
© 2015, IJCSE All Rights Reserved                                                                                                                                    203 

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering                Open Access 
Research Paper                                            Volume-3, Issue-5                                          E-ISSN: 2347-2693 

Using Convolutional Neural Network to Recognize Handwritten Digits 

 Loc Thanh Huynh
1*

, Hung Thang Phung
2
 andToai QuangTon

3th 
 

1,2,3
Department of Information Technology,  

Ho Chi Minh City University of Foreign Languages – Information Technology (HUFLIT), Vietnam 

 

www.ijcseonline.org 

Received: May/05/2015   Revised: May/10/2015            Accepted: May/21/2015                                 Published: May/30/2015 

Abstract—An artificial neural network (ANN) or simply “neural net” is a data processing system consisting of a large number 

of simple, highly interconnected processing elements in an architecture inspired by the structure of the human brain. Hence, 

neural networks are often capable of doing things which humans or animals do well but which conventional computers often do 

poorly. This paper presents a brief introduction to convolutional neural network(CNN) – a neural network with a special 

structure and describes how it works to recognize handwritten digits.After a network was trained by training dataset from 

MNIST database, it can classify 10,000 examples from MNIST testing dataset within 35 secondsand achieve3.25% error rate. 
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I.  INTRODUCTION 

There are problem categories that cannot be formulated 
as an algorithm. Recognition problems as an example. With 
the algorithmic approach, the computer follows a set of 
instructions in order to solve a problem. Unless the specific 
steps that the computer needs to follow are known the 
computer cannot solve the problem. That restricts the 
solving capability of conventional computers to problems 
that we already understand and know how to solve.In fact, 
computers would be so much more useful if they could do 
things that we don't exactly know how to do.  

Neural networks take a different approach to solving than 
that of conventional computers. It processes information in a 
similar way the human brain does.The network is composed 
of a large number of highly interconnected processing 
elements (neurons) working in parallel to solve a specific 
problem. Neural networks learn by example.  They cannot 
be programmed to perform a specific task. The examples 
must be selected carefully otherwise useful time is wasted or 
even worse the network might be functioning incorrectly.  
The disadvantage  is  that  because  the  network  finds  out  
how  to solve  the  problem  by  itself,  its  operation  can  be 
unpredictable. On  the  other  hand,  conventional  computers 
use  a  cognitive  approach  to  problem  solving;  the  way  
the problem  is  to  solved  must  be  known  and  stated  in  
small unambiguous  instructions.  These  instructions  are  
thenconverted  to  a  high  level  language  program  and  
then  into machine  code  that  the  computer  can  
understand.  These machines are totally predictable; if 
anything goes wrong is due to a software or hardware fault. 
Neural networks and conventional algorithmic computers are 
not in competition but complement each other. There are 
tasks are more suited to an algorithmic approach like 

arithmetic operations and tasks that are more suited to neural 
networks. Even more, a large number of tasks, require 
systems that use a combination of the two approaches 
(normally a conventional computer is used to supervise the 
neural network) in order to perform at maximum efficiency. 

II. METHODOLOGY 

There are many neural network models can be used to solve 

recognition problems. In this paper, we research the 

convolutional neural network and backpropagation 

algorithm to training the network. 

The back propagation algorithm consists of two paths: 

forward and backward path.  

Forward path contains creating a feed forward network, 

initializing weights, simulation and training the network. 

Before training a feed forward network, the weights and 

biases must be initialized. Once the network weights and 

biases have been initialized, the network is ready for 

training.  

The training process requires a set of proper inputs and 

targets as outputs. During training, the weights and biases of 

the network are iteratively adjusted to minimize the network 

performance function.The network weights and biases are 

updated in backward path. 

