
© 2015, IJCSE All Rights Reserved 203

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Issue-5 E-ISSN: 2347-2693

Using Convolutional Neural Network to Recognize Handwritten Digits

 Loc Thanh Huynh
1*

, Hung Thang Phung
2
 andToai QuangTon

3th

1,2,3
Department of Information Technology,

Ho Chi Minh City University of Foreign Languages – Information Technology (HUFLIT), Vietnam

www.ijcseonline.org

Received: May/05/2015 Revised: May/10/2015 Accepted: May/21/2015 Published: May/30/2015

Abstract—An artificial neural network (ANN) or simply “neural net” is a data processing system consisting of a large number

of simple, highly interconnected processing elements in an architecture inspired by the structure of the human brain. Hence,

neural networks are often capable of doing things which humans or animals do well but which conventional computers often do

poorly. This paper presents a brief introduction to convolutional neural network(CNN) – a neural network with a special

structure and describes how it works to recognize handwritten digits.After a network was trained by training dataset from

MNIST database, it can classify 10,000 examples from MNIST testing dataset within 35 secondsand achieve3.25% error rate.

Keywords—Neural Network, Convolutional Neural Network, Feed forward, Back propagation, Classification

I. INTRODUCTION

There are problem categories that cannot be formulated
as an algorithm. Recognition problems as an example. With
the algorithmic approach, the computer follows a set of
instructions in order to solve a problem. Unless the specific
steps that the computer needs to follow are known the
computer cannot solve the problem. That restricts the
solving capability of conventional computers to problems
that we already understand and know how to solve.In fact,
computers would be so much more useful if they could do
things that we don't exactly know how to do.

Neural networks take a different approach to solving than
that of conventional computers. It processes information in a
similar way the human brain does.The network is composed
of a large number of highly interconnected processing
elements (neurons) working in parallel to solve a specific
problem. Neural networks learn by example. They cannot
be programmed to perform a specific task. The examples
must be selected carefully otherwise useful time is wasted or
even worse the network might be functioning incorrectly.
The disadvantage is that because the network finds out
how to solve the problem by itself, its operation can be
unpredictable. On the other hand, conventional computers
use a cognitive approach to problem solving; the way
the problem is to solved must be known and stated in
small unambiguous instructions. These instructions are
thenconverted to a high level language program and
then into machine code that the computer can
understand. These machines are totally predictable; if
anything goes wrong is due to a software or hardware fault.
Neural networks and conventional algorithmic computers are
not in competition but complement each other. There are
tasks are more suited to an algorithmic approach like

arithmetic operations and tasks that are more suited to neural
networks. Even more, a large number of tasks, require
systems that use a combination of the two approaches
(normally a conventional computer is used to supervise the
neural network) in order to perform at maximum efficiency.

II. METHODOLOGY

There are many neural network models can be used to solve

recognition problems. In this paper, we research the

convolutional neural network and backpropagation

algorithm to training the network.

The back propagation algorithm consists of two paths:

forward and backward path.

Forward path contains creating a feed forward network,

initializing weights, simulation and training the network.

Before training a feed forward network, the weights and

biases must be initialized. Once the network weights and

biases have been initialized, the network is ready for

training.

The training process requires a set of proper inputs and

targets as outputs. During training, the weights and biases of

the network are iteratively adjusted to minimize the network

performance function.The network weights and biases are

updated in backward path.

A convolutional neural network (CNN) is comprised of one

or more convolution layers (often with a subsampling step)

and then followed by one or more fully connected layers as

in a standard multilayer neural network. In this paper, a

convolutional neural network with 5 layers is developed. An

input vector and the corresponding desired output are

considerfirst. Thus, we choose the MNIST database of

handwritten digits to training the network ([3]). It has a

training set of 60,000 examples and a test set of 10,000

examples. Pixel intensities of the original gray-scale images

range from 0 (background) to 255 (maximum foreground),

Corresponding Author:Loc Huynh Thanh, thanhloc.huflit@gmail.com

Department of Information Technology,Ho Chi Minh City University of

Foreign Languages – Information Technology,Vietnam

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(203-206) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 204

28 x 28 = 784 pixels per image get mapped to real values
����� �����	��

127.5 − 1.0 in [-1.0, 1.0] and are fed into the neural

network input layer.

