
 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        237 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                              Volume-5,  Issue-6                                           E-ISSN: 2347-2693 

                 

Uncertain Big Data Strategical Miner  

 
H. V. Sapte

 1*
, S. S. Pallati

 2
, P. P. Pandit 

3
, A. S. Joshi 

4
, V. Jumb 

5
 

 

 
1*

 Xavier Institute of Engineering, Mumbai University, Mumbai, India 
2
 Xavier Institute of Engineering, Mumbai University, Mumbai, India 

3
 Xavier Institute of Engineering, Mumbai University, Mumbai, India 

4
 Xavier Institute of Engineering, Mumbai University, Mumbai, India 

5
 Xavier Institute of Engineering, Mumbai University, Mumbai, India 

 
*Corresponding Author: harish.sapte10@gmail.com, Tel.: +91-865552252 

Available online at: www.ijcseonline.org  

Received: 25/May/2017, Revised: 02/Jun/2017, Accepted: 20/Jun/2017, Published: 30/Jun/2017 

Abstract— There are many data mining algorithms which exist today for searching patterns from transactional databases. 

Most of them work only on precise data. But there are also situations in which these conventional algorithms fail, situations 

in which Data is uncertain in nature. Uncertain data can be explained as the one where items have probabilistic values 

associated with them. These probabilities express the likelihood of these items to be present in the transactions. In mining, 

the search tree produced is also one of the major factor of concern. The search space produced when dealing with uncertain 

data is much larger due to the presence of existential probabilities. This problem worsens when dealing with Big data. 

Considering all the above factors and concerns, an algorithm is specified and explained ahead. It allows users to express the 

interest in terms of constraints and uses the Map Reduce programming model to mine uncertain Big data for frequent 

patterns that satisfy the user-specified constraints. By using these user-specified constraints as inputs, the algorithm greatly 

reduces the search space for Big data mining of uncertain data, and returns only those patterns the users are interested in. 

 

Keywords— Big data models and algorithms, Big data analytics, Uncertain data mining, Frequent pattern mining

I.  INTRODUCTION  

In the current era of Big Data, companies and organizations 

possess overwhelming amounts of data with them. Data 

Mining has become crucial for extracting the most relevant 

strategic knowledge from this available raw data. Data 

mining is the process of extracting and analyzing data from 

different sources. Purpose of Data mining is to search for 

potentially useful information. It allows user to view data 

from different dimensions and thus helps in perceiving 

accordingly. Using it, interesting patterns can be easily 

obtained from raw ordinary data. Some real-life applications 

include (i) grouping people based on their interests (ii) 

classifying new insurers based on records of similar old 

claimants (iii) anomaly detection. Market Basket analysis is 

another prominent example where customer’s behavior is 

analyzed and attempts are made to increase the sales of 

different products by understanding the customer’s 

mentality.  

A huge amount of valuable data is produced everyday by 

different real-life applications or industries like banking, 

finance, medical, telecommunication, and social web 

applications. This enormous data that needs to be processed 

has lead us into the new era of Big data [4]. This refers to 

interesting high-velocity, high-value, and/or high-variety data 

with volumes beyond the ability of commonly-used software 

to capture, manage, and process within a tolerable elapsed 

time. To enable enhanced decision making, insight, process 

optimization, data mining and knowledge discovery, new 

forms of processing data are now needed. This drive and 

motivates research and practices in Big data analytics and 

Big data mining [5,6,7,8]. Apache Hadoop is an open-source 

software framework used for distributed storage and 

processing of big data sets using the MapReduce 

programming model [17]. This MapReduce has the potential 

to handle parallel and distributed computing on large clusters 

or grids of nodes. As the name suggests, MapReduce 

involves two key functions: mapper and reducer. While 

implementation user need not worry about anything other 

than these two functions. Thus, processes like data 

partitioning, parallel scheduling and execution of programs, 

failure handling, inter machine communication are internally 

handled by MapReduce model, and need not be concerned 

about.  

