

 © 2017, IJCSE All Rights Reserved 253

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-6 E-ISSN: 2347-2693

ASID: Application Specific Time Efficient Inline Deduplication on Cloud

Storage

Jyoti J. Malhotra

1*
, Jagdish W. Bakal

2

1
Dept. of Computer Science and Engineering, G. H. Raisoni College of Engineering, Nagpur, India

2
Dept. of Computer Science and Engineering, G. H. Raisoni College of Engineering, Nagpur, India

*Corresponding Author: jyoti.j.malhotra@gmail.com

Available online at: www.ijcseonline.org

Received: 10/May/2017, Revised: 26/May2017, Accepted: 17/Jun/2017, Published: 30/Jun/2017

Abstract— As the third party cloud storage services provide fewer maintenance facilities, various enterprises and organizations

are attracting towards them. This results in the huge amount of data outsourcing over cloud storage servers. Uncontrolled data

proliferation is the huge issue. This increasing backup data volume needs better data management technique to deflate the

storage space for cloud servers. Data deduplication is one of the most popular data management approaches, which does not

allow storing duplicate data over the storage space. This paper presents the application specific inline data deduplication

system on cloud server side along with the efficient and optimized file upload and download operations. The system frames

and compares utility based and object map based duplicate content searching techniques on the file and chunk algorithmic

levels. Map object plays an important role in quick searching for the duplicates as it evades read operations of the existing files.

For downloading the file, the system also provides the functionality of data integrity checking at server side for cloud users to

verify the originality of file. The performance of the system is evaluated on random files in the form of flat files, structured

files, and unstructured files. The experimental results prove the performance of deduplication system in terms of time and

memory usage.

Keywords— cloud, application, deduplication, integrity, performance, inline

I. INTRODUCTION

The increasing amount of data across multiple platforms has

drastically increased the demand of Cloud storage

requirements. Storage on the cloud is the data representation

where the digital data is stored in virtualized logical pools,

more specifically saying, it is stored in multiple physical

storages which span multiple servers and the physical

environment is owned, administered and managed by a

hosting company. The Cloud Storage Providers are

responsible for monitoring data availability, data

accessibility, and data security. Cloud computing involves

both software and hardware which are distributed to users as

a service by the service providers.

The cloud storage service providers allow the service

consumers to store their large quantity of data while

considering the factors of the memory space and network

bandwidth requirements. With this huge data, arises the

problem of memory space; to resolve the problem of memory

storage space and manage the data efficiently, data

deduplication plays a significant role in cloud computing.

This technique manages the scalability and consistency of

data.

Data deduplication [1] is the smart compression method

which is used for removing the repeated copies of files or

data by keeping a unique copy in the storage system to

reduce the space occupation. It also enhances the time

efficiency of search results. It is one of the fastest rising

segments in the storage ecosystem. Deduplication identifies

unwanted duplicate or similar files which are replicated over

the data repository; deletes the additional copy and stores the

single instance of the file by assigning the “reference

pointer” for the duplicates. Nowadays deduplication has

taken a strong position in the data world and is implemented

for databases [2], [3], media and non-media files

[4],[5],[6],[7],[8]. It is widely used for rapid, consistent, and

cost-efficient data backup and recovery. Deduplication

process is categorized into multiple levels namely; algorithm

level, source (client) level, and target (server) level [1].

With respect to algorithmic level, duplicate removal process

goes through major two elimination pipelines namely, File

Level Approach (FLA), Chunk Level Approach (CLA). FLA

is the traditional way of checking duplicates on the basis of

their hash values. We have preferred using file byte contents

to find the duplicates over their hash values. As stated in

Equation (1), files F are read by the backup process, to obtain

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 254

their bytes , which is transferred to the storage layer, ST

for deduplication processing <DD> to eliminate the

redundant copies and finally updating the results into the

Metadata, MD.

