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Abstract— Text summarization automatically creates a shorter version of one or more text documents. It is an effective way of 

finding relevant information from large set of documents. Text summarization techniques are categorized as Extractive 

summarization and Abstractive summarization. Extractive summarization methods evaluate text summarization by selecting 

sentences present in documents according to predefined set of rules. Abstractive summaries attempt to improve the coherence 

among sentences by eliminating redundancies and clarifying the content of sentences. It should also extract the information is 

such a way that the content would be in the interest of the user. In this paper we used tokenization for preprocessing of 

statements then calculate TF/IDF for feature extraction, K-means clustering to generate clusters containing high frequency 

statements and then NEWSUM algorithm for weighing of statements that are used for relevant content summarization. We also 

present experimental results on a number of real data sets in order to illustrate the advantages of using proposed approach 
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I.  INTRODUCTION  

 

Information filtering is an effective approach to eliminate 

repetitive and unwanted information from a large set of 

documents which represent user’s interest. Traditional rule 

based frameworks were developed using a term-based 

approach. The main advantage of the term-based approach is 

that it is faster. But term-based document representation 

suffers from the limitations of polysemy and synonymy. To 

curb these limitations of term-based approaches, pattern 

based techniques have been used to utilize patterns to 

represent user’s interest and have achieved some refinements 

in efficacy [2] [3], since patterns carry more semantic 

meaning than terms. Some data mining techniques have also 

been developed to improve the quality of patterns like 

maximal patterns, closed patterns and master patterns for 

removing the redundant and noisy patterns[4][5]. 

 

The merging of data from multiple documents is called 

multi-document merger. Data is found in unstructured or 

structured form and many times we have to generate 

summary from multiple files in less time, so, multi-document 

merger technique is useful. Multi-document summarization 

generates information reports that are both concise and 

comprehensive. With different opinions being put together, 

every topic is described from multiple perspectives within a 

single document. While the main focus of brief summary is 

to make information search more comprehensible and 

minimize the time by extracting the most relevant source 

documents, an accurate multi-document summary should 

contain the required information, hence there will be no need 

to access original files when refinement is required.  

 

Extractive summarizer selects the most relevant sentences 

within the document as well as maintaining a reduced 

redundancy within the summary. Now a day, most of the 

researchers focuses their research in automatic text 

summarization are extractive summarizations. Some of the 

basic extractive processes are as follows: 

 

a. Coverage: extraction plays a major role in text 

summarization process. Firstly it finds out all the necessary 

information that covers the different topics in input 

documents. It is applicable on text paragraphs. Numerous 

methodologies have been proposed to recognize the most 

important information from the set documents. 

 

b. Coherency: optimal ordering of retrieved sentences to 

formulate the coherent context flow is the complex issue. In 

single document summarization, one probable ordering 

sentence is given by the input text document itself. Still, this 

process is a nontrivial task.  

 

c. Redundancy elimination: due to the length limitation 

needed for an effective summary, and the existence of the 

extracted sentences which contains the same information, 

most of the approaches use similarity to remove duplicate 

information from the documents. 

 



   International Journal of Computer Sciences and Engineering                                     Vol.7(10), Oct 2019, E-ISSN: 2347-2693 

   © 2019, IJCSE All Rights Reserved                                                                                                                                        192 

This paper introduces an automatic text summarization 

approach to overcome the difficulties in the existing 

summarization approaches. Here, TF-IDF approach is 

utilized to identify the necessary keywords from the text. TF-

IDF is used to estimate the distinguishing keyword features 

in a text and retrieves the keyword from the input based on 

this information. The features are generally independent and 

distributed. Scoring is estimated for the retrieved sentence to 

compute the word frequency. The combination of this 

scoring concept helps to improve the summarization 

accuracy. The proposed summarization method achieves 

better coverage and coherence using the TF-IDF, hence it 

automatically eliminates the redundancy in the input 

documents. 

 

The remainder of this paper is organized as follows. Section 

2 summarizes the related works in the multi document text 

summarization. Section 3 shows the proposed text 

summarization approach Section 4 describes the performance 

analysis. And finally, the paper ends with the conclusion and 

future work at Section 5. 