Figure 1. MNIST pixel image

The input is propagated forward through the network to

compute the output vector, and the errors are determined.

The errors are then propagated back through the network

from output to input layer. The process is repeated until the

errors being minimized.

Now, we’ll look at them in detail.The overall architecture of

the convolutional neural network we used for MNIST digit

recognition is depicted in Figure 1.

Figure 2. Convolutional architecture for handwritten recognition

 Legend:

 FM: feature map

 W: kernel window

 SF: sampling factor

The general strategy of a convolution network is to extract

simple features at a higher resolution, and then convert

them into more complex features at a coarser resolution.

The simplest was to generate coarser resolution is to sub-

sample a layer by a factor of 2. This, in turn, is a clue to the

convolutional kernel’s size. The size of the kernel give rise

to the locally connected structure which are each convolved

with the image to produce feature maps size.The width of

the kernel is chosen be centered on a unit (odd size), to have

sufficient overlap to not lose information (3 would be too

small with only one unit overlap), but yet to not have

redundant computation (7 would be too large, with 5 units

or over 70% overlap). So a convolution kernel size of 5 is

chosen.

As we can see from the figure 1, Layer 1 (input layer) has

one feature map which consists of 29�29 = 841 neurons.

The MNIST image database has images whose size is

28x28 pixels each, but because of the considerations

described by Dr. Simard in his article “Best Practices for

Convolutional Neural Networks Applied to Visual

Document Analysis”, the image size is padded to 29�29

pixels.

Layer 2 is a convolutional layer with 6 feature maps. Each

feature map is sized to 13�13 pixels (neurons). Each

neuron in each feature map is a 5 � 5 convolutional kernel

of the input layer, but every other pixel of the input layer is

skipped (as described in Dr. Simard’s article). As a

consequence, there are 13 positions where the 5�5 kernel

will fit in each row of the input layer (which is 29 neurons

wide), and 13 positions where the 5�5 kernel will fit in each

column of the input layer (which is 29 neurons high). There

are therefore 13�13�6 = 1014 neurons in Layer 1, and
(5�5 + 1)�6 = 156 weights (the “+1” is for the bias).

On the other hand, since each of the 1014 has 26

connections, there are 1014�26 = 26364 connections

from this layer to the prior layer. At this point, one of the

benefits of a convolution “shared weight” neural network

should become more clear: because the weights are shared,

even though there are 26364 connections, only 156 weights

are needed to control those connections. As a consequence,

only weights need training. In comparison, a traditional

“fully connected” neural network would have needed a

unique weight for each connection, and would therefore

have required training for 26364 different weights. None of

that excess training is needed here.

Layer 3 is also a convolutional layer, but with 50 feature

maps. Each feature map is 5�5, and each unit in the feature

maps is a 5x5 convolutional kernel of corresponding areas

of all 6 of the feature maps of the previous layers, each of

which is a 13�13 feature map. There are therefore

5�5�50 = 1250 neurons in Layer 2,
(6�5�5 + 1)�50 = 7550 weights, and 1250�26 =
 32500 connections.

Turning to Layer 4, Layer 4is a fully-connected layer with

100 units. Since it is fully-connected, each of the 100

neurons in the layer is connected to all 1250 neurons in the

previous layer. There are therefore 100 neurons in Layer 4,

(50�5�5 + 1)�100 = 125100weights, and 100�1251 =
 125100 connections.

International Journal of Computer Sciences and Engineering Vol.

 © 2015, IJCSE All Rights Reserved

Layer 5 is the final, output layer.This layer is a fully

connected layer with 10 units, corresponding the expected

result (represent the number from 0 to 9). Since it is fully

connected, each of the 10 neurons in the layer is connected

to all 100 neurons in the previous layer. There are

10 neurons in Layer 5

(100�1�1 + 1)�10 = 1010 weights, and

 1010 connections.

Altogether, adding the above numbers, there are a total of

3215 neurons in the neural network, 133

184974 connections.

