
© 2023, IJCSE All Rights Reserved 19

International Journal of Computer Sciences and Engineering
Vol.11, Issue.10, pp.19-28, October 2023

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Research Paper

Neuro Fuzzy Xavier Technique for optimization of Time Quantum in

Scheduling Algorithm

Rajeev Sharma
1

, Atul Kumar Goel
2

, M.K. Sharma
3*

1Dept. of Computer Science, IIMT Engineering College, Meerut, India
2Dept. of Mathematics, A.S. (PG) College, Mawana, Meerut, India
3Dept. of Mathematics, Ch. Charan Singh University, Meerut-250004, India

*Corresponding Author: drmukeshsharma@gmail.com

Received: 03/Sept/2023; Accepted: 06/Oct/2023; Published: 31/Oct/2023. DOI: https://doi.org/10.26438/ijcse/v11i10.1928

Abstract: We drop-shipped a novel Round Robin Neuro-Fuzzy System (RRNFS) model for the decision makers, based on

neuro-fuzzy system for the processing of scheduling in a batch operating system. TS fuzzy model (Takagi & Sugeno, 1985)

implemented in the RRNFS proposed model to identify the ideal Time Quantum. Our proposed RRNFS model takes two

inputs: the total number of processes and the average burst time (ABT) of each process that is presented in the ready queue,

fuzzifying the input values, activate the necessary rules of the proposed neuro fuzzy controller, and then determines the best

Time Quantum for each process in the ready queue. Once Time quantum is calculated, every process will run on central

processing unit as per the allocated Time quantum reduces the context switching, turnaround and waiting time. We bespoke

the performance of the proposed model over date sets and compared our results with the classical round robin policy and

modified round robin using fuzzy logic scheduling algorithms. We developed the neuro fuzzy technic for Xavier Normal

function to minimize the error of the proposed model with the targeted time quantum.

Keywords: Neuro-fuzzy system (NFS), Time Quantum (TQ), Round robin (RR) scheduling, Ready queue (RQ), Xavier

Normal function.

1. Introduction

Multitasking [1] is an analytical extension of

multiprogramming [2]. In multitasking, several processes

usually competed for the CPU in the similar time. This state

arises when more than two process are running concurrently

in the ready state. The operating system component that

makes the decision is known as the scheduler, and the

algorithm it adopts is known as the scheduling algorithm [3].

There are many situations when scheduling algorithms are

needed. First, when a process exists. Second, when a process

blocks on input/output or semaphore. Third, when an I/ O

interruption occurs. Fourth, when a clock interruption occurs.

The main job of the scheduling algorithms is to keeps up the

CPU busy at all times and fair allocation of processor time to

every process. Whenever CPU is ideal, it selects the process

in RQ with the help of Short Term schedular [4]. The Short

Term Schedular select the process from RQ and allocate to

CPU burst time, so switching of the process from running

state to RQ or from waiting state to RQ are called Preemptive

Scheduling. Contrarily, termination of a process or switching

from RQ to waiting state is called Non-Preemptive

Scheduling [5]. Resources are allotted to a process in

preemptive scheduling for a short period of time. We can

state that it is priority-based scheduling since low priority

processes may starve if a high priority process frequently

enters in the ready queue [6]. Under Non-Preemptive

Scheduling, A process retains the CPU once it is assigned to

it until its termination its burst period or by moving to the

waiting state. It is not flexible in nature and not expensive.

Numerous algorithms are available for deciding the allocation

of process to CPU from ready queue. Different CPU

scheduling algorithms have different properties which helps

to selection of algorithm in particular situations. Some of

important algorithms are: First-come first-served (FCFS);

allocation of CPU to processes as per their arrival in ready

queue [7]. Implementation of this policy is managed by FIFO

(first in first out) queue. Shortest-Job-First scheduling (SJF);

this policy is based on execution time of process on CPU [8].

Minimum execution time process will run first other than

highest execution time process. It is also called shortest-next-

CPU-burst-algorithm. Priority scheduling algorithm; In this

approach, each process has a priority, and only the runnable

processes with the highest priority are permitted to run.

Processes with equal priority are scheduled in FCFS order.

Multilevel queue scheduling; It is appropriate for processes

that are categorized into various forms [9]. This approach

splits the ready queue into a number of queues according to

the different properties of processes like process type,

https://orcid.org/0000-0002-3354-558X
https://orcid.org/0009-0006-8093-3768
https://orcid.org/0000-0003-3071-5931
mailto:drmukeshsharma@gmail.com

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 20

memory size and process priority. Highest Response Ratio

Next the scheduling technique, the process with the highest

response ratio will be scheduled next [10]. Round Robin

scheduling is the best suitable for time sharing systems, in

which time quantum (TQ) play a significant role for the CPU

allocation time to process [11]. Processes are selected from

the ready queue (RQ) and assigned to the CPU. Ready queue

works as a circular queue in this approach. With round-robin

scheduling, each task shares an equal amount of CPU time.

Alam B. et al. designed a FIS to select the value of TQ by

using two inputs (number of process and ABT) and one

output (Time Quantum) [12]. Aburas A. A. et al. reduced the

jobs’ average lateness with respect to the internal deadline in

uniprocessor scheduling by using the fuzzy logic [13].