 

II. LITERATURE SURVEY 

 

Paper [1] proposes an improved extractive text 

summarization method for documents by enhancing the 

conventional lexical chain method to produce better relevant 

information. Author has investigated the approaches to 

extract sentences from the document(s) based on the 

distribution of lexical chains then built a transition 

probability distribution generator (TPDG) for n-gram 

keywords which learns the characteristics of the assigned 

keywords from the training data set. A new method of 

automatic keyword extraction also featured in the system 

based on the Markov chains process. Among the extracted n-

gram keywords, only unigrams are selected to construct the 

lexical chain. Effectiveness and time consumption are the 

main issues in this paper. 

 

Paper [2] proposed a framework for addressing the c ross-

language document summarization task by extraction and 

ranking of multiple summaries in the target language  

• Top- K ensemble ranking algorithm is used to rank 

sentences  

• TF-IDF is used to word count and word level feature 

extraction 

 

Framework extracts multiple candidate summaries by 

proposing several schemes for improving the upper-bound 

quality of the summaries. Then, proposed a new ensemble 

ranking method for ranking the candidate summaries by 

making use of bilingual features. Extensive experiments have 

been conducted on a benchmark dataset System is designed 

for multiple language document summarizations but the 

accuracy of summarization is not up to the mark 

 

Paper [3] demonstrates  how  to  process  large  data  sets  in 

parallel  to  address  the  volume  problems  associated  with  

big  data and generate summary using sentence ranking  

• TF-IDF is used for document feature extraction  

• MapReduce and Hadoop is used to process big data 

Limitation of this framework is that, it is designed only for 

big data framework 

 

Paper [4] proposes two stage structures  

• Key sentence extraction using Levenshtein Distance 

formula  

• Recurrent neural network for summarization of documents 

In extraction phase system conceives a hybrid sentence 

similarity measure by combining sentence vector and 

Levenshtein distance and integrates into graph model to 

extract key sentences. In the second phase it constructs GRU 

as basic block, and put the representation of entire document 

based on LDA as a feature to support summarization. Only 

limitation of this paper is that there is possibility of 

occurrences of negative value in the decomposed GRU 

matrix. 

 

III. PROPOSED SYSTEM 

 

Proposed system involves the different module to generate 

the summary for given multiple documents. Previous system 

has some drawback such that it can take only text file as 

input. If we give other files such as PDF or word file as input 

then it cannot accept that file and shows the message only 

text files are allowed. To overcome these problems we 

proposed a new system that takes the input as text, PDF and 

word files. The system involves the following basic three 

phases. 

 

1. Data Pre-processing Phase- 

In this phase system first check the type of input files. If the 

input is text file it can directly retrieve the data and eliminate 

the stop words. Other than text file if the input is PDF or 

word file it first converts that file into text and after that 

retrieve the data and remove the stop words. 

 

2. Feature extraction Phase- 

In this phase system can extract relevant feature i.e. weighted 

feature. In this phase frequency of word is calculated using 

TFIDF. 

 

3. Similarity Based Approach Phase- 

In last phase system can generate summary from multiple 

documents by merging the multiple generated summary into 

one. For this purpose NEWSUM algorithm is used. Below 

figure shows the detailed design for proposed system. 
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Fig.3.1. Detailed design for proposed system 

 

The above diagram contains the three modules. These are as 

follows.  

Module 1:  Processing of Input multiple documents 

a) Tokenization: 

It breaks the text into separate lexical words that are 

separated by white space, comma, dash, dot etc. [3]  

 

b) Stop Word Removal: 

Stop words are words which are filtered out before or after 

processing of natural language data (text).Stop word removal 

is helpful is keyword searching. [2] 

 

c) Stemming Suffixes: 

Here enlisted suffixes are removed for topic detection 

Example 

Plays and playing  Play where “s” and “ing” are suffixes 

added to topic play need to be removed for accuracy purpose. 

 

Module 2: Similarity based documents extraction from 

multiple documents 

Cosine Similarity Approach: 

Cosine Similarity measures the similarity between two 

sentences or documents in terms of the value within the 

range of [-1, 1] whichever you want to measure. That is the 

Cosine Similarity. Cosine Similarity extracted TF and IDF 

by using following formulae: 

TFIDF: 

 

TF (term, document) = Frequency of term / No of Terms 

                                       
  

∑   
                …………(i) 

IDF (inverse document frequency) calculates whether the 

word is rare or common in all documents. IDF (term, 

document) is obtained by dividing total number of 

Documents by the number of documents containing that term 

and taking log of that. 

