
 © 2015, IJCSE All Rights Reserved 236

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Issue-5 E-ISSN: 2347-2693

Latency Equalization as a New Network Service Primitive in an

Interactive Network Application

RAJU V

Department of Computer Science, Arignar Anna Govt. Arts College,

Villupuram – 605 602

www.ijcseonline.org

Received: Apr /25/2015 Revised: May/07/2015 Accepted: May/19/2015 Published: May/30/ 2015

Abstract- Multiparty interactive network applications such as teleconferencing, network gaming, and online trading are

gaining popularity. In addition to end-to-end latency bounds, these applications require that the delay difference among

multiple clients of the service is minimized for a good interactive experience. We propose a Latency Equalization (LEQ)

service, which equalizes the perceived latency for all clients participating in an interactive network application. To effectively

implement the proposed LEQ service, network support is essential. The LEQ architecture uses a few routers in the network as

hubs to redirect packets of interactive applications along paths with similar end-to-end delay. We first formulate the hub

selection problem, prove its NP-hardness, and provide a greedy algorithm to solve it. Through extensive simulations, we show

that our LEQ architecture significantly reduces delay difference under different optimization criteria that allow or do not allow

compromising the per-user end-to-end delay. Our LEQ service is incrementally deployable in today’s networks, requiring just

software modifications to edge routers.

Keywords : Latency equalization, Interactive network, Delay difference in networks, NP-Hardness

INTRODUCTION

The Increased availability of broadband access

has spawned a new generation of netizens. Today,

consumers use the network as an interactive medium for

multimedia communications and entertainment. This

growing consumer space has led to several new network

applications in the business and entertainment sectors. In

the entertainment arena, new applications involve multiple

users participating in a single interactive session, for

example, online gaming and online music (orchestra) . The

commercial sector has defined interactive services such as

bidding in e-commerce and telepresence. Depending on

the number of participants involved, interactive

applications are sensitive to both end-to-end delay and

delay difference among participants. Minimizing the delay

difference among participants will enable more real-time

interactivity. End-to-end delay requirements can be

achieved by traffic engineering and other QoS techniques.

However, these approaches are insufficient to address the

needs of multiparty interactive network applications that

require bounded delay difference across multiple clients to

improve interactivity.

LATENCY EQUALIZATION (LEQ)

A service that Internet service providers (ISPs)

can provide for various interactive network applications.

Compared to application-based latency equalization

solutions, ISPs have more detailed knowledge of current

network traffic and congestion, and greater access to

network resources and routing control. Therefore, ISPs can

better support latency equalization routing for a large

number of players with varying delays to the application

servers. This support can significantly improve game

experience, leading to longer play time and thus larger

revenue streams.

Network support for LEQ is complementary to

server-side delay compensation techniques. Since network-

based LEQ service can reduce both delay and delay

difference among participants of the interactive

applications, the application servers can better fine-tune

their performance.

Example - In online gaming, the delay difference

experienced by gamers significantly impacts game quality

To improve the interactive experience, game servers have

even implemented mechanisms by which participating

players can vote to exclude players with higher lag times.

In distributed live music concerts , individual musicians

located at different geographic locations experience

perceptible sound impairments introduced by latency

differences among the musicians, thus severely degrading

the quality of the music. In e-commerce, latency

differences between pairs of shopping agents and pricing

agents can result in price oscillations leading to an unfair

advantage to those pairs of agents who have lower latency.

PREVIOUS WORK

In online gaming, the delay difference

experienced by gamers significantly impacts game quality.

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(236-242) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 237

To improve the interactive experience, game servers have

even implemented mechanisms by which participating

players can vote to exclude players with higher lag times.

In distributed live music concerts , individual musicians

located at different geographic locations experience

perceptible sound impairments introduced by latency

differences among the musicians, thus severely degrading

the quality of the music. In e-commerce, latency

differences between pairs of shopping agents and pricing

agents can result in price oscillations leading to an unfair

advantage to those pairs of agents who have lower latency.

PREVIOUS TECHNIQUES USED
Dead reckoning, bucket synchronization

mechanism, time warp synchronization scheme were used

in the previous works.