Preemption of the process was the main issue with RR

algorithm, even if the process needs few amounts of TQ to

complete its execution so Alam B. gave the solution of this

issue by using the FIS for Preemption (FISRR) for process

[14]. Datta L. developed a modified RR algorithm using

fuzzy logic for employment in real time and embedded

systems based on each process's externally determined

priority, comparative remaining CPU burst time, and

comparative waiting time, a new priority is given to it [15].

Lim S. et al. planned an intelligent CPU process scheduling

algorithm using FIS [16]. This study divided processes into

batch, interactive, and real-time and used the FIS to

determine the priority. Granam B. et al. employed the burst

time and static priority accessible to the CPU scheduler,

which dynamically classifies the priority of processes, to feed

a FIS [17]. Kalas and Deshpande studied the sepsis detection

in newborn infants using fuzzy inference system [18]. The

results showed that the average waiting time for the fuzzy-

priority scheduler was less than that for the priority and

round-robin schedulers. This study is proposed by Atique M.

et al., in which the use of ANFIS as a multimedia operating

system's support for the execution of both conventional and

multimedia programmes was presented [19]. Based on prior

decisions, this scheduler makes decisions. By enhancing

throughput, reducing waiting times, and reducing turnaround

times for a process, Trivedi J. A. et al. improved the

efficiency of RR scheduling [20]. This is accomplished by

combining neuro-fuzzy approach with already used

scheduling techniques. Nagargoje and Baviskar discussed

opportunities and challenges in handling big data analytics in

uncertain environment [21]. Benhammadi F. et al. investigate

the use of neuro-fuzzy and Bayesian reasoning to estimate

CPU load [22]. Sharma R. et al. proposed a modified RR

algorithm [23]. In which fuzzy rules are used to discover the

value of TQ but execution of process from RQ to CPU is

based on: after run the one cycle as per RR method, arranged

the processes in ascending order with their remaining

execution time and select the process with very short

remaining execution time to run compare to others.

The length of TQ is the most interesting issue with RR. Some

other issues which are also faced by this are as follow:

(1) It takes a certain amount of time to complete the

administrative tasks involved in switching from one

process to another process. It is also term as context

switching.

(2) It does not give higher priority for the urgent tasks.

(3) In this approach, determining the correct time quantum is

a quite challenging task.

(4) For processes with longer burst times, it causes the

starvation because they must repeatedly complete the

cycle.

(5) RR degrades to FCFS if the TQ is excessively large.

(6) This method spends more time on context switching.

In (RRNFS) using the Xavier normal function to improve

response time, average waiting time and average turnaround

time [24]. The major problem in RR is selection of TQ. Here,

neuro-fuzzy technique is used to estimate the predicted

optimal value of TQ. Neuro-fuzzy system is used the Takagi

& Sugeno approach to find the TQ [25]. Fuzzy logic

controller is also developed to represent the structure using a

Neural Network and this network is trained using the Back

propagation algorithm. Xavier Normal function is also

defined to reduce the error of RRNFS.

The following aspects shed light on the uniqueness of the

work done in this;

(1) A RRNFS model is designed to calculate the value of TQ

which reduces the context switch, waiting time and

turnaround time.

(2) Xavier normal function is used to calculate the optimum

value of weights.

(3) We designed a data set using the fuzzy inference system

(FIS) to train the Neural Network structure.

(4) In this proposed work, we gave the mathematical

formulation of RRNFS model.

(5) Numerical examples are used to show the applicability of

planned policy.

(6) We provided a comparison of the results of proposed and

the existing policies.

The present research work is categorized into eight segments.

In the first segment, we gave the primary introduction,

limitations of traditional RR and the uniqueness of proposed

model. We gave some basic terminology of proposed model

in second segment. In third segment, we described the

RRNFS model with its data flow diagram. In the fourth

segment, we defined the mathematical formulation and error

calculation of proposed model. Fifth segment illustrate the

data collection method for sample data. In sixth section, we

described the numerical computations and Comparison of

proposed with Existing Algorithms. Comparison the outcome

of proposed model with Existing Algorithms mentioned in

seventh segment. Conclusion of entire work and future work

of the proposed model given in eighth segment.

2. Basic terminology

2.1 Artificial Neural Networks

Artificial neural networks are also referred to concept of

artificial intelligence with neural network [26]. ANN is an

artificial intelligence technique that trains the computers to

analyse data similarly with the human brain functioning. It is

multi-layered structure network, having an input layer, one or

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 21

more hidden layers, and an output layer. Every neuron or

node connected with others neurons that’s have an associated

weights and bias value [27]. To learn and gradually increase

its accuracy, it relies on training data. Consider every node to

be a separate linear regression model, composed with input

data, weights, a bias (or threshold), and an output. The

equation (1) would resemble approximately like this:

1 1 2 2 3 3i iw bias w w w bias         (1)

output = f(α) = 1 if

1 1 1 10;0 0w b if w b      

Artificial neural networks can be categorized as (1)

Feedforward neural networks (2) Convolutional neural

networks (3) Recurrent neural networks. Figure 1. Shown the

architecture of ANN.