 IDF (term, document) = log (Total No of Document / No of 

Document containing term) 

 

          
 

       
         ………….(ii) 

TF-IDF is the multiplication of the value of TF and IDF for a 

particular word. The value of TF-IDF increases with the 

number of occurrences within a document and with rarity of 

the term across the corps 

                                      ……… (iii) 

 

Example: 

Consider a document containing 100 words wherein the 

word “sachin” appears 3 times. The term frequency (tf) for 

“sachin” is then TF=(3/100)=0.03. Now, assume we have 

100 documents and the word “sachin” appears in 10 of these. 

Then, the inverse document frequency (idf) is calculated as 

IDF = log(100 / 10) = 1.  

Thus, the Tf-idf weight is the product of these quantities  

TF-IDF = 0.03 * 1 = 0.03. 

Given a document containing terms with given frequencies:  

A(3), B(2), C(1) and total number of terms in document are 

15. Assume collection contains 10,000 documents and 

document frequencies of these terms are:   

A(50), B(1300), C(250). 

Then, using above equation (i), (ii) and (iii) we calculate the 

tf-idf for terms A, B and C. 

A:     
 

  
     ;          (

     

  
)      ;   

                            

B:     
 

  
       ;         (

     

    
)      ;   

                             

C:    
 

  
      ;        (

     

   
)      ;   

                              

NEWSUM Algorithm: 
NEWSUM algorithm is a type of clustering algorithm and it 

uses sentence extraction to compose a summarization based 

upon the sentences that receives the highest score. It uses 

second order merge function and fβ-optimal merge function. 

By using these two algorithms, relevancy of multiple 

documents can be found out by taking hybrid form of both 

algorithms. First NEWSUM Algorithm forms different 

clusters and give a highest score sentences by using merge 

functions then Cosine Similarity extracts the term frequency 

and finally generates the output. 
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Algorithm: Clustering(List<String> Documents) 

It clusters the document. 

Input: Documents D = (D1, D2, D3, D4, …) 

Output: Clusters  C1,C2,C3 

 

 For each documents D Read()  

 If (document extension = = {.doc,.pdf} ) Then 

ConvertToText()  

Else SplitTerms()    

Remove stopwords 

Calculate TF-IDF for each term 

Calculate similarity between each documents 

Calculate threshold value from similarity   

Classify documents in Clusters as per threshold   

 

 

Module 3: Summary Generation 

After checking similarity based approach and relevancy of 

documents, relevant sentences are extracted and merge the 

relevant sentences into one by using cosine similarity 

approach. Thus after merging the data it generates a final 

summary. 

 

Algorithm: Summarization(List<String> L) 

Input: Clusters List L=( C1,C2,C3) 

Output: Summary List S = [S’] 

 

While size of cluster C!=0 

For each cluster C, do 

   Select a sentence S’ with highest score from L[i] 

   S.Add(S’) 

End for 

Return S 

 

System State Transition 

Our system has a finite state of events that executes one after 

the other and each states output is given as input to the next 

state. Here we are representing state transition for following 

reasons. 

 

i) To  identify the life cycle of an object. 

ii)To identify the object that you will create during the 

development of classes in the program. 

iii)To identity the actions or events. 

iv)To identify the possible states for an object. 

 

Let S be a system which is defined in the following manner 

• S = {I, O, S} Where, 

• I is Input, 

• O is Output, 

• S is the Transition State  

 

Input: 

• I ={ D, Ft, } Where, 

• D : Document, 

• Ft : Processed document, 

• Ft  ∈  D,   

• Ft = { Ft1 , Ft2 ………. Ftn  } where n ≥1 

 

Transition States:  

Here, S is the state for system and S1, S2, … , Sf are the sub 

states for system S.  

• S={ S1, S2…….Sf)  

• Sd : Drop state dropping the sentences which are not  

extracted. 

 

Output: 

The output is generated when the system goes through out all 

the states. Irrelevant documents are dropped in drop state Sd. 

Thus output is:   

• Generated summary draft from given documents. 