 

A convolutional neural network (CNN) is comprised of one 

or more convolution layers (often with a subsampling step) 

and then followed by one or more fully connected layers as 

in a standard multilayer neural network. In this paper, a 

convolutional neural network with 5 layers is developed. An 

input vector and the corresponding desired output are 

considerfirst. Thus, we choose the MNIST database of 

handwritten digits to training the network ([3]). It has a 

training set of 60,000 examples and a test set of 10,000 

examples. Pixel intensities of the original gray-scale images 

range from 0 (background) to 255 (maximum foreground), 
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28 x 28 = 784 pixels per image get mapped to real values 
����� �����	��


127.5 − 1.0 in [-1.0, 1.0] and are fed into the neural 

network input layer. 

 
Figure 1. MNIST pixel image 

The input is propagated forward through the network to 

compute the output vector, and the errors are determined. 

The errors are then propagated back through the network 

from output to input layer. The process is repeated until the 

errors being minimized. 

Now, we’ll look at them in detail.The overall architecture of 

the convolutional neural network we used for MNIST digit 

recognition is depicted in Figure 1. 

 
Figure 2. Convolutional architecture for handwritten recognition 

 Legend: 

 FM: feature map 

 W: kernel window 

 SF: sampling factor 

The general strategy of a convolution network is to extract 

simple features at a higher resolution, and then convert 

them into more complex features at a coarser resolution. 

The simplest was to generate coarser resolution is to sub-

sample a layer by a factor of 2. This, in turn, is a clue to the 

convolutional kernel’s size. The size of the kernel give rise 

to the locally connected structure which are each convolved 

with the image to produce feature maps size.The width of 

the kernel is chosen be centered on a unit (odd size), to have 

sufficient overlap to not lose information (3 would be too 

small with only one unit overlap), but yet to not have 

redundant computation (7 would be too large, with 5 units 

or over 70% overlap). So a convolution kernel size of 5 is 

chosen. 

As we can see from the figure 1, Layer 1 (input layer) has 

one feature map which consists of 29�29 =  841 neurons. 

The MNIST image database has images whose size is 

28x28 pixels each, but because of the considerations 

described by Dr. Simard in his article “Best Practices for 

Convolutional Neural Networks Applied to Visual 

Document Analysis”, the image size is padded to 29�29 

pixels. 

Layer 2 is a convolutional layer with 6 feature maps. Each 

feature map is sized to 13�13  pixels (neurons). Each 

neuron in each feature map is a 5 � 5 convolutional kernel 

of the input layer, but every other pixel of the input layer is 

skipped (as described in Dr. Simard’s article). As a 

consequence, there are 13 positions where the 5�5 kernel 

will fit in each row of the input layer (which is 29 neurons 

wide), and 13 positions where the 5�5 kernel will fit in each 

column of the input layer (which is 29 neurons high). There 

are therefore 13�13�6 = 1014  neurons in Layer 1, and  
(5�5 + 1)�6 =  156 weights (the “+1” is for the bias). 

On the other hand, since each of the 1014 has 26 

connections, there are 1014�26 =  26364  connections 

from this layer to the prior layer. At this point, one of the 

benefits of a convolution “shared weight” neural network 

should become more clear: because the weights are shared, 

even though there are 26364 connections, only 156 weights 

are needed to control those connections. As a consequence, 

only weights need training. In comparison, a traditional 

“fully connected” neural network would have needed a 

unique weight for each connection, and would therefore 

have required training for 26364 different weights. None of 

that excess training is needed here. 

Layer 3 is also a convolutional layer, but with 50 feature 

maps. Each feature map is 5�5, and each unit in the feature 

maps is a 5x5 convolutional kernel of corresponding areas 

of all 6 of the feature maps of the previous layers, each of 

which is a 13�13  feature map. There are therefore 

5�5�50 = 1250  neurons in Layer 2,  
(6�5�5 + 1)�50 =  7550 weights, and 1250�26 =
 32500 connections. 