Figure 1. Architecture of ANN

2.2 Neural Fuzzy System
A fuzzy system that learns its parameters (fuzzy sets and

fuzzy rules) by processing data samples using a learning

algorithm based on or inspired by neural network theory is

known as a neuro-fuzzy system shown in figure 2. Neural

networks are excellent at pattern identification, whereas

Fuzzy logic handles imperfect or incomplete data well so it

can also deal with both structured and unstructured data. A

NFS can be seen of as a three-layers feedforward neural

network [28], where the first layer represents input variables,

the middle layer, which is hidden, represents fuzzy rules, and

the third layer represents output variables. (Fuzzy) connection

weights are used to encode fuzzy sets. The knowledge utilised

by the system, having the ability to learn, takes the form of

IF-THEN fuzzy rules. The predefining rules allow the system

to learn more quickly.

Figure 2. Architecture of Neural Fuzzy System

Batch mode of training, Back Propagation and Genetic

algorithm are used to train the Neuro-fuzzy system.

2.3 ANFIS (Adaptive Neural Fuzzy Inference System)
The Takagi and Sugeno approach-based neuro fuzzy system

is often referred to as ANFIS [29]. It uses a hybrid learning

algorithm. With a rule Rn represented as:

   
i in S T n n nR IFµ x AND µ y THEN f P x Q y C    (2)

Here n is total number of rules. Equation (2) if-then

conditions for n rules.
 iS and

 iT are n fuzzy membership

functions which is symbolized by µ in the antecedent part of

the rule
 nR and

 nP ,
 nQ ,

 nC are the linear parameters of

consequent part of the n
th

 rule.

2.4 Xavier Normal function

The performance of neural network played a vital role in AI

and deep learning etc. so to reach the optimal performance

levels, it needs a large amount of training. Wights are used to

reached at optimal performance levels and training of neural

network so initialization of weight value is crucial decision

because weights should not be very large or very small and

same. Weights should have good variance. Many techniques

are used to initialization of weights, Xavier Normal function

is one of them. It is often referred to as the "Xavier-Glorot

initialization" or the "Glorot normal initialization." Xavier

Glorot and Yoshua Bengio presented the Xavier normal

function in 2010 [24]. A layer's weights are initialised by the

Xavier normal function by selecting them from a Gaussian

distribution with a zero mean and a variance that is based on

the layer's number of input and output units. The variance is

computed specifically as follows in equation (2):

σ =
2

in outfan fan
 (3)

Where, σ represents the variance, infan denotes the input

on neurons and outfan indicates the output from neurons.

In short, Xavier technique is very effective in training of

neural network and widely used in practice.

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 22

3. Proposed model to find the optimal time

quantum

We have proposed a Round Robin Neuro-Fuzzy System

(RRNFS) model to find the optimal Time Quantum using the

Neuro fuzzy expert system. NFS has a multi-layered

structure. The RRNFS model used the concept of Neuro

fuzzy system, based on Takagi & Sugeno approach [30]. In

proposed model has multi-layer structure; layer one used two

inputs as (a) number of process (b) average burst time of all

process, layer two fuzzified the inputs with two membership

functions (for input one we have consider three linguistic

term as low, medium, high and for the second input which is

ABT consider three linguistic term as small, large, very large

so nine possible combinations of the input parameters), layer

three calculate the firing strength of rules, layer four

normalized the weight value, layer five computed the output

(yi= aiI1+biI2+ci) of each neuron; we used the Xavier Normal

technique to find the range for ai , bi and ci in layer five, layer

six compute the final output of the model.

3.1 Data flow diagram of proposed model

Figure 3. represented the flow of data in proposed policy.

Figure 3. Flow diagram for proposed model

4. Mathematical formulation of RRNFS

Let 1 and 2  be the two inputs and iM be the result for

each of the values of i=1, 2, 3, 4, 5, 6, 7, 8 and 9. Let
thi IF-

THEN rule of a RRNFS can be stated as;

Ri: IF 1 is 1 I and 2 is 2I then iM is

1 i iy a I + 2 i ib I c for i=1, 2, 3, 4, 5, 6, 7, 8 and 9. Where

I1 and I2 are alienated in to two groups which is shown in

figure 5.

Layer 1(Input layer): Layer 1 is referred to as the input

layer, we used a non-linear system that is a composite of

numerous linear or non-linear systems. Here we taken two

inputs with two membership function, which is shown in fig

for the inputs.

Layer 2 (Fuzzification): Layer 2 is referred to as a layer of

fuzzification [28] in which neurones are received an input and

these inputs than fuzzify this layer with some degree of

membership [13, 29]. Layer 1 and layer 2 are connected with

some connecting weights. The connecting weights are lies

between 0 and 1 so this connecting weight expressed in

normalized scale may having some other value in the real

scale and that particular value in real scale is going to

represent, that all the particular triangular membership

function distribution. This layer will work as input layer of

next layer which is layer 3 after the process of fuzzification.

Simply put, these are the inputs' membership values.

We used Triangular membership function in our work,

Membership function for N number of processes and average

burst time (ABT) inputs are shown in figure 4.