 

Apache Hadoop is an open-source software framework used 

for distributed storage and processing of big data sets using 

the MapReduce programming model [17]. This MapReduce 



   International Journal of Computer Sciences and Engineering                                     Vol.5(6), Jun 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        238 

has the potential to handle parallel and distributed computing 

on large clusters or grids of nodes. As the name suggests, 

MapReduce involves two key functions: mapper and reducer. 

While implementation user need not worry about anything 

other than these two functions. Thus, processes like data-

partitioning, parallel scheduling and execution of programs, 

failure handling, inter machine communication are internally 

handled by MapReduce model, and need not be concerned 

about. 

 

Since frequent pattern mining was introduced, numerous 

studies have been conducted to mine frequent patterns from 

precise data. With these traditional databases, users know 

whether an item is present in (or is absent from) a 

transaction. However real-life applications involve uncertain 

data, partially due to inherent measurement inaccuracies, 

network latencies, sampling and duration errors, and 

intentional blurring of data to preserve anonymity 

[3,10,11,12]. This Uncertainty is indicated by the probability 

of individual items to be present (or not) in a transaction. 

Algorithms which work well on precise or certain data, are 

not suitable for uncertain data. This lead to an exploration of 

appropriate algorithms to accomplish the objective. So, 

basically the task is to mine user-interesting frequent patterns 

from Uncertain Big Data which is uncertain in nature.  

 

Several pattern mining algorithms (e.g., the UF-growth, 

CUF-growth and PUF-growth algorithms) have been 

proposed for handling uncertain data [13,14,15]. Users may 

have some phenomena or attributes in mind on which they 

focus the mining. However, the algorithms mine patterns 

without user focus. Also, users often need to wait for a long 

period of time for numerous patterns, out of which only a 

tiny fraction may be interesting to the users. Hence, 

constrained pattern mining, which aims to find those frequent 

patterns that satisfy the user-specified constraints, is needed 

[16].  

 

This paper is organized as follows. The next section gives 

information about related works. In Section III, principle 

concepts are explained. Section IV contains information 

about Implementation. We propose our algorithm for mining 

constrained frequent patterns from uncertain data using 

MapReduce. Evaluation results and conclusions are 

presented in Sections IV and V, respectively. 

 

 

II. RELATED WORK  

In the paper ‘Reducing the Search Space for Big Data 

Mining for Interesting Patterns from Uncertain Data' an 

algorithm and a methodology is proposed which uses 

MapReduce programming model for implementing 

constrained uncertain big data mining. It lets users to express 

their constraints which are succinct and anti-monotone in 

nature. Thus, the proposed algorithm can be used for mining 

of frequent patterns which satisfy the user-specified 

constraints [1]. 

In the paper Apriori-based Frequent Item set Mining 

Algorithms on MapReduce, three algorithms, namely SPC, 

FPC, and DPC, were proposed to investigate the 

performance of the Apriori-like algorithms in a MapReduce 

framework in this paper [18]. To enhance the performance of 

the Apriori-like frequent Item set mining algorithms, many 

parallelization techniques have come up.  SPC is a simple 

conversion of the serial Apriori algorithm into the distributed 

MapReduce version. SPC finds the frequent k-itemsets in kth 

database scan (map-reduce phase), using mappers to generate 

candidate’s supports and reducers to collect global supports 

[18]. 

DPC dynamically collects candidates of variable lengths for 

counting by mappers according to the number of candidates 

and the execution time of previous map-reduce phases and 

thus outperforms both FPC and SPC and has good scalability 

[18]. 

FPC improves SPC by using a mapper to count the candidate 

k, (k+1), and (k+2) itemsets altogether in a map-reduce 

phase. Consequently, FPC effectively reduces the number of 

map-reduce phases DPC is proposed to strike a balance 

between reducing the number of MapReduce phases (by 

combining variable-length candidates) and increasing the 

number of pruned candidates [18]. 