ISSUES IN THE PREVIOUS WORK

DEAD RECKONING
Some gaming clients implement dead reckoning,

a scheme that uses previously received event updates to

estimate the new positions of the players. Dead reckoning

has the drawback that the prediction error increases

significantly with increasing network delays. In one racing

game, where estimating the position of the players is

critical, it was shown that the average prediction error

using dead-reckoning was 17 cm for a delay of 100 ms and

60 cm for a delay of 200 ms, a factor of 3.5 [24]. Client-

side solutions are also prone to cheating. Players can hack

the compensation mechanisms or tamper with the

buffering strategies to gain unfair advantage in the game.

BUCKET SYNCHRONIZATION MECHANISM

The received packets are buffered in a bucket, and

the server calculations are delayed until the end of each

bucket cycle. The performance of this method is highly

sensitive to the bucket (time window) size used, and there

is a tradeoff between interactivity versus the memory and

computation overhead on the server.

TIME WARP SYNCHRONIZATION SCHEME

 In the time warp synchronization scheme [10],

snapshots of the game state are taken before the execution

of each event. When there are late events, the game state is

rolled back to one of the previous snapshots, and the game

is reexecuted with the new events. This scheme does not

scale well for fast-paced, high-action games because

taking snapshots on every event requires both fast

computation and large amounts of fast memory, which is

expensive.

PROBLEM DEFINITION

In online gaming, the delay difference

experienced by gamers significantly impacts game quality

[6]–[8]. To improve the interactive experience, game

servers have even implemented mechanisms by which

participating players can vote to exclude players with

higher lag times. In distributed live music concerts [2],

individual musicians located at different geographic

locations experience perceptible sound impairments

introduced by latency differences among the musicians,

thus severely degrading the quality of the music. In e-

commerce, latency differences between pairs of shopping

agents and pricing agents can result in price oscillations

leading to an unfair advantage to those pairs of agents who

have lower latency [3]. Previous work on improving online

interactive application experiences considered application-

based solutions either at the client or server side to achieve

equalized delay [9]–[11]. Clientside solutions are hard to

implement because they require that all clients exchange

latency information to all other clients. They are also

vulnerable to cheating [7]. Server-side techniques rely on

the server to estimate network delay, which is not

sufficiently accurate [12] in some scenarios. Moreover,

this delay estimation places computational and memory

overhead on the application servers [13], which limits the

number of clients the server can support [1]. Previous

studies [8], [14]–[16] have investigated different

interactive applications, and they show the need for

network support to reduce delay difference since the prime

source of the delay difference is from the network. The

importance of reducing latency imbalances is further

emphasized when scaling to wide geographical areas as

witnessed by a press release from AT&T.

REQUIREMENT SPECIFICATION

 Illustration of Basic LEQ Hub Routing Our

deployment scenario is within an ISP network. The ISP

can leverage the proposed LEQ routing architecture to host

multiple interactive applications or application providers

on the same network. The network-based LEQ architecture

is implemented using a hub routing approach: Using a

small

number of hubs in the network to redirect application

packets, we equalize the delays for interactive applications.

To explain the basic LEQ architecture, we consider a

single administrative domain scenario and focus on

equalizing application traffic delays between the different

client edge routers and the server edge routers without

considering access delay. Based on the application’s LEQ

requirements, the application traffic from each client edge

router is assigned to a set of hubs. Client edge routers

redirect the application packets corresponding to the LEQ

service through the hubs to the destined servers. By

redirecting through the hubs, application packets from

different client edge routers with different delays to the

servers are guaranteed to reach the servers within a

bounded delay difference LEQ Routing Architecture To

implement the hub routing idea, our LEQ architecture

involves three key components.

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(236-242) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 238

 1.LEQ SERVICE MANAGER:
 The LEQ service manager serves as a centralized

server to decide hub selection and assignment.We choose

an offline hub selection algorithm. This is because an

online hub selection algorithm would require significant

monitoring overhead and fast online path calculation to

keep pace with client dynamics (clients join and leave

applications) and network dynamics (failures and transient

network congestion). The offline algorithm assumes the

presence of clients at all edge routers. The inputs to the

algorithm are the server edge router locations, network

topology, and the propagation delay. The service manager

selects a group of routers to serve as hubs for each

client edge router and sends this information of the

assigned hubs (IP addresses) to the client edge routers.

client, and thus provide more reliable paths in the face of

transient congestion or link/node failure. However, these

additional equalized-latency paths are realized by a small

compromise in the delay difference that can be

achieved.We study this tradeoff through our dynamic

simulation setting in Section V-F. Comparison to

Alternative Network-Based Solutions The LEQ

architecture is scalable to many clients and applications

with only minor modifications to edge routers.We compare

LEQ architecture to other possible network-based

solutions to implement latency equalization.

