a user interface to
support feature location

In Situ Impact Insight
(I3) tool

Implemented as
eclipse plugin, on
jEdit issue
tracking system

Textual similarity,
execution traces,
code inspection

Intuitive user
interface

2015, IEEE

C S Corley et
al [14] [15]

Introduced a topic-modeling
based FLT in which the model
is built incrementally from
source code history.

Topic modeling based
FLT

Open Source Java
Projects

Text retrieval
models, topic
modelling

Same accuracy as
snapshot-based
FLT, No retraining
costs.

Use of a particular deep
learning model, document
vectors (DVs) in source code,
For feature location.

Document Vector
technique based on
Deep Learning Models

Six software
systems:
ArgoUML,
JabRef, jEdit,
muCommander,
Teaser, Python
v2.7

Natural Language,
Deep Learning,
Document vectors

Better than FLT
based on latent
Dirichlet allocation
(LDA)

2015, IEEE
M Chochlov et
al [16]

Employing the changeset
descriptions of the code
altered in that changeset as a
data source to describe
software entities.

Technique using
changeset descriptions
and performed
empirical evaluation to
observe performance

Rhino and
Mylyn.Tasks
systems

IR, Software
Repositories

Less effort
required to
configure the
technique at
method level
granularity.

2016, IEEE
G Liang et al
[17]

Behavior model based FLT
applying static code analysis
using NLP techniques in
combination.

BMLocator Tool
Open Source:
Tomcat and
Hadoop

Behaviour Models,
Natural Language
Processing

Effective than
existing techniques
like TopicXP,
CVSSearch.

2012, ACM B.Dit et al [18]

Exploratory study. Two
FLT’s taking benefit of three
strategies for splitting
identifiers: CamelCase,
Samurai and manual splitting
of identifiers.

IR based and IR and
Dynamic analysis
based

Open source:
Rhino and jEdit

IR, dynamic
analysis

Effectiveness
improved while
using manual
splitting.

2014, ACM
J.Burke et al
[19]

 addresses the feature location
gap to improve feature
addition and enhancements

No NA

Feature Addition,
Feature
Enhancement,
Feature Location

NA

2003, ACM
T.Eisenbarth
et al [20]

Static- dynamic combinatorial
approach that reconstructs
feature mapping and exhibit
and observable behavior.

-- Bauhaus

Program
comprehension,
formal concept
analysis

distinguishes
between general
and specific
computational
units

2013, X.Peng et al iterative context-aware iterative context-aware DirectBank and IR, structural Robust, Recall

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 190

Elsevier [21] approach that takes into
consideration the structural
resemblance between a feature
and a program element to
determine feature-element
relevance.

approach Linux Kernel similarity may be increased
and Minor
decrease of
Precision

2012,
Elsevier

M.d. Almeida
Maia et al [22]

Presented the results of an
experiment emphasizing how
the execution traces can be
helpful in maintenance tasks.

Experimental
JHotDraw and
ArgoUML

empirical
assessment,
execution traces

Greater accuracy,
reduced
maintenance
activity time

2014,
Elsevier

S Zamani et al
[23]

text retrieval based approach
called term weighing, used to
adjust the term importance
within a document.

new term weighting
technique

Four open source
projects

Noun usage, term
weighting

Improved
accuracy,
effectiveness and
performance

2015,
Springer

G Scanniello
et al [24]

Improvement in text based
feature location by leveraging
dependencies between source
code elements

PageRank algorithm jEdit and aTunes Text retrieval
Better retrieval
performance

2016,
Springer

K Damevski et
al [25]

a field study about the way
feature location within source
code is carried out by
developers.

NO Experimental
Suggestions for
better code search
queries/tools etc

V. FINDINGS & RESULTS

The following are the findings from the literature review:

a. The review on feature location techniques indicates that

techniques based on Information Retrieval, Natural

Language based and source code based are used by various

researchers for carrying out the CIA task.

Figure 4: Paper Categorization

b. Moreover, the experimentation for all these approaches are

being performed majorly on Open Source Systems which are

mostly JAVA based systems.

c. The researchers have preferred open source software

Systems like jHotDraw, Rhino, jEdit and others to test their

proposed techniques.

d. Very few researchers have provided tool support for their

techniques and most of the researchers have just provided

their techniques and validated those using existing tools.

Thus, there exists a gap where the authors should provide

tool support along with their techniques because it is seldom

that the existing tools prove to be successful with new

techniques.