In the paper ‘A Modified Approach to Mine Frequent Pat-

terns from Uncertain Data’ presented by Jigisha V. Patel and 

Krunal J. Panchal, an algorithm is proposed which reduces 

the time complexity of PUF-tree algorithm. PUF tree 

requires less computation time and is compact as compared 

to other tree based algorithms. The paper proposed above 

replaces the tree structure with linear list data structure [2]. 

This further improvises the working performance of the PF 

tree algorithm. The Objective is to mainly minimize the time 

complexity.  

In the paper ‘Mining Frequent Itemsets from Uncertain Data’ 

presented by Chun-Kit Chui, Ben Kao, and Edward Hung the 

problem addressed is to mine frequent Itemsets from 

uncertain data under a probabilistic framework. As it 

uncertain data, transactions have existential values associated 

with each item and a formal definition of frequent patterns is 

given under such an uncertain data model conventional 

mining algorithms are proven to be computationally 

inefficient under such a model [9]. A data trimming frame-

work is proposed to improve mining efficiency. Through 

some research and experiments, it is proven that the data 

trimming technique can achieve significant savings in both 

CPU cost and I/O cost. 



   International Journal of Computer Sciences and Engineering                                     Vol.5(6), Jun 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        239 

III. PRINCIPAL CONCEPTS 

These are the key concepts which are important for this 

algorithm.  

Existential Probability - The numerical value within the 

range (0,1], that represents the probability of the data item to 

exist in each transaction. Existential Probability of an item x 

in transaction Tj can be denoted as P (x, Tj) 

Minimum Support - A Pattern X is frequent in an uncertain 

database if expSup(X) ≥ a user-specified minimum support 

threshold minsup. The presence of minsup helps to discover 

the frequent patterns from uncertain data. 

User Defined constraints - This allows the user to use a set of 

constraints to specify his interest for guiding the process so 

that only those frequently occurring sets of items satisfying 

the user-specified constraints are found. Unnecessary 

computations, unrequired outputs, wastage of time are 

avoided by using this constraint. The constraint considered is 

anti-monotone in nature [17]. A constraint C is anti-

monotone if and only if all subsets of a pattern satisfying C 

also satisfy C. The objective is to find patterns which satisfy 

user-defined constraints and have expected ≥ minsup, only 

then that pattern is considered as a valid pattern.  

Expected Support - The expected support denotes the support 

values for itemsets when existential probabilities are 

involved. The method from C. K. Leung, R. K. MacKinnon, 

F. Jiang [1] is used to find out expSup(X) of Item set X in the 

dataset over all n transactions in the database which is given 

by equation (1): 

expSup(X)= =   (1) 

Map Reduce model - As the data-size is huge to handle this 

kind of data, the algorithm proposed uses high-level 

programming model called MapReduce [19]. MapReduce 

model process high volumes of data by using parallel and 

distributed computing on large clusters or grids of nodes 

(i.e., commodity machines), which consist of a master node 

and multiple worker nodes. 

There are two important functions involved in this model as 

the name suggest “mapper” and “reducer”. The map function 

takes input in the form of <key, value> pair and returns a list 

of <key, value> pairs as an intermediate result: 

map:<k1, v1>→ list of <k2, v2>, 

where k1 & k2 are keys in the same or different domains, 

and v1 & v2 are the corresponding values in some domains. 

Later in this process these intermediate results are shuffled 

and sorted. As the mapper function was carried out on each 

processor, similarly the reduce function is executed. 

The reduce function combines the intermediate results and 

summarizes it to give the list of values associated with a 

given key (for all k keys) and returns (i) a list of k pairs of 

keys and values, (ii) a list of k values, or simply (iii) a single 

(aggregated or summarized) value: 

reduce: <k2, list of value2>→list of <k3, value3>, 

reduce: <k2, list of value2>→list of value3, or 

reduce: <k2, list of value2>→value3. 