2.BUFFERING BY EDGE ROUTERS:

 One obvious approach of using the network to

equalize delays is to buffer packets at the edge routers.

This would require large buffers for each interactive

application, making the router expensive and power

inefficient . Edge routers also need complex packet-

scheduling mechanisms that: 1) take into account packet

delay requirements, and 2) cooperate with other edge

routers to decide how long to buffer these packets. These

modifications introduce significant changes to the normal

operation of today’s routers. Our LEQ architecture can

reduce the delay difference (with and without

compromising delay) without any modification of the

routing infrastructure.

3.SOURCE ROUTING:

 One could use source routing to address the

problem of latency equalization. Source routing [29] can

be used by the sender (i.e., the client or the client edge

router) to choose the path taken by the packet. However,

this requires that all clients are aware of the network

topology and coordinate with each other to ensure that the

delay differences are minimized. This function is harder to

implement than our proposed LEQ architecture.

4. SET UP MPLS PATHS:

We can set up MPLS paths with equalized latency

between each pair of client and server edge routers. This

approach is more expensive than our LEQ architecture in

that it requires MPLS paths to be configured. (and are the

number of client and server edge routers, respectively).

This solution does not scale well for large numbers of

client and server edge routers.

LEQ IN THE PRESENCE OF ACCESS NETWORK

DELAY

The latency difference in interactive applications

also arises from the disparity in the access network

delays.Multiple clients may connect to the same client

edge router through different access networks. Access

network delay depends on the technology used, and the

current load on the lastmile link [30], [31]. For different

access network types, the average access network delay

can be: 180 ms for dial-up, 20 ms for cable, 15 ms for

asymmetric digital subscriber line (ADSL), and negligible

for fiber optic service (FiOS).4 In our LEQ architecture,

we account for this disparity of access network types by

grouping clients into latency equivalence groups.5 We

provide different hubs for each latency group to achieve

latency equalization among all the clients. When a client

3The increased end-to-end application delay for some

clients is a small price to pay for a richer interactive

session. 4We assume servers are connected to the network

on dedicated high-speed links and thus do not have access

delay. 5Latency equivalence groups could be set up for

delay variations within an access network type if stateful

delay measurements are implemented at the edge router.

HOSTING APPLICATIONS IN A CONTENT

DISTRIBUTION NETWORK

In today’s Internet, many content distribution

networks (CDNs) have become the major contributor for

interdomain traffic [32]. These CDNs may also host

servers for interactive applications. In this scenario, the

application traffic from the clients must traverse a transit

ISP and a CDN to reach the application server. Achieving

LEQ under these two different administrative domains is

challenging. There are two possible scenarios. The first

scenario is a cooperative environment, where the ISP and

the CDN cooperate to provide LEQ service within their

respective domains. In this cooperative environment we

consider the application of the LEQ architecture over the

combined topology of both providers. Therefore, similar to

the single administrative domain, the LEQ architecture can

significantly reduce delay differences. The second scenario

is the service agnostic peering environment where the

CDN and the transit ISP do not have any knowledge of

topology and routing in the other domain and do not

cooperate in placing hubs. In this case, the CDN treats

users coming from the transit ISP with differing delays at a

border router as similar to users with different access

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(236-242) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 239

delays. Our evaluation in Section V shows that we can

indeed reduce delay differences significantly with only the

application hosting provider supporting the LEQ routing

service.

LATENCY EQUALIZATION ARCHITECTURE

LEQ routing in a single administrative domain.

We achieve LEQ routing by selecting a few routers as

hubs and directing interactive application traffic through

these hubs. Next, we extend the basic LEQ architecture to

support access network delay and multiple administrative

domains (e.g., across a content distribution network and

ISPs).

ILLUSTRATION OF BASIC LEQ HUB ROUTING

Fig. 1, and are both assigned two hubs. To illustrate the

advantage of our LEQ routing concept on real networks,

we conducted experiments on the Abilene [25] network in

VINI test bed [26] as shown in Fig. 2. We set up a server

at the Washington DC node and measured the delay 2In

contrast, since OSPF weights are set for traffic engineering

goals [18] and not necessarily the shortest latency paths, if

we assume the default paths based on OSPF weights are

(14 ms) and (10 ms), the delay difference is 4 ms. Our

evaluations on large ISP networks in Section V show that

we can reduce delay difference compared to latency-based

shortest path routing.