Turning to Layer 4, Layer 4is a fully-connected layer with 

100 units. Since it is fully-connected, each of the 100 

neurons in the layer is connected to all 1250 neurons in the 

previous layer. There are therefore 100 neurons in Layer 4, 

(50�5�5 + 1)�100 =  125100weights, and 100�1251 =
 125100 connections. 
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Layer 5 is the final, output layer.This layer is a fully

connected layer with 10 units, corresponding the expected 

result (represent the number from 0 to 9). Since it is fully

connected, each of the 10 neurons in the layer is connected 

to all 100 neurons in the previous layer. There are 

10 neurons in Layer 5

(100�1�1 + 1)�10 =  1010  weights, and 

 1010 connections. 

Altogether, adding the above numbers, there are a total of 

3215 neurons in the neural network, 133

184974 connections. 

Layer Neuron (pixel) Weight 

1 841 

2 1014 156

3 1250 7550

4 100 125100

5 10 1010

Sum 3215 133816
Table 1. The number of neurons, weights and connections in CNN

Feed-Forward and activation function 

Before the training all weights and biases must be 

initialized. That are initialized with a uniform random 

distribution in [-0.05, 0.05].Neurons in layers

by sum of a convolution of its kernels and 

layer, to which a bias is added. This weighted sum, 

denoted�� for neuron �, is then passed through a 

function to produce the state of neuron �, denoted by 

�� = �(��) 

Figure 3. Feed-forward process

Selection of a good activation function is an important part 

of the design of neural network. The activation function 

should be symmetric and the neural network should be 

trained to a value that is lower than the limits of the 

function. One function which is recommended by many 

articles on the web is the classical sigmoid function (or 
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connected, each of the 10 neurons in the layer is connected 

to all 100 neurons in the previous layer. There are therefore 

10 neurons in Layer 5,  
weights, and 10�101 =

Altogether, adding the above numbers, there are a total of 

133816 weights, and 

Connection 

- - 

156 26364 

7550 32500 
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1010 1010 

133816 184974 
The number of neurons, weights and connections in CNN 

weights and biases must be 

are initialized with a uniform random 

layers is computed 

sum of a convolution of its kernels and the previous 

, to which a bias is added. This weighted sum, 

, is then passed through a activation 

, denoted by ��: 

 
forward process 

Selection of a good activation function is an important part 

The activation function 

should be symmetric and the neural network should be 

trained to a value that is lower than the limits of the 

is recommended by many 

he classical sigmoid function (or 

“logistic” function), defined as �
used since it is not symmetric: its value approaches +1 for 

increasing x, but for decreasing x its value approach

(it does not approach -1 which it should for symmetry). 

One good selection for the activation function is the 

hyperbolic tangent, or �(�) = tanh
good choice because it’s completely symmetric, as show in 

the following graph. If used, then do not train the neural 

network to "1. Instead, choose an intermedia value, like 

"0.8. 

Figure 4. Tanh function

Another reason why hyperbolic tangent is a good choice is 

that it’s easy to obtain its derivative. 

obtain its derivative, but also the value of derivative can be 

expressed in terms of the output value. More specifically, 

given that: 

 � = #(�) = ���
where �is the input to the function (corresponding to 

activation value of a neuron) and 

neuron. 

Then 
$%
$& = $

$& '()*+(&)
,-(+(&). = ,-(+/(&)0()*+/

,-(+/(&)
Since #(�) = ���1(�), so the result is 

This result means that we can c

derivative of  #(�)  given only the output of the function, 

without any knowledge of the input. 

To train the network to values of 

and this result with 1.7159 ([4]).

in this paper is a scaled version of the hyperbolic tangent:

 #(�) = 1.7159
and 

 
%(&)
$& = 2

3&4.5467 (1.7159
 

Backpropagation 

Backpropagation gives us a way to determine the error in 

the output of a prior layer given the output of 

layer. The process is therefore iterative: start at the last layer 
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�(�) = 4
489:;, should not be 

used since it is not symmetric: its value approaches +1 for 

increasing x, but for decreasing x its value approaches zero 

1 which it should for symmetry).  