IV. IMPLEMENTATION 

The problem of mining constrained frequent patterns (i.e., 

valid frequent patterns) from Big Data that is Uncertain in 

nature can be done using the proposed system when user 

defined Minimum Support and user specified Constraints are 

provided along with the Big-Data Dataset.  

In this section, we propose an algorithm that works on the 

map-reduce programming model to generate valid frequent 

patterns. The algorithm proposed here works in two sets of 

Map-Reduce Functions: (A) First one that mines Valid 

Frequent Singletons and (B) a second one that mines valid 

frequent non-singleton patterns. The following diagram gives 

us information about the way in which data flows through 

the various map and reduce functions. 

Our software takes as input the dataset (on which mining is 

to be done), minimum support values (which the output 

patterns must possess) and the item values (which are the 

user defined constraints).  

Initially the dataset is given as input to the first map function 

along with user required constraints. The map function sends 

items, along with their individual probability values as the 

key-value pairs to the first reducer. The reducer does the job 

of finding valid frequent singletons and displays those in an 

output file. 



   International Journal of Computer Sciences and Engineering                                     Vol.5(6), Jun 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        240 

 

Figure 1.  Flowchart showing data flow through various processes 

The second map function uses dataset and valid frequent 

singletons to generate a singleton-projected database. This 

data is then used by second reducer along with frequent 

singleton values and minimum support value to generate all 

the valid frequent non-singletons. 

A. Valid Frequent Singleton Mining 

Pattern Mining is done by the algorithm using the following 

sequence of steps: i) Read large volumes of uncertain (big) 

data. ii) As each item of the data possesses existential 

probability value, these values are used for computing the 

Expected Support. iii) The Expected Support Calculation 

process is done within the Map-Reduce sets of functions. For 

computing singletons, the equation for Expected Support can 

be simplified as follows: 

expSup({x}) =∑ P (x, Tj)    (2) 

where P (x, Tj) denotes the existential probability value of 

item x in particular Transaction Tj. The Map-Reduce 

algorithm divides the data into several chunks or blocks of 

data and then distributes it among different processors. Every 

Processor that receives a data block, runs the Map function 

on that block. For every occurrence of Item x, belonging to 

particular transaction Tj, the first Map function of our 

algorithm will emit out <x, P (x, Tj)> to the reducer function. 

Thus, our Map Function can be specified as follows: 

For each Tj ∈ partition of the uncertain Big data do  

 for each item x ∈ Tj and {x} satisfies CAM 

  emit <x, P (x, Tj)>  

Thus, we obtain a list of <x, P (x, Tj)> values. Here x and P 

(x, Tj) act as keys and values. These are grouped and sorted 

together to form < x, list of P (x, Tj)>.  

Now on these pairs of <x, list of P (x, Tj)>, each processor 

runs the reduce function to further obtain the final expected 

support values of x (Singletons). Thus, our reducer function 

can be specified as follows: 

For each x ∈ valid x, list of  P (x, Tj) do  

 set expSup({x}) = 0; 

 for each P (x, Tj) ∈ list of P (x, Tj) do 

  expSup({x}) = expSup({x}) + P (x, Tj); 

 if expSup({x}) ≥ minsup then  

  emit <{x}, expSup({x})>. 

 

 A higher-level abstraction viewpoint can be used to 

represent our map and reduce functions as follows: 

map: <ID of transaction Tj, content of Tj> → list of <valid x, 

P (x, Tj)> 

reduce: <valid x, list of P (x, Tj)> → list of <valid frequent 

{x}, expSup({x})> 

This output that has been obtained from the reduce function 

gives us the required Valid Frequent Singletons. 

B. Valid Frequent Non-Singleton Mining 

From the first set of Map Reduce functions, Valid Frequent 

Singletons along with their respective associated existential 

support values were obtained. For every transaction, we emit 

all valid frequent singletons with expSup values, present in 

that transaction. The key value is set to 1 for each key-value 

pair. 