Figure 4. linguistic categorization of triangular membership function for

inputs

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 23

For N number of processes:

 

3.5
 3.5 1

4.5

5.5
 1 5.5

4.5

0 3.5 5.5

LW

if

P if

if and x





 




  




  


  



 

1
 1 5.5

4.5

10
 5.5 10

4.5

0 5.5 10

M

if

P if

if and x





 




 




  


 



 

5.5
 5.5 10

4.5

15
 1 0 15

5

0 5.5 15

H

if

P if

if and x





 




 




  


 



For ABT:

 

27
 27 2

29

31
 2 31

29

0 27 31

SM

if

P if

if and x





 




  




  


  



 

2
 2 31

29

60
 31 60

29

0 2 60

LG

if

P if

if and x





 




 




  


 



 

31
 31 60

29

90
 60 90

30

0 31 90

VL

if

P if

if and x





 




 




  


 



Layer 3 (AND operation layer): In third layer we got the

nine possible combinations of the input parameters. Now we

will work for the implementation the neurons lying in this

layer.

For example: 31 and 35 are the inputs of first neuron lying on

third layer so inputs are nothing but can say that
lwµ and

smµ will be used as actually the inputs so these two inputs

values will be multiplied just to find the firing strength or the

output of this layer x1= µ31* µ35 so by following this principal

we can find the firing strength of all neurons;

x2= µ32* µ37

x3= µ33* µ36

x4= µ34* µ38

so, the values of firing strength will be lying between 0 and 1.

Figure 5.0 shown the working of proposed RRNFS model.

Figure 5. Proposed structure of RRNFS model

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 24

Layer 4 (Normalized the weights): This layer normalized

the weight value which is received from the layer 3. The

normalised firing strength of a rule is determined by each

node in this layer and is designated by 1K , 2K ,

3 4K and K . That is, the thj node determines the

following formula to express the firing strength [29] of the

 rule in relation to all other rules:

1K :
µ31* µ35

µ31* µ35 µ32* µ37 µ33* µ36 µ34* µ38   

2K :
µ32* µ37

µ31* µ35 µ32* µ37 µ33* µ36 µ34* µ38   

3K :
µ33* µ36

µ31* µ35 µ32* µ37 µ33* µ36 µ34* µ38   

4K :
µ34* µ38

µ31* µ35 µ32* µ37 µ33* µ36 µ34* µ38   

Layer 5 (Output of each neuron): In fifth layer we will find

out, what should be the output of each of these particular

rules? Equation (4) play pivot role in to find the optimum

output. The output is nothing but
1 i iy a I +

2i ib I c (4)

Once you find the value of ia , ib and ic then the output can

also be calculated easily so use the Xavier Normal technique

to find the range of values for ai and bi:

Wij~N (0, σ) where σ =
2

in outfan fan
 ;

. ,infan No of input onneuron

 . outfan No of output fromneuron

After finding the value of yi, now calculate the output for i
th

neurons of fifth layer:

K *i i iO Y for i=1,2,3………..., where Ki is the output of

layer 4 and iY is the the consequent parameter set.

So, for the RRNFS model the output will be-

1 1 1K * ,O Y

2 2 2K *O Y ,

3 3 3K * ,O Y

4 3 3K *O Y

Layer 6(Overall output): This layer used for find the final

output of the network for one set of input parameters. The

sixth layer's function is to determine the net membership

grade U that represented the value of TQ, and this layer will

be used to finish the subsequent part of the fuzzy rule which

is as follow:

1 1 2 2 3 3 4 4K * K * K * K *U y y y y   

or

U =
4

 ii
o , for i=1, 2, 3, 4.

4.1 Error calculation in the RRNFS model

We used a method to calculate the error of received data from

layer six in equation (5);

e=
 

2

2

U T
 (5)

 Where, U is the final output that is represent the optimal

value of TQ and T is the targeted value, to reduce the error of

proposed model, we have to update the parameter

Table 1. sample data set for train the model

Number of
Processes(
N)

ABT TQ Number of
Processes(N)

ABT TQ

1

5 2.5 3 10 2.5

3 52 6.94 3 12 2.5

4 40 4.5 3 17 2.76

3 27 4.5 9 20 4.5

10 2 4.5 3 38 5.98

2 10 2.5 7 10 3.39

7 20 4.5 3 40 6.64

2 20 4.5 3 45 6.78

9 30 4.5 3 49 6.87

2 47 6.83 1 10 2.5

10 20 4.5 3 57 6.97

2 55 6.85 8 20 4.5

2 60 6.85 4 10 2.5

4 12 2.5 6 38 5.98

7 35 4.5 5 59 6.97

4 18 3.81 6 50 2.5

4 20 4.5 6 20 4.5

5 35 6.7 1 10 4.5

7 60 5.73 6 30 4.5

4 40 6.64 6 40 6.64

7 48 5.73 4 37 4.98

9 15 4.5 6 48 6.85

4 57 7.01 3 32 4.5

4 59 7.02 8 55 4.5

6 45 6.7 7 15 3.47

5 7 2.5 7 18 3.81

5 12 2.5 4 45 6.78

8 60 4.5 7 30 4.5

5 25 4.5 5 17 2.76

4 17 2.76 7 38 5.55

5 40 6.85 7 40 5.58

2 15 2.5 4 25 4.5

5 59 6.97 6 37 4.98

8 10 4.5 8 57 4.5

8 15 4.5 4 5 2.5

2 43 6.72 9 60 4.5

8 25 4.5 9 10 4.5

8 30 4.5 4 50 6.9

5 48 6.97 2 5 2.5

8 50 4.5 9 25 4.5

6 55 6.85 6 17 2.76

1 40 6.64 9 35 4.5

3 39 6.61 2 50 6.85

10 30 4.5 1 15 2.5

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 25

1 i iy a I +
2 i ib I c i.e., ia , ib and ic for each i=1, 2,

3, 4.