F

→ ST

→ MD (1)

In CLA, files F are transported to chunking layer CHUNK,

for applying intermediate chunk transformation <i_chT>

where the file is separated into static or dynamic size chunks;

these chunks are then forwarded to storage layer ST. ST

extracts the bytes of the chunks <chB> and performs

Deduplication <DD> to eliminate redundant copies in order

to update the results into the Metadata, MD as shown in

Equation (2).

F → CHUNK

→ ST

⟨ | ⟩
→ MD

(2)

There are a few challenges of deduplication system as listed

below:

1. The tradeoff between duplicate removal and metadata

overhead: This is the biggest challenge of deduplication

system. For example, we consider that the file is divided into

a number of small sized chunks for deduplication checking,

which results in a better saving of memory space as more

duplicates are detected. On the other hand, it is not cost

effective because it requires a huge metadata index to keep

records of each file chunks. Normally metadata is loaded on

RAM, but if its size is large, it needs to store on disk, which

increases the I/O operations and its cost.

2. The tradeoff between duplicate removal and scalability:

More duplicates are removed if more similar chunks are

found. But these chunk comparison increases the

performance complexity as a number of files are growing.

Sometimes it leads to bottleneck on deduplication results.

3. Reliability: Deduplication on cloud storage system should

be reliable. Such system must be adaptable to the problems

of a node failure, loss of data, corruption of files etc. To

recover the loss of data, some replications should be

maintained in the system.

4. Security and privacy: In the cloud, various types of data

are shared by the users which arise the problem of security

and privacy. For security and privacy, some confidentiality

and authentication techniques should be applied to cloud

storage system.

In this paper, we propose the following features-

1. Application-specific, server-side inline deduplication

(ASID) with file and chunk level algorithmic strategy.

2. Backup window, an important asset for calculating the

time required for the duplicate check is minimized by

storing metadata in the serialized map objects.

3. File integrity is achieved by security tags. Security

tags are the combination of user and file details

encoded into 4-digit keys and are shared between

client and server (cloud) for verifying the file veracity.

4. Successful unique file upload and download

operations.

Here, we present the study of previous related work done on

the deduplication techniques for backup storage in next

section II. The details of algorithmic level and target level

deduplication implementation are discussed in Section III, in

which we can see system architecture and different modules

description. In section IV, we have included the

implementation and evaluation results and overall conclusion

of the work is stated in section V.

II. RELATED WORK

There are several Proof of Storage (PoS) systems which are

used to validate the data files which are stored on the cloud

server. Merely all the developed techniques are designed for

the singular user environment, while for a multi-user

environment, there is no such provision available. A specific

multi-user cloud framework must have the secure

deduplication at the user end. In the paper [9] authors

developed the idea of duplicate dynamic proof of storage as

well as implemented an efficient construction known as

DeyPoS for getting dynamic PoS as well as secure cross-user

deduplication concurrently. In paper [10] cryptographically

assured as well as the effectual system has been designed by

authors for customers to challenge their ownership of file

using three algorithms namely, the key generation between

client and server, proof generation by setting a challenge and

verification of client owning the file. Developed system [10]

uses the system on spot verification where the customer just

needs to get to small parts of the first document, dynamic

coefficients as well as randomly selected lists of the original

files for verifying the file ownership.

Present hierarchical authorized deduplication framework

allows the cloud service providers to sort the users based on

their privileges. In paper [11] authors developed a new

system which secures hierarchical deduplication that

maintains the file, fingerprint and query privacy. The

developed system also backs authorized searching and

dynamic privilege modifications. Inline deduplication is

concentrated on secondary storage or on cloud storage, for

storing the data as well as for providing some simple

application interfaces. The application cannot directly access

these interfaces. Despite the fact that the file system provides

various application interfaces as well as a number of

applications, developing the file system for in-line

deduplication has significant issues in I/O path and read

operations. File read operation involves activities such as

obtaining fingerprints in file recipes gets the address by

verifying fingerprint index as well as obtaining related block

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 255

of information in the disk drive. This can maximize the

latency in a read operation. In paper [12] to minimize the

latency, authors have developed Low-Read-Latency File

System (LRLFS) for the in-line deduplication. After

conducting a number of tests authors claim that LRLFS has a

low read latency in reading path.