Thus, our map function can be specified as follows: 

For each Tj ∈ partition of the uncertain Big data do   

 emit <1, Set of {{x}, expSup(x)} present in Tj> 

 

Now we use an algorithm that produces linear list data 

structure to mine frequent non-singleton patterns from 

uncertain data [2]. In this algorithm, the transaction would 

contain items along with expected support. All transactions 

of the projected database are scanned and the items are 

inserted in table in sorted manner, a pointer is maintained 

with each item and expected support is calculated for each 

entry in linear list. Considering all the items and all the 

possible combinations from the item, the ones with expected 

support more than the minimum support are considered as 

frequent patterns others are discarded. Thus, this algorithm 

finds frequent non-singleton patterns from uncertain data 

with minimum time complexity by using a linear list data 

structure [2].  



   International Journal of Computer Sciences and Engineering                                     Vol.5(6), Jun 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        241 

The outputs of the mapper are sorted and grouped, thus 

providing with a key-value pair where key is 1 and value is a 

set of valid sets. 

 Thus, the reducer function derived from Patel et al. [2] is as 

follows: 

For each Set of {{x}, expSup(x)} ∈ Set of valid Sets 

 Build linear list structure to find X 

Generate X and expSup(X) 

 

A higher-level abstraction viewpoint can be used to represent 

the second set of the map and reduce functions as follows: 

map: <ID of transaction Tj, content of Tj> → <1, Set of {{x}, 

expSup(x)})>. 

reduce: <1, Set of valid Sets>→ list of <valid frequent {X}, 

expSup({X})>. 

Example: Consider the following example, where the dataset 

comprises of transactions along with item sets and their 

probabilities. 

Table 4.1. Tiny Sample set of Uncertain Big Data 

The user-specified constraints are 1, 2, 4, 10, 23 and the 

given Min-Support is 0.8. The algorithm used here reads the 

dataset. After reading the first transaction, the first mapper 

imparts the output as <1:0.98> and <23:0.52>. For second 

transaction, the output is <2:0.87> and <23:0.44>, it only 

takes those items that satisfy the user–defined constraints. 

Therefore, the first mapper produces the following result by 

reading one transaction at a time: 

X→ invalid items 

1: {0.98, 0.63, 0.36}, 2: {0.87, 0.06, 0.99}, 4: {0.7},10: 

{0.23, 0.87, 0.03}, 23: {0.51, 0.44, 0.5, 0.59, 0.68, 0.78} 

The rest items along with probabilities which do not satisfy 

the user defined constraints are discarded like these ones:  

3: {0.2, 0.4, 0.76, 0.66, 0.43}, 9: {0.36, 0.67, 0.21}, 13: 

{0.14, 0.49}, 14: {0.75, 0.38}, 15: {0.8, 0.89}, 25: {0.32, 

0.3, 0.28}, 26: {0.76, 0.51}, 27: {0.64}. 

The valid patterns that satisfied user-defined constraints are 

then shuffled and sorted. The first reducer re-reads this 

<1:[0.98, 0.63, 0.36]>, <2:[0.87, 0.06, 0.99]>, <4:[0.7]>, 

<10:[0.23, 0.87, 0.03]>, <23:[0.51, 0.44, 0.5, 0.59, 0.68, 

0.78]> and produces the output as <1:1.97>, <2:1.92>, 

<10:1.13>, <23:3.5> and the key pair value of <4:0.7> is 

discarded as it does not satisfy min-sup constraint(0.8). 

Therefore, the Valid Frequent Singleton patterns so 

generated are {1:1.97, 2:1.92, 10:1.13, 23:3.5}. 

For further processing, the algorithm uses the uncertain big 

database comprising of transactions consisting of items along 

with their probabilities and user defined constraints, i.e. 1, 2, 

10, 23, 4 and min-support which is 0.8.  