Layer Neuron (pixel) Weight

1 841

2 1014 156

3 1250 7550

4 100 125100

5 10 1010

Sum 3215 133816
Table 1. The number of neurons, weights and connections in CNN

Feed-Forward and activation function

Before the training all weights and biases must be

initialized. That are initialized with a uniform random

distribution in [-0.05, 0.05].Neurons in layers

by sum of a convolution of its kernels and

layer, to which a bias is added. This weighted sum,

denoted�� for neuron �, is then passed through a

function to produce the state of neuron �, denoted by

�� = �(��)

Figure 3. Feed-forward process

Selection of a good activation function is an important part

of the design of neural network. The activation function

should be symmetric and the neural network should be

trained to a value that is lower than the limits of the

function. One function which is recommended by many

articles on the web is the classical sigmoid function (or

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(203-206) May 201

, IJCSE All Rights Reserved

This layer is a fully-

, corresponding the expected

. Since it is fully-

connected, each of the 10 neurons in the layer is connected

to all 100 neurons in the previous layer. There are therefore

10 neurons in Layer 5,
weights, and 10�101 =

Altogether, adding the above numbers, there are a total of

133816 weights, and

Connection

- -

156 26364

7550 32500

125100 125100

1010 1010

133816 184974
The number of neurons, weights and connections in CNN

weights and biases must be

are initialized with a uniform random

layers is computed

sum of a convolution of its kernels and the previous

, to which a bias is added. This weighted sum,

, is then passed through a activation

, denoted by ��:

forward process

Selection of a good activation function is an important part

The activation function

should be symmetric and the neural network should be

trained to a value that is lower than the limits of the

is recommended by many

he classical sigmoid function (or

“logistic” function), defined as �
used since it is not symmetric: its value approaches +1 for

increasing x, but for decreasing x its value approach

(it does not approach -1 which it should for symmetry).

One good selection for the activation function is the

hyperbolic tangent, or �(�) = tanh
good choice because it’s completely symmetric, as show in

the following graph. If used, then do not train the neural

network to "1. Instead, choose an intermedia value, like

"0.8.

Figure 4. Tanh function

Another reason why hyperbolic tangent is a good choice is

that it’s easy to obtain its derivative.

obtain its derivative, but also the value of derivative can be

expressed in terms of the output value. More specifically,

given that:

 � = #(�) = ���
where �is the input to the function (corresponding to

activation value of a neuron) and

neuron.

Then
$%
$& = $

$& '()*+(&)
,-(+(&). = ,-(+/(&)0()*+/

,-(+/(&)
Since #(�) = ���1(�), so the result is

This result means that we can c

derivative of #(�) given only the output of the function,

without any knowledge of the input.

To train the network to values of

and this result with 1.7159 ([4]).

in this paper is a scaled version of the hyperbolic tangent:

 #(�) = 1.7159
and

%(&)
$& = 2

3&4.5467 (1.7159

Backpropagation

Backpropagation gives us a way to determine the error in

the output of a prior layer given the output of

layer. The process is therefore iterative: start at the last layer

2015, E-ISSN: 2347-2693

, IJCSE All Rights Reserved 205

�(�) = 4
489:;, should not be

used since it is not symmetric: its value approaches +1 for

increasing x, but for decreasing x its value approaches zero

1 which it should for symmetry).

One good selection for the activation function is the

tanh (�). This function is a

good choice because it’s completely symmetric, as show in

used, then do not train the neural

. Instead, choose an intermedia value, like

Tanh function graph

Another reason why hyperbolic tangent is a good choice is

o obtain its derivative. Not only it is easy to

obtain its derivative, but also the value of derivative can be

expressed in terms of the output value. More specifically,

���1(�) = ()*+(&)
,-(+(&) (1)

is the input to the function (corresponding to the

and #(�) is the output of the

/(&) = 1 − ���12(�) (2)

, so the result is
$%
$& = 1 − #2(�)(3)

This result means that we can calculate the value of the

given only the output of the function,

without any knowledge of the input.