LEQ ROUTING ON ABILENE NETWORK.

ALGORITHMS FOR LATENCY EQUALIZATION

The key component of our LEQ architecture is the

hub selection algorithm, which focuses on the problem of

hub selection and the assignment of hubs to the client edge

routers. Hubs are selected with the goal of minimizing the

delay difference across all client edge routers. We first

formulate the basic hub selection problem without

considering access delay and prove that it is NP-hard and

inapproximable. Therefore, we propose a greedy heuristic

algorithm to solve this basic problem and extend the

algorithm to handle access delays. We show that delay

differences can be significantly reduced using the selected

hub nodes as compared to shortest-path routing.

Formulating the Basic Hub Selection Problem

Complexity of the Basic Hub Selection Problem

Greedy Hub Selection Algorithm and a Special Case

Hub Selection With Access Delays

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(236-242) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 240

DISCUSSION AND ANALYSIS

We evaluate our LEQ routing architecture using

both static and dynamic scenarios on ISP network

topologies. In the static case, we only consider propagation

delays, and this corresponds to the scenario of a lightly

loaded network. We also evaluate the delay difference

under different optimization policies both with and without

compromising the delay of individual clients, and different

network settings such as considering access network delay

andmultiple administrative domains. In the dynamic case,

we evaluate the LEQ routing architecture under transient

congestion. In each simulation scenario, we compare the

performance of the LEQ routing scheme to that of shortest-

path routing (OSPF).

SIMULATION SETUP

For our network simulations, we use large ISP

network topologies such as AT&T and Telstra. These

topologies were obtained from Rocketfuel [35]. For the

dynamic case, we consider the Abilene network topology

[25]. LEQ Without Compromising End-to-End Delay We

first explore the potential of the LEQ routing architecture

to discover latency equalized paths, under the optimization

constraint that the end-to-end delays of individual clients

are not compromised.

CONCLUSION AND FURTHER WORK

The LEQ routing architecture and algorithms

presented in this paper clearly provide a pathway for

networks to support scalable and robust multiparty

interactive applications. Based on the evaluation of our

LEQ architecture, we conclude that, with only minor

enhancements to the edge routers, provider networks can

easily support and enhance the quality of multiparty

interactive applications. We show that the LEQ scheme

can support different optimization policies that can achieve

overall application performance in terms of latency

equalization both with and without compromising end-to-

end application latencies.

REFERENCES

[1] D. Bauer, S. Rooney, and P. Scotton, “Network

infrastructure for massively

distributed games,” in Proc. NetGames, 2002, pp. 36–43.

[2] A. Kapur, G.Wang, P. Davidson, and P. R. Cook,

“Interactive network media: A dream worth dreaming?,”

Organized Sound, vol. 10, no. 3, pp. 209–219, 2005.

[3] A. R. Greenwald, J. O. Kephart, and G. Tesauro,

“Strategic pricebot dynamics,” in Proc. ACM Conf.

Electron. Commerce, 1999, pp. 58–67.

[4] “Cisco telepresence solutions,” Cisco, San Jose, CA

[Online].

 [5] L. Pantel and L. C. Wolf, “On the impact of delay on

real-time multiplayer games,” in Proc. NOSSDAV, New

York, 2002, pp. 23–29.

[6] S. Zander and G. Armitage, “Empirically measuring

the QoS sensitivity of interactive online game players,” in

Proc. ATNAC, Dec. 2004, pp. 511–518.

[7] J. Brun, F. Safaei, and P. Boustead, “Managing latency

and fairness in

networked games,” Commun. ACM, vol. 49, no. 11, pp.

46–51, Nov.

2006.

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(236-242) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 241

SAMPLE CODE

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace Client

{

 public partial class CLIENT : Form

 {

 public CLIENT()

 {

 InitializeComponent();

 }

 private void CLIENT_Load(object sender, EventArgs

e)

 {

 }

 private void button1_Click(object sender, EventArgs e)

 {

 //TimeSpan t = TimeSpan.FromSeconds(secs);

 if (lsthub.SelectedItem == null)

 MessageBox.Show("Select Hub");

 else

 {

 lblmes1.Text = "Client Node String Time:" +

System.DateTime.Now.ToString("h:m:s:ms");

 lblmes2.Text = "Message Send Successfully";

 DateTime clienttime = System.DateTime.Now;

 string node = "";

 for (int i = 0; i < lsthub.SelectedItems.Count; i++)