Second Mapper remembers the valid singleton sets generated 

by the first Mapper Reducer function, in this example valid 

frequent singletons are 1, 2, 10, and 23. It sort singletons in 

decreasing order based on expected support value i.e. 23, 1, 

2, 10. It re-reads transactions from the uncertain big database 

in the sorted order of singletons and eliminates infrequent 

singletons, and outputs a list comprising of these singleton 

items with key value equal to 1. After reading the first 

transaction, the second mapper gives output as <1: {1:0.98, 

23:0.51}>, it does not contain 3 or any other infrequent item.  

Similarly, after reading second transaction mapper function 

outputs {1: {2:0.87, 23:0.44}}. For third transaction, the 

mapper imparts the output as {1: {{1:0.63, 10:0.23, 23:0.5}} 

and so on. These pairs are then shuffled and sorted. 

Afterwards the reducer function reads <1: {frequent items in 

transactions}>. In this example reducer function reads <1: 

{{1:0.98, 23:0.51}, {2:0.87, 23:0.44}, {1:0.63, 10:0.23, 

23:0.5}, {2:0.06, 23:0.59}, {2:0.99, 10:0.87, 23:0.68}, 

{1:0.36, 10:0.03, 23:0.78}}>. 

Reducer function then reads each sub-transaction and 

arranges it in order of singletons list which we sorted earlier. 

A linear list table is created which consist of all valid single-

tons and a pointer is maintained. Read first sub-transaction as 

{23:0.51, 1:0.98}, the first item in the transaction becomes 

key in the linear list table.  

Table 4.2. After scanning first sub-transaction 

 

 

 

 

Table 4.3. After scanning second sub-transaction  

23  1: 0.4998  2:0.3828 

1     

2     

10     

T1 1:0.98 3:0.2 9:0.36 13:0.14 23:0.51 25:0.32 

T2 2:0.87 3:0.4 9:0.67 14:0.75 23:0.44 26:0.76 

T3 1:0.63 3:0.76 10:0.23 15:0.8 23:0.5 25:0.3 

T4 2:0.06 4:0.7 9:0.21 15:0.89 23:0.59 27:0.64 

T5 2:0.99 3:0.66 10:0.87 14:0.38 23:0.68 26:0.51 

T6 1:0.36 3:0.43 10:0.03 13:0.49 23:0.78 25:0.28 

23  1: 0.4998 

 1   

2   

10   



   International Journal of Computer Sciences and Engineering                                     Vol.5(6), Jun 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        242 

Table 4.4. After scanning third sub-transaction 

23  1:0.4998 +0.315=0.8148  2:0.382  10:0.115  

1  10:0.1449      

2        

10        

Table 4.5. After scanning all sub-transactions 

23  1: 1.0956  2:1.0919  10:0.73 

1  10:0.1557     

2  10:0.8613     

10       

From this table now generate all possible patterns and check 

their expected support value if it is greater than or equal to 

minimum support output that pattern as frequent non-

singleton pattern. In our example patterns generated are: 

(23,1):1.0956, (23,2):1.0919, (23,10):0.73, (23,1,2):1.0919, 

(23,1,10):0.73, (23,2,10):0.73, (1,10):0.1557, (2,10):0.8613. 

From these patterns only (23,1), (23,2), (23,1,2), (2,10) 

satisfies minimum support condition. Hence, the algorithm 

finds total a total eight frequent patterns satisfying user 

specified constraints. 

Total frequent patterns: <1:1.97, 2:1.92, 10:1.13, 23:3.5, 

(23,1):1.0956, (2,10):0.8613, (23,2):1.0919, (23,1,2):1.0919> 

This is how the frequent patterns are generated. 