 

IV. RESULT ANALYSIS 

 

For result analysis we have created our own dataset and used 

one standard dataset OpinosisDataset1.2. System processes 

PDF, word and text documents. Here we use text documents 

for result analysis. Below graph1 shows the comparative 

analysis between two clustering methods, first is WeightSum 

method which generate the cluster based on the weight of 

documents, and other one is threshold clustering. Threshold 

clustering is proposed clustering algorithm. Here result and 

analysis is performed on OpinosisDataset1.2. [26] 

 

Table 1 Accuracy of clustering methods 

Clustering methods Accuracy (%) 

WeightSum 80 

Threshold 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 1 Accuracy of clustering methods 

 

Accuracy: It is the degree to which the result of a 

measurement, calculation, or specification conforms to the 

correct value (true). The proposed system gives maximum 

91% Accuracy. To calculate the accuracy in percentage we 

can multiply by 100 to the result. 
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Where, 

TP (True Positive) – Correctly Identified. 

FP (False Positive) – Incorrectly Identified. 

TN (True Negative) – Correctly Rejected. 

FN (False Negative) – Incorrectly Rejected. 

 
Below graph 2 shows the accuracy of a proposed system on 

variable number of documents. The size of all documents is 

between 2 kb to 10kb. Here for calculating result we took 

first dataset that contains total 6 documents in that 1 file is 

irrelevant and 5 files are relevant and system merged total 4 

documents. 

TP – 4, FP – 0, TN – 1, FN – 1 

 

         
   

       
        

       

After that for calculating result we took dataset that contains 

total 12 documents in that 3 files are irrelevant and 9 files are 

relevant and system merged total 7 documents. 

TP – 7, FP – 0, TN – 3, FN – 2 

 

         
   

       
        

 

Again for  calculating result we took dataset that contains 

total 18 documents in that 5 files are irrelevant and 13 are 

relevant and system merged total 9 documents  except one 

that is irrelevant so, 

TP – 9, FP – 0, TN – 5, FN – 4 

 

         
   

       
        

 
Table 2 Accuracy 

Number of documents Accuracy (%) 

6 83.33 

12 83.33 

18 77.77 

 

 

 

 

 

 

 

 

 

                        

 

                             

Graph 2 Accuracy 

When we calculate the accuracy of proposed framework for 

variable number of document, it shows that the accuracy is 

more compared to the previous module. 

 

Values obtained on applying different summarization tools 

for analysing average Precision results are shown below in 

graph 3. In clustering we are generating two clusters on the 

basis of average cosine similarity between documents and in 

that first cluster contain documents with higher similarity, 

and other cluster contains the documents with lowest 

similarity. The documents with higher cosine similarity are 

selected for summarization purpose.  

 

Here we calculate the precision value of proposed system 

and compare that value with standard tools. These standard 

tools are SweSum and Copernic. Below graph shows the 

precision measure of proposed system and two standard 

tools. The graph shows that the technique which uses 

SewSum and Copernic has less precision measure as 

compare to proposed system.  

For calculating precision results we took first dataset that 

contains total 6 documents in that 1 file is irrelevant and 5 

files are relevant. 

 

Precision: It is degree to which repeated measurements under 

unchanged condition show the same results. 

 

                                    
  

     
 

 

Table 3 Precision scores Different Summarization techniques 

Text Summarizer Precision Measure (%) 

SweSum 75 

Copernic 81 

TF-IDF NWESUM 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 3 Precision scores summarization techniques 

 

Finally, from the above result analysis we can say that our 

proposed system has more accuracy compared to the 

previous module. Threshold clustering method gives the 91% 
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precision and 85% accuracy while generating the clusters. 

When we calculate the precision measure of proposed 

framework, it is more compared to the standard text 

summarization tools. 

 

V. CONCLUSION AND FUTURE SCOPE  

 

In this paper we proposed a framework for content based 

document summarization. Previous system has drawback like 

that it can take only text files as input. To overcome this 

problem we proposed a new framework. Not only text inputs 

but also various documents like PDF and Microsoft word 

document are taken in consideration. Here we use clustering 

algorithm. In order to design the clustering method, we 

combined an iterative partitioning technique with the help of 

threshold value. Threshold approach is used in order to design 

both clustering and classification algorithms. We present 

results on real data sets illustrating the effectiveness of our 

approach. The result shows that the use of proposed 

framework can   greatly   enhance   the   quality   of   text 

summarization, while maintaining a high level of efficiency. 

In future work, we will test the robustness of our proposed 

framework in other target languages, e.g. Chinese, Hindi and 

other most spoken languages. We will also try to use deep 

learning techniques for learning latent features to improve 

summary ranking. Further, we will explore different 

summarization methods to produce more diversified 

candidate summaries for ranking, and we believe the cross-

language document summarization performance will be 

improved. 
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