5. Data Collection Method

In this paper, we prepared the data set to train the model. We

designed the FIS using MATLAB to prepare the sample data

set. Two inputs like; N number of processes and average

burst time assigned to FIS for calculate the value of TQ. The

value of TQ is influenced by both input parameters. Different

inputs created the different value of TQ. The sample data set

is described in table 1. We used the more than 120 different

inputs for the formulation of small sample data set. In this, we

used the minimum number of processes; 1, maximum number

of processes;10 and minimum ABT; 2, maximum ABT; 60

for generating the value of TQ. However, the limit of number

of processes and ABT can increased to generate the large

sample data. Sample data help to train the model using the

neuro fuzz designer in MATLAB to find the optimum value

of TQ.

6. Numerical Computations

Layer1: No. of process (N)= 7 and average burst time (ABT)

= 30 are the inputs for Time Quantum.

Layer 2: After extracting the input values from the given

data, we must fuzzified them in order to perform further

calculations.

So, the membership values of given inputs are as follows:

For No. of process:
lwµ = 0.33 and

mµ = 0.67

For ABT:
lwµ = 0.034 and smµ = 0.97

Only two rules, out of all available rules, correspond to these

two inputs, will be applied in this situation. The fired rules

are as follow:

(1) If No. of process is low (LW) and ABT is large (LG) then

1 1 1 y a I + 1 2 1b I c .

(2) If No. of process is low (LW) and ABT is small (SM)

then 2 2 1 y a I + 2 2 2b I c .

(3) If No. of process is medium (M) and ABT is large (LG)

then 3 3 1 y a I + 3 2 3b I c .

(4) If No. of process is medium (M) and ABT is small (SM)

then 4 4 1 y a I + 4 2 4b I c .

Layer 3: The weights or the strength of the rules can be

determined as follows:

x1: (µ31* µ35) 0.33*0.034= 0.01122

x2: (µ32* µ37) 0.33*0.97= 0.34

x3: (µ33* µ36) 0.67*0.034= 0.023

x4: (µ34* µ38) 0.67*0.97= 0.65

Layer 4: Calculate the normalised firing strength of iK for

i=1, 2, 3, and 4 is as follow:

1 0.0112K  , 2 0.332K  , 3 40.0225 K and K =

0.635.

Layer 5: The different neuronal outputs of this layer can be

obtained as:

(We used Xavier Normal function to find the range of values

for ai and bi which is: 0 to 1 and the bias value= 1 for all)

O1: 1K *
1 1a I +

1 2 1b I c = 0.0112 *(0.01*7+0.1*30+0.1)

= 3.17

O2: 2K *
2 1a I +

2 2 2b I c = 0.332 *(0.2*7+0.1*30+0.2) =

4.6

O3: 3K *
3 1a I +

3 2 3b I c = 0.0225*(0.05*7+0.1*30+0.3)

= 3.6

O4: 4K *
4 1a I +

4 2 4b I c = 0.635*(0.2*7+.11*30+0.4) =

5.1

Layer 6: calculate the final output of the network for one set

of input parameters as:

U =
4

 ii
o , for i=1, 2, 3, 4.

So, U = 4.9

Now the find the value of optimal TQ = 4.9

For error calculation use the e=
 

2

2

U T

 

2
4.9 4.5

2



= 0.02

7. Comparison of the results

The given TQ was 45 but when we implemented the

RRNFS model, it provides the optimal value of TQ as 49.

The response time, turnaround time, and waiting time in

table 2. determined using the optimal TQ=49. The result

implementation of proposed model is represented in the

table 2. and the comparison result of RRNFS model with

RR and Modified RR using fuzzy logic is demonstrated in

Table 3 To organize, manage, and track tasks in a system, a

Gantt chart offers a graphical representation of process

scheduling. The Gantt chart illustrates how the processes

are executed successfully. Chart 1. represented the

performance evaluation of proposed model with existing

policies.