With respect to deduplication and its scalability, in paper

[13] authors have concentrated on the time as well as space

needs for the data deduplication. Authors also elaborate the

parallel version of chunk level deduplication along with

metadata summary. Each node holds the fingerprint summary

of all other nodes in memory. At the time of chunk

verification, each node verifies the data with chunk metadata.

If same chunks are found, the system deletes the repeated

chunks. The issue of false positives in the duplicate check is

not addressed here. Another high-performance inline

deduplication over the cloud is proposed by [14] where

authors have integrated the concepts of block level

deduplication, multi-cache structure, and bloom filter

indexing on solid state drives (SSD). A short stint of

encryption, decryption and verification server is illustrated in

[15]. With respect to integrity and reliability in the cloud,

authors in [16] propose the utilization of public key

authentication mechanism to perform auditing without

referring the local copy and content of data, thus reducing the

communication overhead.

III. SYSTEM OVERVIEW

The proposed system, ASID consists of following two main

entities:

1. Client: Client is the registered and authenticated user, who

can access the storage system of cloud server to store their

data files. This offloading of data files will reduce the space

complexity at the user side.

2. Cloud server: Server is responsible for storing and serving

the data files of clients. It performs data deduplication to

liberate the storage space. The server also maintains the log

table for all entries of files uploaded by the clients. The

server performs data deduplication to enhance the storage

capacity.

A. Architectural view

The system consists of two deduplication enabled modules

namely; file upload and file download. The system also

provides the file integrity check.

1. File Upload

Figure 1 describes the graphical architecture of file upload

procedure with data deduplication processing at cloud server

side.

At client side, the files which are to be uploaded are filtered

based on their file type. This step identifies the type of files

such as flat text, pdf, word, XML or any other type. This file

filtration is done to achieve efficient content based

deduplication as every file type has its own metadata and

content structure for storing the data. In this system, the

server performs FLA, where a whole file is processed to byte

to byte deduplication check for pdf, doc, XML and various

other types of file. While it performs CLA deduplication

check for the flat text files. In CLA, equal sized chunks are

obtained from the text file and client module launches these

chunks of flat files to the server. This reduces the chunking

overhead at the server side.

Figure 1: Architectural view for file uploads

At the time of file upload request, a user tag (userTag) and

file verification tag (fileTag) is computed at the user side.

Initially, username and password are bounded together to get

a 4-digit unique (userTag). For fileTag; username, password,

file name and its hash are bound in a string. After that, the

code of this string is computed and further converted to get a

4-digit unique number. This 4-digit userTag and fileTag acts

File Filtration

File Chunking

Client

ASID

Log

Table

Duplicate Removal

Process

Byte-to-byte comparison

Metadata

File Storage

Cloud Server

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 256

as verification codes and are used at the time of file

download to verify the authenticity and integrity of the file.

At Cloud server side: After receiving the request for file

upload from the client, the server performs duplicate removal

process before saving it at its storage directory.

Deduplication helps in saving the space of cloud storage.

The possibility of removing the duplicates by deleting the

duplicate file can be seen from the probability distribution

among four state variables capturing the facet of FB (File

bytes match), CB (Chunk bytes match), DUP (Duplicate) and

DEL (Delete) as illustrated in Figure 2.

Figure 2: Probability distribution states for duplicate removal

The probability P(fb) denotes that there is a file level byte

match. P(cb) denotes that there is a chunk level byte match.