To train the network to values of "1, we multiply � with
2
3

[4]). Thus, the activation used

sion of the hyperbolic tangent:

7159���1 '2
3 �. (4)

− �)(1.7159 + �) (5)

Backpropagation gives us a way to determine the error in

the output of a prior layer given the output of the current

layer. The process is therefore iterative: start at the last layer

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(203-206) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 206

cad calculate the change in the weights for the last layer.

Then calculate the error in the output of the prior layer.

Repeat.

The backpropagation equations are given below. Start the

process off by computing the partial derivative of the error

due to a single input image pattern with respect to the

outputs of the neurons on the last layer. The error due to a

single pattern is calculated as follows:

 <=
> = 4

2 ∑@�)
> −
)

>A2
 (6)

where:

<&
>is the error due to a single pattern B at the last layer L;

)
>is the target output at the last layer (the desired output

at the last layer);

�)
>is the actual of the value output at the last layer.

Given (6), then taking the partial derivative yields:

%CD

E

%FG
E = �)

> −
)
> (7)

Equation (7) gives us a starting value for the

backpropagation process. We use the numeric value for the

quantities on the right side of the (7) in order to calculate

numeric values for the derivative. Using the numeric values

of the derivative, we calculate the numeric values for the

changes in the weights, by applying the following two

equation (8) and (9):

%CD

E

%&G
E = %CD

E

%FG
E #′(�)

>) = (�)
> −
)

>)#′(�)
>) (8)

where #′(�)
>) is the derivative of the activation function.

%CD

E

%IG J
E = �K

>04. %CD
E

%&G
E (9)

Then, using (7) again and also (8), we calculate the error for

the previous layer, using the following equation (10):

%CD

E:L

%FM
E:L = ∑ N)O

>
) . %CD

E

%&G
E (10)

The values we obtain from (10) are used as starting values

for the calculations on the immediately preceding layer. In

other words, we take the numeric values we obtained from

(10), and use them in a repetition of (8), (9) and (10) for the

immediately preceding layer.

Meanwhile, the values from (9) tell us how much to change

the weights in the current layer L. In particular, we update

the value of each weight according to the formula:

 @N� P
� A��N = @N� P

� AQ�R − ���. #<B
S

#N� P
S (11)

Where eta is the “learning rate”, typically a small number

like 0.00005 that is gradually decrease during training.

III. EXPERIMENTAL RESULTS

Most remarkable, the best network has an error rate of only

0.35% (35 out of 10,000 digits). In this network, we used

the first 50,000 patterns of the MNIST training set for

training, and the remaining 10,000 for validation and

parameter adjustment. The results are reported in the table

below:

Classifier Preprocessing Error rate Preferences

2-layer NN,

300 hidden

units, mean

square error

Không 4.7%
LeCun et al.

1998

2-layer NN,

1000 hidden

units

Không 4.5%
LeCun et al.

1998

6-layer NN

784-2500-

2000-1500-

1000-500-10

(trên GPU)

[elastic

distortions]

Không 0.35%

Ciresan et

al. Neural

Computation

10, 2010 and

arXiv

1003.0358,

2010
Table 2. Comparison between various algorithms

ACKNOWLEDGMENT (HEADING 5)

We would like to thank Toai Ton MSc who is the vice dean

of Information Technology at Ho Chi Minh City University

of Foreign Languages – Information Technology

(HUFLIT), Vietnam for his guidance and support when we

initially looked for references and sources of information on

this research project. We look forward to his guidance in the

years to come.

REFERENCES

[1] Michael Nielsen, “Neural networks and deep learning”, Sep.

2014, http://neuralnetworkanddeeplearning.com.

[2] Patrice Y. Simard, Dave Steinkraus, John C. Platt, “Best

Practices for Convolutional Neural Networks Applied to

Visual Document Analysis”, Microsoft Research, 2003

[3] MNIST Database of Handwritten digits, MNIST

handwritten digit database, Yann LeCun, Corinna

Cortes and Chris Burges, 28 Jan, 2015

[4] Y. LeCun, “Generalization and Network Design Stategies”,

Technical Report, 1989.

[5] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-

Based Learning Applied to Document Recognition”,

Proceedings of the IEEE, Vol-86, Issue-11, Page no (2278-

2324), 1998