Table 4: Paper Type and Outcome

Technique & Reference Type of Paper Outcome

Revi

ew

Regular Tool Technique

T1 M.Revelle et al [9] *

T2 Dit et al [8] *

T3 J Rubin et al [10] *

T4 N Alhindawi et al [11] *

T5 E. Hill et al [12] *

T6 F.Beck et al [13] * * *

T7 C.S. Corley et al [14] * *

T8 C.S. Corley et al [15] * *

T9 M. Chocolov et al [16] * *

T10 G Liang et al [17] * * *

T11 B.Dit et al [18] * *

T12 J.Burke et al [19] * *

T13 T. Eisenbarth et al
[20]

 * *

T14 X.Peng et al [21] * *

Recent

FLT’s

NLP

based
IR based Text

Retrieval

based

Others

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 191

T15 M.d. Almeida Maia et

al [22]
 * *

T16 S Zamani et al [23] * *

T17 G Scanniello et al

[24]
 * *

T18 K Damevski et al [25] * *

e. There exists a scope of research area where the feature

location techniques are applied and proposed on other than

JAVA systems like web based systems, systems based on

other languages like PHP and Dot Net.

f. Findings suggest that the documentation at various stages

of software design and development plays a major role in

identifying the initial location to implement a change.

Various types of documentation like source code history,

internal code behavior, execution traces, dependency analysis

among software artifacts and code search queries are very

helpful and widely used while creating a FLT.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, the authors bring to fore the latest research

developments in the area of feature location under change

impact analysis. A systematic CIA process is also presented.

During the review, the authors analyzed the recent review

papers and research papers in detail and tried to categorize the

results according to various criteria. Findings reveal that

textual, historic information and documentation about the

various stages of software development are used in the

proposed techniques to identify the initial location of

implementing a change. The proposed techniques use

innovative methods based on natural language processing,

information retrieval and text retrieval approaches. The

authors are hopeful that the analysis carried out in this study

will help the researchers in proposing more innovative

techniques in the near future.

REFERENCES

[1] W.Li, S.Henry, “Maintenance support for object-oriented

programs” Vol 7, No 2, pp. 131–147, 1995.

[2] S Bohner, R. Arnold, “Software Change Impact Analysis”, IEEE

Computer Society Press: Los Alamitos, CA, USA, 1996.

[3] S.L. Pfleeger, S.A.Bohner, “A framework for software

maintenance metrics”, In the Proceedings of the International

Conference on Software Maintenance, Washington, DC, pp. 320–

327, 1990.

[4] E. Horowitz, R.C. Williamson,”SODOS: a software

documentation support environment—its definition”, IEEE

Transactions on Software Engineering, Vol 12, No 8, pp. 849–859.

1986.

[5] N.Wilde, M.Scully,”Software Reconnaissance: Mapping Program

Features to Code”, Software Maintenance: Research and Practice,

vol. 7, pp. 49-62, 1995.

[6] V. Rajlich and P. Gosavi,), "Incremental Change in Object-

Oriented Programming", IEEE Software, pp. 2-9. 2004.

[7] A.Dhamija, S.Sikka, “Software Change Management: A

Quantified Perspective”, International Journal of Engineering &

Technology-UAE, Vol 7, Issue 3.12, pp. 963-967. 2018.

[8] B.Dit, M.Revelle, M.Gethers, D.Poshyvanyk, “Feature location in

source code: a taxonomy and survey”, Journal of Software

Maintenance and Evolution: Research and Practice, 2011.

[9] M. Revelle and D. Poshyvanyk, “An Exploratory Study on

Assessing Feature Location Techniques”, In Proceedings of 17th

IEEE International Conference on Program Comprehension

(ICPC'09), Vancouver, British Columbia, Canada, May 17-19, pp.

218-222, 2009.

[10] J. Rubin and M. Chechik, “A survey of feature location

techniques,” Domain Engineering: Product Lines, Conceptual

Models, and Languages. Springer, pp. 29–58, 2013.

[11] N. Alhindawi, J. Alsakran, A. Rodan, H. Faris, “A Survey of

Concepts Location Enhancement for Program Comprehension

and Maintenance”, Journal of Software Engineering and

Applications, Vol 7, pp. 413-421, 2014.

[12] E. Hill, B. Sisman, A.C. Kak, “On the use of positional proximity

in IR-based feature location”, CSMR-WCRE,pp. 318–322, 2014.