P(dup|fb,cb) denotes that there is a probability of getting a

duplicate match, given both FB and CB matches; stating the

fact that two files are duplicates depends only on the fact that

their contents are duplicates and/or their chunks are

duplicates. P(del | dup) denotes the probability of deleting a

file given that those files are duplicates.

The joint probability of all variables is the product of the

individual probabilities is as stated in Equation (3) and (4).

P(fb, cb, dup, del) =

 P(fb) P(cb) P(dup | fb, cb) P(del | dup)

(3)

i.e.

P(fb, cb, dup, del) =

 P(fb) P(cb) ∏i=(fb,cb) P(dup | i) P(del | dup)

(4)

We have considered CB for flat text files type and FB for any

other file type.

In previous system [17], a check for the duplicate file was

based on the hash values [18] of the file content. This method

did not give fair justice to the structured type of files such as

doc, pdf, etc.; where file content includes the metadata

header, storing the details of last accessed time, last modified

time, and author details. The hash method produces different

hash values even if the file is opened followed by a few

changes and then saving back to the original form. This

change is because of the header details which updates the

modification time on every alteration. Hence, this type of

hash value transformation makes the structured files

unsuitable candidates for hash comparison. The hash method

also does not support the text highlighting and metadata

change feature. The working of duplicate removal process

with the non-hashed content based method is briefed in

Algorithm (1).

We have tested the redundancy of the content using two

methods namely, utility based deduplication (UD) and map

based deduplication (MD). The utility based method uses the

library which compares the documents in text and image

mode; however, every check using this method requires a

number of file activities such as, opening the file, reading the

contents, checking the contents, etc. Though it gives an

appropriate result, there is a downside of this method; every

time application needs to perform I/O operations which

increase the time complexity of the system and resource

utilization. To overcome this drawback, we put forward to

use the content bytes for duplicate checking at the server

side.

Algorithm 1: File upload duplicate removal process

Input: File F, File bytes fbytes, Client details, key for tag

generation

Output: Unique file storage

Begin FileUpload

 fileType ← extract_Filetype <F>

 userTag ← generateTag <client details, key>

 fileTag ←generateTag <client details, F, key>

 if (FileMap is empty) then

 Store <F, fileType> //Store file to respective file storage

 Update <FileMap, fileType> object instance

 Update user logs;

 else

 FileMap[] ← get existing metadata details (as per file type)

 for each (fileMapBytes present in the FileMap)

 if (fbytes == fileMapBytes) then

 File is duplicate; Do not store the copy

 Update ReferencePointers;

 Update the user logs;

 else

 New file; Store <F, fileType>

 Update <FileMap, fileType> object instance

 Update user logs

 end if

 end for

 end if

End FileUpload

Once the file is received at the server, metadata is scanned

for some previous values in order to make a lookup. If

metadata is empty, the file is directly stored in the cloud

without a duplicate check. With non-empty metadata; byte

contents of the file are compared with the existing files

metadata contents. ReferencePointers are created for

FB

CB

DU DE

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 257

duplicate files and unique files are stored in the respective

file storage directory based on its file type. On every upload,

user’s log files are updated with the details such as- file

name, its reference, date and upload time. This log file is

referred at the time of file download for data integrity and for

assuring that the client is downloading the original file which

is not modified or tampered on the cloud.

Optimized metadata search is accomplished by implementing

the serialized object map instances for every file type. This

metadata file object map, FileMap contains the details of

files along with the file bytes and is created at the time of

first file upload. When a new file upload request arrives, this

object map is de-serialized for the duplicate check. If there

are any new entries, this object map is updated with the new

values. Use of object map helps to achieve fair duplicate

detection without any read complexities and unnecessary I/O

access.