 {

 if (lsthub.Items[i] == "191.128.2.1")

 {

 System.Threading.Thread.Sleep(500);

 node = "1";

((Hub1)Application.OpenForms["Hub1"]).lab1.Text =

"Last Update receieved from " + lblip.Text;

 ((Hub1)Application.OpenForms["Hub1"]).lab2.Text =

"Client Node #:" + node + txtmessage.Text;

 ((Hub1)Application.OpenForms["Hub1"]).lab3.Text =

"Message Send Successfully";

 //lblmes1.Text = "Client Node String

Time:" + System.DateTime.Now.ToString();

 //lblmes2.Text = "Message Send

Successfully";

 }

 if (lsthub.Items[i] == "191.128.2.2")

 {

 System.Threading.Thread.Sleep(500);

 node = node + ":2";

 ((Hub2)Application.OpenForms["Hub2"]).lab1.Text =

"Last Update receieved from " + lblip.Text;

((Hub2)Application.OpenForms["Hub2"]).lab2.Text =

"Client Node #:" + node + txtmessage.Text;

((Hub2)Application.OpenForms["Hub2"]).lab3.Text =

"Message Send Successfully";

 //lblmes1.Text = "Client Node String

Time:" + System.DateTime.Now.ToString();

 //lblmes2.Text = "Message Send

Successfully";

 }

 if (lsthub.Items[i] == "191.128.2.3")

 {

 System.Threading.Thread.Sleep(500);

 node = node + ":3";

((Hub3)Application.OpenForms["Hub3"]).lab1.Text =

"Last Update receieved from " + lblip.Text;

((Hub3)Application.OpenForms["Hub3"]).lab2.Text =

"Client Node#:" + node + txtmessage.Text;

((Hub3)Application.OpenForms["Hub3"]).lab3.Text =

"Message Send Successfully";

 }

 if (lsthub.Items[i] == "191.128.2.4")

 {

 System.Threading.Thread.Sleep(500);

 node = node + ":4";

 ((Hub4)Application.OpenForms["Hub4"]).lab1.Text =

"Last Update receieved from " + lblip.Text;

 ((Hub4)Application.OpenForms["Hub4"]).lab2.Text =

"Client Node #:" + node + txtmessage.Text;

 ((Hub4)Application.OpenForms["Hub4"]).lab3.Text =

"Message Send Successfully";

 //lblmes1.Text = "Client Node String

Time:" + System.DateTime.Now.ToString();

 //lblmes2.Text = "Message Send

Successfully";

 }

 }

 System.Threading.Thread.Sleep(500);

 node = node + ":4";

((Server)Application.OpenForms["Server"]).lab1.Text =

"Last Update receieved from " + lblip.Text;

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(236-242) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 242

((Server)Application.OpenForms["Server"]).lab2.Text =

"Client Node #:" + node + txtmessage.Text;

((Server)Application.OpenForms["Server"]).lab3.Text =

"Client to Server Receiving Time:" +

System.DateTime.Now.ToString("h:m:s:ms");

 DateTime servertime = System.DateTime.Now;

 TimeSpan diff = (clienttime -

servertime).Duration();

((Server)Application.OpenForms["Server"]).lab4.Text =

"Minimal Time=:" + diff.Hours.ToString() + ":" +

diff.Minutes.ToString() + ":" + diff.Seconds.ToString() +

":" + diff.Milliseconds.ToString();

 // lblmes2.Text = "Message Send Successfully";

 }

 //if (lsthub.SelectedItem == null)

 // MessageBox.Show("Select Hub");

 //else

 //else if (lsthub.Text == "191.128.2.2")

 //{

((Hub2)Application.OpenForms["Hub2"]).lab1.Text =

"Last Update receieved from " + lblip.Text;

 //

((Hub2)Application.OpenForms["Hub2"]).lab2.Text =

"Clent Node #:1:" + txtmessage.Text;

 //

((Hub2)Application.OpenForms["Hub2"]).lab3.Text =

"Message Send Successfully";

 // lblmes1.Text = "Client Node String Time:" +

System.DateTime.Now.ToString();

 // lblmes2.Text = "Message Send Successfully";

 //}

 //else if (lsthub.Text == "191.128.2.2")

 //else if (lsthub.Text == "191.128.2.3")

 //else if (lsthub.Text == "191.128.2.4")

 }

 }

}