Table 2. Outcome implementation of proposed model

Process
Arrival

time

Burst

Time

Response

Time

Turnaround

Time

Waiting

Time

G1 0 12 0 12 0

G2 1 47 12 58 11

G3 2 19 57 76 57

G4 3 40 75 115 75

G5 4 16 114 130 114

G6 5 30 129 159 129

G7 6 46 158 204 158

Gantt Chart of proposed problem

G1 G2 G3 G4 G5 G6 G7

0 12 59 78 118 134 164 210

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 26

Average Response Time (ART) : 77.857

Average Turnaround Time (ATAT): 107.714

Average waiting Time (AWT): 77.7143

Table 3. Compression of result of RRNFS with existing algorithms using

first experimental data
Scheduling

approaches

Round

Robin

Modified RR using

Fuzzy logic
RRNFS

Average Response

Time 61.28 76.571 77.857

Average

Turnaround Time 126.28 128 107.714

Average Waiting
Time 96.286 98 77.714

Chart 1: Performance evaluation of proposed policy with existing

policy’s

7.1 Optimum TQ value on different inputs with error

Table 4. TQ value with different inputs

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Targeted

value

error

N=3

ABT=27

µM=0.56

µlw=0.45

µSM=0.14
µLG=0.86

x1=0.074

x2=0.486

x3=0.063
x4=0.387

1K =0.0776

2K =0.4768

3K =0.063

4K =0.383

1K *(0.2*3+0.3*27+0.1) =8.8

2K *(0.1*3+0.2*27+0.2) =5.9

3K *(0.3*3+0.2*27+0.3) =7.1

4K *(0.25*3+0.56*27+0.4) =3.84

U=5.41

T=4.5

0.417

N=4 ABT=25

µM=0.33
µlw=0.67

µSM=0.21

µLG = 0.8

x1=0.0693
x2=0.264

x3=0.1407

x4=0.536

1K =0.069

2K =0.261

3K =0.14

4K = 0.530

1K *(0.21*4+0.12*25+0.3) =4.14

2K *(0.15*4+0.13*25+0.1) =3.95

3K *(0.24*4+0.3*25+0.25) =8.71

4K *(0.31*4+0.1*25+0.13) =3.87

U=4.63

T=4.5

0.008

N=5 ABT=48

µM=0.11
µlw=0.89

µVL=0.59

µLG=0.41

x1=0.065
x2=0.046

x3=0.53

x4=0.37

1K =0.064

2K =0.045

3K =0.52

4K = 0.37

1K *(0.11*5+0.1*48+0.1) =10.2

2K *(0.12*5+0.1*48+0.2) =5.6

3K *(0.2*5+0.05*48+0.3) =3.7

4K *(0.25*5+0.08*48+0.4) =9.81

U=6.46

T=6.97

0.130

N=6

ABT=17

µH=0.11

µM=0.89

µSM=0.52
µLG=0.48

x1=0.0572

x2=0.0528

x3=0.4628
x4=0.4272

1K =0.0572

2K =0.0528

3K =0.4628

4K = 0.4272

1K *(0.1*6+0.05*17+0.1) =1.55

2K *(0.01*6+0.1*17+0.1) =1.86

3K *(0.1*6+0.07*17+0.1) =1.89

4K *(0.2*6+0.1*17+0.1) =3

U=2.34

T=2.76

0.087

N=8 ABT=10

µM=0.56

µlw=0.44

µLG=0.724
µSM=0.28

x1=0.41

x2=0.16

x3=0.32
x4=0.12

1K =0.41

2K =0.16

3K =0.32

4K = 0.12

1K *(0.1*8+0.2*10+0.2) =3

2K *(0.2*8+0.15*10+0.1) =3.2

3K *(0.3*8+0.2*10+0.16) =4.56

4K *(0.15*8+0.3*10+0.25) =4.45

U=3.76

T=4.5

0.292

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 27

N=9 ABT=35

µM=0.22

µH=0.78

µVL=0.14
µLG=0.86

x1=0.0308

x2=0.19

x3=0.11
x4=0.67

1K =0.031

2K =0.19

3K =0.11

4K = 0.67

1K *(0.1*9+0.02*35+0.1) =1.7

2K *(0.2*9+0.1*35+0.2) =5.5

3K *(0.12*9+0.1*35+0.2) =4.78

4K *(0.1*9+0.12*35+0.3) =5.4

U=5.24

T=4.5

0.273

Table 4 is used to show the result of calculated TQ value as

per assigned different-different inputs (number of processes

and ABT)

8. Conclusion and Future Work

The final consideration that we used the RRNFS model to

calculate the optimum value for TQ. When we applied the

optimum value of TQ in given experimental data then found

that the result of proposed model is far better than the RR and

Modified RR using Fuzzy logic. The proposed model reduces

the context switching, turnaround and waiting time. Xavier

Normal function played a key role to calculate the variance of

input neurons and output neurons for each layer that increased

the performance of proposed model. The complete study of this

paper provided evidence for the following points:

i. RRNFS model is used to calculate the best values for

TQ, preventing unnecessary context switching of process

schedular.

ii. We used the Xavier Normal function to calculate the

optimum value of weights for increased the performance

level in training neuro fuzzy inference system.

iii. We used the FIS to prepared the sample data set.

iv. We have compared the result with classic RR and

Modified RR using Fuzzy logic in the parameters of

average response time, average turnaround time and

average waiting time.

v. The suggested model has a high throughput, avoids

starvation and provides more complete and effective

solutions than the previous ones.

To enhance the performance of proposed model, we can use

some other parameters as inputs for neuro fuzzy inference

system in future. In short, we can say that proposed model

creates the new path with merging some other fuzzy

techniques to create an innovative hybrid model.

Conflicts of Interests: Authors have no conflict of interests.

Funding Declaration: No funding is granted for this research

work.

Author Contribution Declaration

Rajeev Sharma: Contributed to the conceptualization,

design, and creation of the technique, as well as the writing of

the first draft. was in charge of the verification of the

mathematical models and carried out the basic analysis of the

algorithm.

Atul Kumar Goel: Played a crucial part in putting the

developed approach to use and testing it, helped analyse the

results, and helped write and edit the manuscript.

M. K. Sharma: Provided fuzzy framework experience,

oversaw the research, helped with the numerical examples,

and significantly revised the final text. ensured the work’s

overall cohesion and scientific quality.

Each author has reviewed and given final approval to the text,

and they all agree to be responsible for all parts of the work,

ensuring that any concerns about the accuracy or integrity of

any portion of the work are duly investigated and addressed.