2. File download and Integrity check

Algorithm (2) and (3) computes few steps for the file

download process along with data integrity checking. On the

file download request, cloud server performs userTag

authentication. Later, server ensures the username and the list

of files uploaded by that user in the log table. According to

file download request, the server retrieves the number of files

associated with the requesting user name from log table. The

server checks the file reference- fileRef in ReferencePointers

data structure if fileRef is found then the particular file or

block is sent to the user by accessing its respective reference

pointer(s) and the entries of FileMap Otherwise, server

searches FileMap for the corresponding file based on its type

and the file is sent for the successful download.

Algorithm 2: File download process

Input: Filename to be downloaded fname, userTag, and client

username uname

Output: Respective file

Begin FileDownload

 flag ← authenticateUserTag <userTag>

 if (flag is true) then

 fileRef ← searchReference (ReferencePointers)

 if (fileRef is found) then

 Send file client (FileMap[], fileRef, fileType)

 else

 Send file to client (FileMap[], fName, fileType)

 end if

 else

 Invalid client for file download

 end if

 End FileDownload

The integrity of the file validation is illustrated below in

Algorithm (3).

Algorithm 3: File Integrity check

Input: Filename fname, fileTag and user Logs

Output: Boolean value {true, false} on file modification

Begin FileIntegrity

 status ← checkModificationStatus (userLogs)

 if (status is same) then

 flag ← verifyTags (fileTag)

 if (flag is true) then

 File is not modified

 else

 File is modified

 end if

 else

 File is modified

 end if

End FileIntegrity

On receiving the file from the server, the user can ensure the

integrity of the file by sending a request to the cloud server.

In response, cloud server accepts the request and checks user

log record. This record contains the details of file upload

such as user name, file name, last upload time, last

modification time and other file attributes. The system reads

the modification time of user’s log and modification time of

the file at cloud server. If it matches a second level integrity

check is done by accessing fileTag of both the files. A tag

and attribute match conveys that file is not tampered at the

server side and the user is provided with the original file.

IV. IMPLEMENTATION AND EVALUATION

Standard benchmarks for deduplication efficiency are not

available; as DD performance depends on the amount of

duplicate data content. To evaluate the performance of ASID,

we have conducted the experiment with CloudZone storage.

Cloud framework was simulated with CloudZone, which is

the cloud-based storage system. It allows the users to store

data, retrieve data along with simultaneous read and write

operations of data. To maintain the integrity of data, we have

imposed userTag and fileTag verification. Data files are

stored on a cloud on different volumes of data for different

types of file.

To evaluate the performance of the system, we conducted

operations like file upload, file download with different type

and size of files, and file integrity check. The work was

tested with four sets of data-D1, D2, D3, D4. In the first set,

we uploaded unique and duplicate pdf files of specific sizes

of KBs and MBs, followed by word files, text files and other

types of file in the second, third and fourth dataset. An inline

check on the duplicates was done before saving the files on

the storage. In Figure 3, we see the amount of duplicate

detection in terms of DD ratio (pre_DD size / post_DD size)

and DD percentage (amount of duplicate detection and its

removal). DD ratio is bounded between the scale 1 to 4 for

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 258

DD percentage range 0% to 70%. For dataset D1, the

recorded DD ratio was 1.37 with 27% duplicate removal.

The documented ratio and percentage for data sets D2, D3,

and D4 were 2.42, 1.24, 1.52 and 58.6%, 20%, and 34.25%

respectively.

Figure 3: Deduplication ratio and percentage for given four sets of

data

Figure 4 plots the runtime memory usage of the ASID for

both the methods UD and MD. It is tested on various file

upload instances (I1 to I10). The current runtime of the file

upload instance is measured and is presented in the

logarithmic form. The runtime occupied by both the methods

is almost same. UD and MD methods occupy almost the

same runtime with a slight variation in the memory usage.

This variation is bounded in the range from 5% to 20% and is

also dependent on the file sizes and the external processes

and resources such as CPU, disk and memory usage.

