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I.  INTRODUCTION  

The fractional order Differential equations are 

generalizations of integer order classical differential 

equations and it is valuable tools in the modeling of many 

physical phenomena in various fields of science and 

engineering.  

Recently, various analytical and numerical methods have 

been employed to solve linear and nonlinear fractional 

differential equations. The differential transform method 

(DTM) was proposed by Zhou [1] to solve linear and 

nonlinear initial value problems in electric circuit analysis. 

DTM constructs an analytical solution in the form of a 

polynomial and different from the traditional higher order 

Taylor series method. For solving two-dimensional linear 

and nonlinear partial differential equations of fractional order 

DTM is further developed as Generalized Differential 

Transform Method (GDTM) by Momani, Odibat, and Erturk 

in their papers [2-4].  

II. GENERALIZED DIFFERENTIAL TRANSFORM 

METHOD 

Consider a function of two variables  ,u x y be a product 

of two single-variable functions, i.e. 

     ,u x y f x g y , 

which is analytic and differentiated continuously with respect 

to x and y in the domain of interest. Then the generalized 

two-dimensional differential transform [2-4] of the function 

 ,u x y is  
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where 0 , 1   ;      , ,U k h F k G h     is 

called the spectrum of  ,u x y and    
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The inverse generalized differential transform of 

 , ,U k h   
is given by 

      , 0 0
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, ,
k h

k h

u x y U k h x x y y
 

 

 

 

   (2) 

 It has the following properties: 

I. if      , , ,u x y v x y w x y   then 

     , , ,, , ,U k h V k h W k h         

II. if    , , ,u x y av x y a R then 

   , ,, ,U k h aV k h     
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III. if      , , ,u x y v x y w x y  then 

     , , ,

0 0

, , ,
k h

r s

U k h V r h s W k r s     
 

  
 

IV. if        , , , ,u x y v x y w x y q x y  then 
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V. if      0 0,
n m

u x y x x y y
 

    then 

     , ,U k h k n h m       

VI. if    
0

, , ,0 1xu x y D v x y     then 
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VII. if    
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, , ,0 1xu x y D v x y    then 
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VIII. if    
0

, , ,0 1yu x y D v x y     then 
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IX.  if ( , ) ( ) ( )u x y f x g y  and the function 

( ) ( )f x x h x  where 1   , ( )h x  has the 

generalized Taylor series expansion 

 0

0

( )
k

n

n

h x a x x






   and  

(a) 1    and   is arbitrary or  

(b) 1    ,  is arbitrary and 0na   for 

0,1,2,..... 1n m   , here 1m m   . 

Then (1) becomes 
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X.  if      ,v x y f x g y , the function ( )f x  

satisfies the conditions given in (IX) and 

   
0

, ,xu x y D v x y  ,then 
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where    , ,, , ,U k h V k h    and  , ,W k h  are the 

differential transformations of the functions 

   , , ,u x y v x y and  ,w x y respectively and 

 
1 ;

0 ;

k n
k n

k n



  


 

III. MATHEMATICAL PRELIMINARIES ON 

FRACTIONAL CALCULUS  

In the present analysis we introduce the following definitions 

[5, 6]. 

3.1 Definition: Let R   On the usual Lebesgue space 

  ,L a b integral operator I defined by 
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1
xd f x

I f x x t f t dt
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      and 

   0I f x f x  

is called Riemann-Liouville fractional integral operator of 

order 0  and a x b   

It has the following properties: 

I.  I f x
 exists for any  ,x a b  

II.    I I f x I f x     

III.    I I f x I I f x     

IV. 
 

 

1

1
I x x   



 


 


  

 

where    ,f x L a b , , 0    , 1    

3.2 Definition: The Riemann-Liouville definition of 

 fractional order derivative is 

   

 
   

0 0

1

0

1
,

n
RL n

x xn

xn
n

n

d
D f x I f x

dx

d
x t f t dt

n dx

 







 



 
  

 

where n  is an integer that satisfies 1n n   .  
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3.3 Definition: A modified fractional differential  

operator 
0

c

xD
 proposed by Caputo is given by  
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where  R   is the order of operation and n is an 

integer that satisfies   1n n   . 

It has the following two basic properties [7]: 

I. If  ,f L a b  or  ,f C a b  and 0   

then    0 0

c

x xD I f x f x   . 

II. If  ,nf C a b  and if 0   then  

   
   1
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0
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  ; 

1n n   . 