One good selection for the activation function is the 

tanh (�). This function is a 

good choice because it’s completely symmetric, as show in 

used, then do not train the neural 

. Instead, choose an intermedia value, like 

 
Tanh function graph 

Another reason why hyperbolic tangent is a good choice is 

o obtain its derivative. Not only it is easy to 

obtain its derivative, but also the value of derivative can be 

expressed in terms of the output value. More specifically, 

���1(�) = ()*+(&)
,-(+(&) (1) 

is the input to the function (corresponding to the 

and #(�) is the output of the 

/(&) = 1 − ���12(�) (2) 

, so the result is 
$%
$& = 1 − #2(�)(3) 

This result means that we can calculate the value of the 

given only the output of the function, 

without any knowledge of the input.  

To train the network to values of "1, we multiply � with 
2
3 

[4]). Thus, the activation used 

sion of the hyperbolic tangent: 

7159���1 '2
3 �. (4) 

− �)(1.7159 + �) (5) 

Backpropagation gives us a way to determine the error in 

the output of a prior layer given the output of the current 

layer. The process is therefore iterative: start at the last layer 
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cad calculate the change in the weights for the last layer. 

Then calculate the error in the output of the prior layer. 

Repeat. 

The backpropagation equations are given below. Start the 

process off by computing the partial derivative of the error 

due to a single input image pattern with respect to the 

outputs of the neurons on the last layer. The error due to a 

single pattern is calculated as follows: 

 <=
> = 4

2 ∑@�)
> − 
)

>A2
 (6) 

where: 

<&
>is the error due to a single pattern B at the last layer L; 


)
>is the target output at the last layer (the desired output 

at the last layer); 

�)
>is the actual of the value output at the last layer. 

Given (6), then taking the partial derivative yields: 

 
%CD

E

%FG
E = �)

> − 
)
> (7) 

Equation (7) gives us a starting value for the 

backpropagation process. We use the numeric value for the 

quantities on the right side of the (7) in order to calculate 

numeric values for the derivative. Using the numeric values 

of the derivative, we calculate the numeric values for the 

changes in the weights, by applying the following two 

equation (8) and (9): 

 
%CD

E

%&G
E = %CD

E

%FG
E #′(�)

>) = (�)
> − 
)

>)#′(�)
>) (8) 

where #′(�)
>) is the derivative of the activation function. 

 
%CD

E

%IG J
E = �K

>04. %CD
E

%&G
E (9) 

Then, using (7) again and also (8), we calculate the error for 

the previous layer, using the following equation (10): 

 
%CD

E:L

%FM
E:L = ∑ N)O

>
) . %CD

E

%&G
E (10) 

The values we obtain from (10) are used as starting values 

for the calculations on the immediately preceding layer. In 

other words, we take the numeric values we obtained from 

(10), and use them in a repetition of (8), (9) and (10) for the 

immediately preceding layer. 

Meanwhile, the values from (9) tell us how much to change 

the weights in the current layer L. In particular, we update 

the value of each weight according to the formula: 

 @N� P
� A��N = @N� P

� AQ�R − ���. #<B
S

#N� P
S  (11) 

Where eta is the “learning rate”, typically a small number 

like 0.00005 that is gradually decrease during training. 

III. EXPERIMENTAL RESULTS 

Most remarkable, the best network has an error rate of only 

0.35% (35 out of 10,000 digits). In this network, we used 

the first 50,000 patterns of the MNIST training set for 

training, and the remaining 10,000 for validation and 

parameter adjustment. The results are reported in the table 

below: 

Classifier Preprocessing Error rate Preferences 

2-layer NN, 

300 hidden 

units, mean 

square error 

Không 4.7% 
LeCun et al. 

1998 

2-layer NN, 

1000 hidden 

units 

Không 4.5% 
LeCun et al. 

1998 

6-layer NN 

784-2500-

2000-1500-

1000-500-10 

(trên GPU) 

[elastic 

distortions] 

Không 0.35% 

Ciresan et 

al. Neural 

Computation 

10, 2010 and 

arXiv 

1003.0358, 

2010 
Table 2. Comparison between various algorithms 
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