[13] F. Beck, B. Dit, J. Velasco-Madden, D. Weiskopf, and D.

Poshyvanyk. Rethinking user interfaces for feature location. In

Proceedings of the 23rd IEEE International Conference on

Program Comprehension, ICPC, pages 151–162. IEEE, 2015

[14] C.S. Corley, K.L. Kashuda, N.A. Kraft, "Modeling changeset

topics for feature location" , ICSME, Germany, IEEE., pp. 71-80,

2015.

[15] C.S. Corley, K Damevski and N.A. Kraft, Exploring the Use of

Deep Learning for Feature Location, , ICSME, Germany, IEEE,

2015.

[16] M. Chochlov, M. English and J. Buckley, “Using Changeset

Descriptions as a Data Source to Assist Feature Location”,IEEE

SCAM, Breman Germany, 2015.

[17] G Liang, Y Dang, H Chen, L Mei, S Li, Y M Chee, “What Code

Implements Such Service? A Behavior Model Based Feature

Location Approach”, IEEE International Conference on Services

Computing, 2016.

[18] B.Dit, L.Guerrouj, D.Poshyvanyk and G.Antoniol,"Can Better

Identifier Splitting Techniques Help Feature Location?" In

Proceedings. of 19th IEEE International Conference on Program

Comprehension (ICPC'11), Kingston, Ontario, Canada, June 22-24

pp. 11-20, 2011.

[19] J.T. Burke, “Utilizing Feature Location Techniques for Feature

Addition and Feature Enhancement”, In Proceedings of the 29th

ACM/IEEE international conference on Automated software

engineering pp. 879-882, 2014.

[20] T. Eisenbarth, R. Koschke and D. Simon, "Locating Features in

Source Code" , IEEE Transactions on Software Engineering vol.

29 no. 3, pp. 210 – 224, 2003.

[21] X.Peng, X.Zhenchang, T.Xi, Yijun and Zhao, Wenyun).

“Improving feature location using structural similarity and

iterative graph mapping”, Journal of Systems and Software, 86(3)

pp. 664–676, 2013.

[22] M.D.A.Maia, R.F. Lafetá, “On the impact of trace-based feature

location in the performance of software maintainers”, Journal of

Systems and Software, v.86 n.4, p.1023-1037, April, 2013.

[23] S. Zamani, S.P. Lee, R.Shokripour, J.Anvik J, “A noun-based

approach to feature location using time-aware term-weighting”.

Inf Softw Technol, Vol 56, No 8, pp. 991-1011, 2014.

[24] G.Scanniello, A. Marcus, D. Pascale, “Link analysis algorithms

for static concept location: an empirical assessment”. Empirical

Softw Eng, pp. 1–55, 2014.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 192

[25] K. Damevski D. Shepherd L. Pollock "A field study of how

developers locate features in source code" Empirical Software

Engineering, pp. 1-24, 2015.

[26] Aanchal, S. kumar, "Metrics for Software Components in Object

Oriented Environments: A Survey", International Journal of

Scientific Research in Computer Science and Engineering, Vol.1,

Issue.2, pp.25-29, 2013.

[27] Anandi Mahajan, Pankaj Sharma, "Object Oriented Requirement

management Tools for maintaining of status of requirements",

International Journal of Scientific Research in Computer Science

and Engineering, Vol.6, Issue.6, pp.27-30, 2018

Authors Profile

Mr. Ankit Dhamija pursued Master of

Computer Applications from Kurukshetra

University Kurukshetra in 2008He is currently

pursuing Ph.D. and currently working as

Assistant Professor in Amity Business School,

Amity University Haryana since 2012. He has published

more than 15 research papers in reputed international

journals including Scopus and conferences including IEEE

and it’s also available online. His main research work

focuses on Software Maintenance, Cloud Security and

Privacy, Management Informtion System. He has 10 years of

teaching experience and 4 years of Research Experience.

Dr Sunil Sikka completeed his Ph.D from

Maharishi Dayanand University, Rohtak. and

currently working as Associate Professor in

Amity School of Engineering & Technology at

Amity University Haryana since 2014. He has

published more than 20 research papers in reputed

international journals including Thomson Reuters (SCI &

Web of Science) and conferences including IEEE and it’s

also available online. His main research work focuses on

Software Engineering, Spftware Testing, Data Mining, IoT

and Computational Intelligence based education. He has 12

years of teaching experience and 8 years of Research

Experience.