Figure 4: Memory usages for UD and MD for file upload instances

from datasets

Figure 5 shows the file upload time comparison of UD versus

MD-based system. Required time to identify duplicates at the

time of file upload with both the methods is measured in

nanoseconds and the time is transformed to log scale to avoid

the high skewed distributions of the time required for

uploading various files of different type and sizes. Map based

deduplication method MD takes less time as compared to UD

method. UD performs duplicate checking with various tasks

such as opening a file, reading the contents and perform a

duplicate check based on the data content. The time required

for all these operations increase the overall time for UD

method. While on another side, MD performs an optimized

search by encapsulating the file details in the map object;

which is referred for the duplicate verification and removal.

For given file instances (I1 to I10).; with MD, required time

falls in the logarithmic range of 6 to 7.5 and for UD it is in

the range of 9 to 10.

Figure 5: Logarithmic upload time for UD Vs MD on file instances

from datasets

The UD method shows the logarithmic range in 9 to 10 and

MD method’s time range goes in 6 to 7.5 with a percentage

difference of 25%. Therefore, it can be distinguished that the

MD approach works better over the UD approach in the

ASID; thereby reducing the backup window which is one of

the essential inline deduplication challenges.

Figure 6: Logarithmic upload time for UD Vs MD on the datasets

Overall time required to upload the dataset files is shown in

Figure 6. Files are uploaded with the FLA and CLA

algorithmic pipelines. We see that time required with MD is

less as compared to the upload time with UD method for all

the datasets. The time difference percentage between two

methods for four datasets is 25.47%, 11.63%, 43.47% and

9.1% respectively.

Along with file upload time, we have also measured the

average time required for file download and the file integrity

check. As can be referred from Algorithm 2 and 3, we use 4-

digit userTag and fileTag for verifying the authenticity and

integrity of the files to be downloaded. Figure 7, plots the

cumulative distribution of time in milliseconds needed for

generating the tags. The time required for userTag generation

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1
.0

2
.0

3
.0

4
.0

Datasets (D1,D2,D3,D4)

D
D

 R
a

ti
o

1
0

3
0

5
0

7
0

D
D

 %

DD Ratio

DD %

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

File Instances

L
o

g
 o

f
T

im
e

(n
a

n
o

s
e

c
o

n
d

s
)

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

UD
MD

2
4

6
8

1
0

1
2

1
4

File Instances

F
il
e

 u
p

lo
a

d
 t
im

e
(l

o
g

 o
f
n

s
)

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

UD
MD

D1 D2 D3 D4

Datasets

L
o
g
 o

f
T

im
e
(n

a
n
o
s
e
c
o
n
d
s
)

0
2

4
6

8
1

0
1

2
1

4

D1 D2 D3 D4

0
2

4
6

8
1

0
1

2
1

4

UD

MD

UD

MD

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 259

is less than 50ms. fileTag generation varies between the

range 10 ms to 130 ms. When compared to userTag

generation, fileTag generation takes little additional time

because it involves the hash calculation of the file content

along with other details of the user.

Figure 7: Cumulative distribution of time required for user and file

tag generation for file integrity check

Figure 8 shows the graphical sketch of the spread of time

required for file download and the file integrity check.

Required time for various file instances is shown in the

enclosed range of milliseconds. Time with respect to file

download and file integrity are represented in the left and

right whiskers respectively. Median time required for file

download is 6000ms with lower whisker below 2000ms and

higher whisker near to 10000 ms. This means for some files

download time was below 2000ms and for other files, it was

in the range from 2000 to 10000 ms. On the left whisker, we

can depict an outlier towards 14000ms for downloading files

of larger size. File download time depends on the factors

considering file size, metadata size, metadata search and

number of file references.

Figure 8: Box plots distribution of quartile values of time required

for file download and integrity check

Median time required for file integrity check is slightly

above 4000ms with lower whisker near to 2000ms and

higher whisker near to 10000 ms. This means for some files

download time was below 2000ms and for other files, it was

in the range from 2000 to 8000 ms. On the right whisker, we

can see an outlier towards 10000ms an exceptional value

required for large size files.