Acknowledgements; This work has been carried out under

the University Research Scheme Ref. number Dev. /1043

dated 29.06.2022.

References

[1]. A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating system

principles,” Wiley India Edition, 7th edition, 2006. ISBN: 978-81-265-

0962-1.
[2]. Y. A. Adekunle, Z. O. Ogunwobi, A. S. Jerry, B. T. Efuwape, S.

Ebiesuwa, and J. P. Ainam, “A comparative study of scheduling

algorithms for multiprogramming in real-time systems,” International
Journal of Innovation and Scientific Research, Vol.12, No.1, pp.180-

185, 2014. ISSN: 2351-8014.

[3]. N. Goel and R. B. Garg, “A comparative study of CPU scheduling
algorithms,” arXiv preprint arXiv: 1307.4165, 2013.

https://doi.org/10.48550/arXiv.1307.4165.

[4]. E. Kondili, C. C. Pantelides, and R. W. Sargent, “A general algorithm for
short-term scheduling of batch operations—I. MILP formulation,”

Computers & Chemical Engineering, Vol.17, No.2, pp.211-227, 1993.

https://doi.org/10.1016/0098-1354(93)80015-F.
[5]. W. Li, K. Kavi, and R. Akl, “A non-preemptive scheduling algorithm for

soft real-time systems,” Computers & Electrical Engineering, Vol.33,

No.1, pp.12-29, 2007.

https://doi.org/10.1016/j.compeleceng.2006.04.002.

[6]. C. Keerthanaa and M. Poongothai, “Improved priority-based

scheduling algorithm for real-time embedded systems,” in 2016
International Conference on Circuit, Power and Computing

Technologies (ICCPCT), pp.1-7, 2016. DOI:

10.1109/ICCPCT.2016.7530188.
[7]. B. Nie, J. Du, G. Xu, H. Liu, R. Yu, and Q. Wen, “A new operating

system scheduling algorithm,” in Advanced Research on Electronic

Commerce, Web Application, and Communication: International
Conference, ECWAC 2011, Guangzhou, China, April 16-17, 2011.

Proceedings, Part I, Springer Berlin Heidelberg, pp.92-96, 2011. ISSN

1865-0929.
[8]. M. Hamayun and H. Khurshid, “An optimized shortest job first

scheduling algorithm for CPU scheduling,” J. Appl. Environ. Biol. Sci,
Vol.5, No.12, pp.42-46, 2015. ISSN: 2090-4274.

[9]. V. Chahar and S. Raheja, “Fuzzy based multilevel queue scheduling

algorithm,” in 2013 International Conference on Advances in

Computing, Communications and Informatics (ICACCI), pp.115-120,

2013. DOI: 10.1109/ICACCI.2013.6637156.

[10]. A. Moallemi and M. Asgharilarimi, “A fuzzy scheduling algorithm
based on highest response ratio next algorithm,” in Innovations and

Advanced Techniques in Systems, Computing Sciences and Software

International Journal of Computer Sciences and Engineering Vol.11(10), Oct 2023

© 2023, IJCSE All Rights Reserved 28

Engineering, Springer Netherlands, pp.75-80. DOI: 10.1007/978-1-

4020-8735-6_15.

[11]. A. Singh, P. Goyal, and S. Batra, “An optimized round robin scheduling
algorithm for CPU scheduling,” International Journal on Computer

Science and Engineering, Vol.2, No.7, pp.2383-2385, 2010. ISSN:
0975-3397.

[12]. B. Alam, “Finding time quantum of round robin CPU scheduling

algorithm using fuzzy logic,” in 2008 International Conference on
Computer and Electrical Engineering, pp.795-798, 2008. DOI:

10.1109/ICCEE.2008.89.

[13]. A. A. Aburas and V. Miho, “Fuzzy logic-based algorithm for
uniprocessor scheduling,” in 2008 International Conference on

Computer and Communication Engineering, pp.499-504, 2008. DOI:

10.1109/ICCCE.2008.4580654.
[14]. B. Alam, “Fuzzy Round Robin CPU Scheduling Algorithm,” J. Comput.

Sci., Vol.9, No.8, pp.1079-1085, 2013.

[15]. L. Datta, “A new RR scheduling approach for real-time systems using

fuzzy logic,” International Journal of Computer Applications, Vol.119,

No.5, 2015.

[16]. S. Lim and S. B. Cho, “Intelligent OS process scheduling using fuzzy
inference with user models,” in New Trends in Applied Artificial

Intelligence: 20th International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, IEA/AIE 2007,
Kyoto, Japan, June 26-29, 2007. Proceedings 20, Springer Berlin

Heidelberg, pp.725-734, 2007. DOI: https://doi.org/10.1007/978-3-540-

73325-6_72.
[17]. B. Granam and H. ElAarag, “Utilization of Fuzzy Logic in CPU

Scheduling in Various Computing Environments,” in Proceedings of the

2019 ACM Southeast Conference, 2019.
doi.org/10.1145/3299815.3314463.

[18]. M.S. Kalas, Nikita D. Deshpande, “Sepsis Detection in newborn infants

- Diagnosis using fuzzy inference system- A Review”, International
Journal of Computer Sciences and Engineering, Vol.9, Issue.5, pp.43-