V. RESULTS  

In this section, we evaluate our proposed algorithm in mining 
user-specified constraints from uncertain Big data. We used 
different benchmark datasets, which include real-life datasets 
(e.g., accidents, connect4, and mushroom) from the FIMI 
Repository (http://fimi.ua.ac.be/). For our experiments, the 
generated data range is about 1M transactions with an average 
transaction length of 10 items from a do-main of 1K items. As 
the above real-life and synthetic datasets originally contained 
only precise data, we assigned to each item contained in every 
transaction an existential probability from the range (0,1]. All 
experiments were run using either (i) a single machine with 
an Intel Core i5 4-core processor (1.73 GHz) and 8 GB of 
main memory running a 64-bit Windows 10 operating system, 
(ii) cluster of machines with the similar hardware 
configuration as mentioned in (i)All versions of the algorithm 
were implemented in the Java programming language. (ii)The 
version of Apache Hadoop 2.6.0 was used. 

For comparison purpose, a software module called as ‘SPMF 

Open-Source Data Mining Library’ (http://www.philippe-

fournier-viger.com) was used. This tool has an inbuilt 

functionality of allowing users to select the algorithms which 

they desire and then their software returns the expected result 

after running that user specified algorithm. Using this 

platform, a dataset having precise da-ta was loaded into the 

FP-growth algorithm and those resultant patterns were 

compared with the patterns generated by the proposed 

algorithm. Similarly, a dataset, which was uncertain, was run 

using U-Apriori Algorithm and patterns generated were 

compared with the patterns generated by the proposed 

algorithm. Resultant patterns from both the outcomes were 

found to be matching. Experiments were done with 100% 

selectivity. The benefits become more obvious by Figure. 3.1 

to 3.4. They show that, when selectivity decreased (i.e., fewer 

frequent patterns satisfy the constraints), runtimes also 

decreased, because (i) fewer pairs were re-turned by the map 

function, (ii) fewer pairs were shuffled and sorted by the 

reduce function, and/or (iii) fewer constraint checks were 

performed. 

 
2.1.  Runtime Vs minSup (Mushroom) 

 

 
2.2.  Runtime Vs minSup (Chess) 

 
2.3.  Runtime Vs Selectivity (Mushroom) 



   International Journal of Computer Sciences and Engineering                                     Vol.5(6), Jun 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        243 

 
2.4. Runtime Vs Selectivity (Chess) 

 
Figure. 2. Experimental Results 

VI. CONCLUSION 

Algorithms existing today mostly focus on association 

analysis enabled by mining interesting patterns from precise 

databases. However, there are situations in which data are 

uncertain, for which very few algorithms have been created. 

The Items in each transaction of these probabilistic data-bases 

of uncertain data are usually associated with existential 

probabilities expressing the likelihood of these items to be 

present in the transaction, making the search space for mining 

from uncertain data much larger than mining from precise 

data. This problem worsens as we start working with Big 

data. Furthermore, in many real-life applications, users may 

be interested in only a tiny portion of this large search space. 

To avoid wasting lots of time and space in computing all 

frequent patterns first and pruning uninteresting ones as a 

post-processing step, we have implemented a tree-based 

algorithm that (i) allows users to express their interest in 

terms of only anti-monotone (AM) constraints and (ii) uses 

MapReduce to mine uncertain Big data for frequent patterns 

that satisfy the user-specified constraints. Thus, this algorithm 

returns all and only those patterns that are interesting to the 

users. 

REFERENCES 

[1] C.K.-S. Leung , R. K. MacKinnon, F. Jiang, “Reducing the Search 

Space for Big Data Mining for Interesting Pattern from Uncertain 

Data” , 2014 IEEE International Congress on Big Data, pp.315-

322, 2014. 

[2] J.V. Patel, K. J. Panchal, “A Modified Approach to Mine Frequent 

Patterns from Uncertain Data”, 2015 1st International Conference 

(NGCT), pp.612-615, 2015. 

[3] C.K.-S. Leung, “Mining uncertain data”,  WIREs Data Mining 

and Knowledge Discovery, Vol.1 ,Issue.4, pp.316–329, July-Aug. 

2011. 

[4] S. Madden, “From databases to big data,” IEEE Internet 

Computing, Vol.16, Issue.3, pp. 4–6, May–June 2012. 