V. CONCLUSION

This paper presents the time and memory efficient, inline data

deduplication system on the cloud using map based object for

quick duplicate detection. Experiments are performed on the

files using FLA and CLA approaches. The evaluation analysis

illustrates that for file upload operations, the proposed MD

approach demonstrates 8% to 12% improved performance

over UD approach, thus reducing the backup window time

required for performing deduplication storage. As file maps

are stored in the form of the object there are less file read

operations and disk hits. The system is also enhanced with the

data integrity checking for file downloads where 4-digit

security tag computations are used to verify the original

content. The experimented results confirm the duplicate

removal percentage of 20%, 27%, 34% and 58.6% for the

respective datasets across the users. In addition to that, the

integrity of the file is confirmed in a minimum amount of

time duration which includes the verification of user and file

tags.

ACKNOWLEDGMENT

We wish to show our sincere gratitude to everyone involved

in the progress of this paper.

REFERENCES

[1] N. Mandagere, P. Zhou, M.A. Smith, S. Uttamchandani,

“Demystifying data de-duplication”, In the Proceedings of the

ACM/IFIP/USENIX Middleware’08 Conference Companion,

ACM, Belgium, pp. 12-17, 2008.

[2] Y. Jiang, C. Lin,W.Meng, C. Yu, A. M. Cohen, N. R. Smalheiser,

“Rule-based deduplication of article records from bibliographic

databases”, Database(Oxford)-The Jouornal of Biological

Databases and Curation, 2014.

[3] M. Carvalho, A. H. Laender, M.A. Goncalves, A. S. da Silvaet,

"A genetic programming approach to record deduplication."

IEEE Transactions on Knowledge and Data Engineering, Vol. 24,

Issue 3, pp.399-412, 2012

[4] Y. Li, K. Xia, “Fast Video Deduplication via Locality Sensitive

Hashing with Similarity Ranking”. In the Proceedings of the

2016 International Conference on Internet Multimedia

Computing and Service, ACM, China, pp.94-98, 2016.

[5] O. Murashko, J. Thomson, H. Leather, "Predicting and

Optimizing Image Compression." In the Proceedings of the 2016

ACM on Multimedia Conference, Amsterdam, The Netherlands,

pp. 665-669, 2016.

[6] D. Kim, S. Song, B.Y. Choi, “SAFE: Structure-aware file and

email deduplication for cloud-based storage systems”. In Data

Deduplication for Data Optimization for Storage and Network

Systems. Springer International Publishing. pp.97-115, 2016.

[7] X. Du, W. Hu, Q. Wang, F. Wang, "ProSy: A similarity based

inline deduplication system for primary storage." In the

proceedings of 2015 IEEE International Conference on

Networking, Architecture, and Storage (NAS) Boston, USA, pp.

195-204, 2015.

20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (ms)

D
is

tr
ib

u
ti
o
n
 o

f
T

im
e

File Tag

User Tag

File Tag

User Tag

File Tag

User Tag

File_Download File_Integrity

2000

4000

6000

8000

10000

12000

14000

T
im

e
(m

s
)

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 260

[8] A. S. Agrawal, J. Malhotra, “Clustered Outband Deduplication

on Primary Data” In the proceedings of 2015 IEEE International

Conference on Computing Communication Control and

Automation (ICCUBEA 2015), Pune, India, pp. 446-450, 2015.

[9] K. He, J. Chen, R. Du, Q. Wu, G. Xue, X. Zhang, "DeyPoS:

Deduplicatable Dynamic Proof of Storage for Multi-User

Environments," IEEE Transactions on Computers, Vol. 65,

Issue. 12, pp. 3631-3645, 2016.

[10] C. Yang, J. Ren, J. Ma, "Provable ownership of file in de-

duplication cloud storage," Security and communications

network journal, Vol. 8, Issue. 14, pp. 2457-2468, 2013.