46, 2021. https://doi.org/10.26438/ijcse/v9i5.4346

[19]. M. Atique and M. S. Ali, “A novel adaptive neuro fuzzy inference
system-based CPU scheduler for multimedia operating system,” in

2007 International Joint Conference on Neural Networks, pp.1002-

1007, 2007. DOI: 10.1109/IJCNN.2007.4371095.
[20]. J. A. Trivedi and P. S. Sajja, “Improving efficiency of round robin

scheduling using neuro fuzzy approach,” International Journal of

Research and Reviews in Computer Science, Vol.2, No.2, pp.308,

2011.
[21]. Priya Nagargoje, Monali Baviskar, “Uncertainty Handling In Big Data

Analytics: Survey, Opportunities and Challenges”, International Journal
of Computer Sciences and Engineering, Vol.9, Issue.6, pp.59-63, 2021.

https://doi.org/10.26438/ijcse/v9i6.5963

[22]. F. Benhammadi, Z. Gessoum, and A. Mokhtari, “CPU load prediction
using neuro-fuzzy and Bayesian inferences,” Neurocomputing, Vol.74,

No.10, pp.1606-1616, 2011.

https://doi.org/10.1016/j.neucom.2011.01.009.
[23]. R. Sharma, A. K. Goel, M. K. Sharma, N. Dhiman, and V.N. Mishra,

“Modified Round Robin CPU Scheduling: A Fuzzy Logic-Based

Approach,” in Applications of Operational Research in Business and
Industries: Proceedings of 54th Annual Conference of ORSI,

Singapore: Springer Nature Singapore, 2023.

https://doi.org/10.1007/978-981-19-8012-1_24.
[24]. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pp.249-

256, 2010.
[25]. D. Nauck, “Neuro-fuzzy systems: review and prospects,” in Proceedings

of Fifth European Congress on Intelligent Techniques and Soft

Computing (EUFIT’97), pp.1044-1053, 1997. URL: fuzzy.cs.uni-

magdeburg.de/nauck.
[26]. A. Krogh, “What are artificial neural networks?” Nature

biotechnology, Vol.26, No.2, pp.195-197, 2008.

https://doi.org/10.1038/nbt1386.
[27]. R. Fullér, “Neural fuzzy systems,” ISSN 0358-5654, 1995.

[28]. C. T. Lin and C. G. Lee, “Neural fuzzy systems: a neuro-fuzzy

synergism to intelligent systems,” Prentice-Hall, Inc., 1996.
https://dl.acm.org/doi/abs/10.5555/230237.

[29]. M. N. M. Salleh, N. Talpur, and K. Hussain, “Adaptive neuro-fuzzy

inference system: Overview, strengths, limitations, and solutions”, in
Data Mining and Big Data: Second International Conference, DMBD

2017, Fukuoka, Japan, July 27–August 1, 2017, Proceedings 2,

Springer International Publishing, pp.527-535, 2017.

https://doi.org/10.1007/978-3-319-61845-6_52.

[30]. L. A. Zadeh, G. J. Klir, and B. Yuan, “Fuzzy sets, fuzzy logic, and fuzzy
systems: selected papers,” Vol.6, World scientific, ISBN 9810224214.

AUTHORS PROFILE

Mr. Rajeev sharma is the Assistant

professor in IIMT Engineering college,

Meerut. He has more than 15 years

teaching as well as administrative

experience. He has a conference

Proceeding on Modified CPU Scheduling

Process to his Credit published by

Springer nature. He has attended many

conferences, workshops, FDP’s and symposium and

presented research papers.

Dr. Atul Kumar Goel is the Professor of

Mathematics in A.S. (P.G.) College

Mawana, Meerut, affiliated to Chaudhary

Charan Singh University, Meerut. He has

more than 23 years teaching as well as

administrative experience. He qualified

JRF. He was awarded Ph.D. in

Mathematics. More than 40 research

papers in reputed journals, book chapters in edited books are

to his credit. He has attended many conferences, workshops

and symposium and presented research papers. Prof. Atul

goel has delivered many invited talks and chaired sessions in

India and Abroad.

Prof. Mukesh Kumar Sharma: Prof.

Mukesh Kumar Sharma is Professor of

Mathematics in Chaudhary Charan Singh

University, Meerut. He has more than 20

years teaching as well as administrative

experience. He was a merit holder. He

qualified NET, JRF and GATE exam in

2001, 2002 respectively. He was awarded

Ph.D. in 2007 on the topic “A Study of Fuzzy aspect to

System Reliability. He has guided seven Ph.D. students and

eleven M. Phil. Projects. More than 100 research papers in

reputed journals, book chapters in edited books in Springer,

Taylor & Francis and proceedings are to his credit. He has

also completed two research projects awarded by U.P

Government under Research & Development and Centre of

Excellence Awarded by U.P. Government. He has many

awards and fellowship to his credit. He has been the

reviewers of many leading journals of IEEE, Elsevier,

Springer and many more publication houses. He has

organized many conferences, seminars and workshops on

Fuzzy Logic, Optimization, MATLAB, Soft Computing and

Artificial Intelligence. He has attended many conferences,

workshops and symposium and presented research papers.

Prof. Mukesh Kumar Sharma has delivered many invited

talks and chaired sessions in 2015 India and Abroad.