[5] Azzini, P. Ceravolo, “Consistent process mining over Big data 

triple stores”,  IEEE Big Data Congress 2013, pp. 54–61, 2013. 

[6] Ӧlmezoğullari, I. Ari, “Online association rule mining over fast 

data”, IEEE International Congress on Big Data 2013, pp.110–

117, 2013. 

[7] P. Agarwal, G. Shroff, P. Malhotra, “Approximate incremental 

big-data harmonization”, IEEE Big Data Congress 2013, pp.118–

125, 2013. 

[8] Yang , S. Fong, “Countering the concept-drift problem in big data 

using iOVFDT”, IEEE Big Data Congress 2013, pp.126–132, 

2013. 

[9] C.K.Chui, B.Kao, E.Hung, “Mining Frequent Itemsets from 

Uncertain Data”, LNCS 2007, pp.47-58, 2007. 

[10] C.K.-S. Leung , F. Jiang, “Frequent itemset mining of uncertain 

data streams using  the damped window model”, ACM SAC 2011, 

pp.950–955, 2011. 

[11] C.K.-S. Leung , F. Jiang, “Frequent pattern mining from time-

fading streams of uncertain data”, DaWaK 2011 (LNCS 6862), 

pp. 252-264, 2011. 

[12] Y. Tong, L. Chen, Y. Cheng, P.S. Yu, “Mining frequent itemsets 

over uncertain databases”, PVLDB, Vol.5, Issue.11, pp.1650–

1661, July 2012. 

[13] C.K.-S. Leung, M.A.F. Mateo, D.A. Brajczuk, “A tree-based 

approach for frequent pattern mining from uncertain data”, 

PAKDD 2008 (LNAI 5012), pp. 653–661, 2008. 

[14] C.K.-S. Leung , S.K. Tanbeer, “Fast tree-based mining of frequent 

itemsets from uncertain data”, DASFAA 2012 (LNCS 7238), pp. 

272–287, 2012. 

[15] C.K.-S. Leung, S.K. Tanbeer, “PUF-tree: A compact tree 

structure for frequent pattern mining of uncertain data”, PAKDD 

2013 (LNCS 7818), pp.13–25, 2013. 

[16] D.N. Goswami, Anshu Chaturvedi., C.S. Raghuvanshi,”An 

Algorithm for Frequent Pattern Mining Based On Apriori”, 

International Journal on Computer Science and 

Engineering(IJCSE), Vol.2, Issue.4, pp.942-947, 2010.  

[17] J.Dean, S.Ghemawat, “MapReduce: simplified data processing on 

large clusters”, CACM, Vol.51, Issue.1, pp.107-113, Jan. 2008. 

[18] M.Y.Lin, P.Y.Lee, S. C. Hsueh, “Apriori based frequent itemset 

mining algorithms on MapReduce”, ICUIMC 2012, art.76, 2012. 

 

Authors Profile 

Mr. V Jumb pursued Bachelor of Engineering from University of 
Mumbai, India in 2010 and Master of Engineering (Computer 
Engineering) from University of Mumbai, India in 2014. He is 
currently working as an Assistant Proffessor in the Department of 
Computer Engineering in Xavier Institute of Engineering, India, and 
has 6 years of Teaching Experience. 

 

Mr. H V Sapte is currently pursuing a Bachelors degree in 
Engineering (Computer Engineering) from Xavier Institute of 
Engineering, India. 

 

Ms. S S Pallati is currently pursuing a Bachelors degree in 
Engineering (Computer Engineering) from Xavier Institute of 
Engineering, India. 

 

Mr P P Pandit is currently pursuing a Bachelors degree in 
Engineering (Computer Engineering) from Xavier Institute of 
Engineering, India. 

 

Mr. A S Joshi is currently pursuing a Bachelors degree in 
Engineering (Computer Engineering) from Xavier Institute of 
Engineering, India. 

 

 