 

3.4 Definition: For m being the smallest integer that 

exceeds , the Caputo time-fractional derivative operator of 

order   0  , is defined as [8] 
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Relation between Caputo derivative and Riemann-

Liouville derivative: 
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Integrating by parts, we get the following formulae as given 

by [9] 
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II. For 1n   
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IV. TEST PROBLEMS 

 

In this section, we present four examples [10] to illustrate the 

applicability of Generalized Differential Transform Method 

(GDTM) to solve non linear time fractional differential 

equations.  

4.1 Example: We consider the following non-linear time 

fractional  partial differential equation  
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 ; 0t                                                                                     

subject to initial condition  ,0 6u x x ; xR 



where 
t








is the fractional differential operator(Caputo 

derivative) of order 0 1 .    

 

Applying   (1) with    0 0, 0,0x t  on (3) we obtain 
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and     1, ,0 6 1U k k     0,1,2,3,.......k       

                                                                                             (5)                                                                                                                                                                                                             

Utilizing (4) and (5), we obtain after a little simplification the 

following values of  1, ,U k h  for 0,1,2,3,...k  and 

0,1,2,3,...h   

 1, 0,1 0U   ;  
 

1,

216
1,1

1
U 


 

 
;  

 1, 2,1 0U   ;  1, 3,1 0U   ;  1, 2,2 0U   ;  

 1, 0,2 0U   ;  
   

3

1,

216
1,2

1 2 1
U 

 

   

;

 
 

       

2 5

1, 2 2

216 2 1 216
1,3 1

1 3 1 2 1
U 



  

    
  

       
and so on 

Using the above values of  1, ,U k h  for 

0,1,2,3,...k  and 0,1,2,3,...h  in (2), the solution of 

(3) is obtained as          
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                                                                                             (6)                                                                                         

4.2 Example:  We consider the following non-linear time 

fractional partial differential  equation  
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                                                                                             (7) 

                                                                                                                                                                           

where 
t








is the fractional differential operator(Caputo 

derivative) of order 0 1  . 

 

 Applying (2) with    0 0, 0,0x t   on (7) we obtain 
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and     1,

1
,0 1 1

6
U k k    ; 0,1,2,3,.......k 

      

                                                                                             (9)

   

                                                                                                  
Uutilizing  (8) and (9), we obtain after a little simplification 

the following values of  1, ,U k h  for 0,1,2,3,...k   and 

0,1,2,3,...h    

 1, 1,0 0U   ;  1,

1
,0    0,2,3,4,...

6
U k k     ; 
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11
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12 1
U 




 
;  
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1
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18 1
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235
5,1

12 1
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1,

34
3,1

9 1
U 




 
; 

 

and so on 

Using the above values of  1, ,U k h  for 

0,1,2,3,...k  and 0,1,2,3,...h  in (2) the solution of 

(7) is obtained as          
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4.3 Example:  We consider the following non-linear time 

fractional  partial differential equation  
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subject to initial condition  ,0 1u x  ; xR

               (11)                                                                                         

 

where 
t








is the fractional differential operator(Caputo 

derivative) of order 0 1  . 

Applying (1) with    0 0, 0,0x t   on (11) we obtain 
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and  1, ,0 1U k  ; 0,1,2,3,.......k 
                     

(13)

                                                                                         

 

Uutilizing (12) and (13), we obtain after a little simplification 

the following values of  1, ,U k h  for 0,1,2,3,...k   and 

0,1,2,3,...h 
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and so on 

Using the above values of  1, ,U k h  for 

0,1,2,3,...k  and 0,1,2,3,...h  in (2) the solution of 

(11) is obtained as          
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4.4 Example:  We consider the following non-linear time 

fractional partial differential  equation  

 
 

     3 2

3 2

2 2 3 4

, , , ,
,

2 2 2     ;  0

u x t u x t u x t u x t
u x t

t x x x

x t xt x t t





  

   
  

   

   
 

                                                                                                                        

 

subject to initial condition  ,0 1u x  ; xR 
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where 
t








is the fractional differential operator(Caputo 

derivative) of order 0 1  . 

 

Applying  (1) with    0 0, 0,0x t   on (15) we obtain 
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and  1, ,0 1U k  ; 0,1,2,3,.......k 
                     (17)                                                                                              

 

Uutilizing (16) and  (17), we obtain after a little 

simplification the following values of  1, ,U k h  for 

0,1,2,3,...k   and 0,1,2,3,...h 
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and so on

 Using the above values of  1, ,U k h  for 

0,1,2,3,...k  and 0,1,2,3,...h  in (2) the solution of 

(15) is obtained as          
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