[11] X Yao, Y. Lin, Q. Liu, Y. Zhang, "A secure hierarchical

deduplication system in cloud storage," In the proceedings of

IEEE/ACM 24th International Symposium on Quality of Service

(IWQoS), Beijing, China, pp. 1-10,2016.

[12] Y. Zhou, Y. Deng, Y. Li, J. Xie, "Reducing the read latency of

in-line deduplication file system," In the proceedings of IEEE

34th International Performance Computing and Communications

Conference (IPCCC), Nanjing, China, pp. 1-2, 2015.

[13] G. Wang, Y. Zhao, X. Xie, L. Liu, "Research on a Clustering

Data De-Duplication Mechanism Based on Bloom Filter," In the

proceedings of IEEE International Conference on Multimedia

Technology(ICMT, 2010), Ningbo, China, pp. 1-5, 2010.

[14] J. Wang, Z. Zhao, Z. Xu, H. Zhang, L. Li, Y. Guo, "I-sieve: An

inline high performance deduplication system used in cloud

storage." IEEE transactions, Tsinghua Science and Technology,

Vol. 20, Issue. 1, pp. 17-27, 2015.

[15] Z. Wen, J. Luo, H. Chen, J. Meng, X. Li, J. Li, "A Verifiable

Data Deduplication Scheme in Cloud Computing," In the

proceedings of International Conference on Intelligent

Networking and Collaborative Systems, Salerno, Italy, pp. 85-90,

2014.

[16] M.S. Sulthana, T. Samatha, V. Sravani, A. Mahendra, “Multiple

Auditing Schemes with Integrity and Reliability in Cloud

Computing”. International Journal of Computer Sciences and

Engineering (IJCSE) Vol. 5, Issue.5, pp. 1-6, 2017.

[17] J. Malhotra, J. Bakal "FiLeD: File Level Deduplication

Approach". International Journal of Computer Trends and

Technology (IJCTT) Vol. 44, Issue. 2, pp.74-79, 2017.

[18] Network working group, RFC 3174 - US Secure Hash

Algorithm-1, September 2001.

Authors Profile

Jyoti J. Malhotra is M.E. in Computer

Science and Engineering from the SPPU

University Pune in 2005. She has 15+ years

of teaching experience. She is pursuing her

Ph.D. degree in Computer Science and

Engineering; RTM Nagpur University under

the guidance of J. W. Bakal. Her research

interest lies in Data Storage patterns, Big Data, Software Testing

and Theory of Computation. She has worked in C, Java, and Linux

Programming. She is the life member of Computer Society of India.

She has publications in National, International conferences and

Journals like IEEE Conference, Springer Conference, etc.

Jagdish W. Bakal received M. Tech. (EDT),

from Dr. Babasaheb Ambedkar Marathwada

University, Aurangabad. Later, He

completed his Ph.D. in the field of Computer

Engineering from Bharati Vidyapeeth

University, Pune. He is presently working

as Principal at the S.S. Jondhale College of

Engineering, Dombivali (East) Thane, India. In the University of

Mumbai, he was on honorary assignment as a chairman, board of

studies in Information Technology and Computer Engineering. He

is also associated as chairman or member of Govt. committees,

University faculty interview committees, for interviews, LIC or

various approval works of institutes. He has more than 27 years of

academics experience including HOD, Director in earlier

Engineering Colleges in India. His research interests are Telecomm

Networking, Mobile Computing, Information Security, Sensor

Networks and Soft Computing. He has publications in journals,

conference proceedings in his credit. During his academic tenure, he

has attended, organized and conducted training programs in

Computer, Electronics & Telecomm branches. He is a Professional

member of IEEE. He is also a life member of professional societies

such as IETE, ISTE INDIA, CSI INDIA. He has prominently

contributed in the governing council of IETE, New Delhi India.

.

