
 © 2019, IJCSE All Rights Reserved 252

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-7, July 2019 E-ISSN: 2347-2693

Octonary (O) Search Algorithm

Bhavesh R Maheshwari

DNV International Education Academy, Gandhidham-Kachchh, Gujarat, India

Corresponding Author: Maheshwari.bhavesh27@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i7.252256 | Available online at: www.ijcseonline.org

Accepted: 15/Jul/2019, Published: 31/Jul/2019

Abstract: Searching is the process of finding a given value position in a list of values. It is fundamental operation in computer

science.

It is achieved by different searching methods which require number of iterations to reach at desired piece of data. In this

research paper, another octonary (o) search algorithm is developed to compare & make searching even faster than algorithms

like sequential, binary, ternary, & quaternary search.

Keyword - Search Algorithm, Searching.

I. INTRODUCTION

A fundamental operation of computer is to store large amount

of information & retrieval of information as quickly as

possible. It is achieved by different searching methods. All

these algorithms iterate loop to find out the desired input data

form a collection of stored data. For e.g. an Array. In this

research paper, an algorithm is developed to make searching

faster in large collection of data & this algorithm is also

compared with different algorithms based on an approximate

number of search loops. This algorithm is named as Octonary

(O) Search because it divides sorted array into eight parts.

After division of an array seven indexes are obtained which

represents an array element & are compared to the key which

is inputted from user to be searched. If the inputted key value

matches any of the values represented by seven indexes then

the search is successful. Else Algorithm will find any one

part’s range of indexes where availability of key is possible.

This process will be repeated until key is found or a list is

exhausted & search is unsuccessful.

II. WORKING OF DIFFERENT SEARCH METHODS

A search algorithm is the step-by-step procedure used to

locate specific data among a collection of data. It is

considered a fundamental procedure in computing.

Sequential Search: Sequential search is a method for finding

a target value within a list. It sequentially checks each element

of the list for the target value until a match is found or until all

the elements have been searched.

Binary Search: Binary search that finds the position of a

target value within a sorted array. Binary search compares the

target value to the middle element of the array
[1]

.

Ternary Search: In binary search, the sorted array is divided

into two parts while in ternary search, it is divided into three

parts and then algorithm determines in which part the element

exists
 [2]

.

Quaternary Search: A four search locates an item in a sorted

array by repeatedly dividing the search interval into four equal

parts.

III. WORKING OF OCTONARY(O) SEARCH

In these algorithm eight searches locates an element in a

sorted array by repeatedly dividing the search interval into

eight equal parts. In other words this algorithm works by

partitioning the array into eight equal parts. After partitioning

seven elements are obtained. The input key is now compared

to these seven elements. If any one of them matches with

input key then the location of that element is obtained else

algorithm will find new range of indexes from any one of

eight parts where availability of key is possible. This

procedure is repeated until a key is found or an array is

exhausted.

Goal
We need a general formula for partitioning the array into eight

equal parts for obtaining seven values which will be used for

comparison. Given below diagram shows partitions of an

array.

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 253

Diagram

Proof

Let the leftmost & the rightmost index of an array A is

LB (lower bound) & UB (upper bound) respectively.

Let the middle element at ½ distances from ‘LB’ to ‘UB’

be ‘MID_3’.

Let the element at 1/2 distances from ‘LB’ to ‘MID_3’

be ‘MID_1’.

Let the element at 1/2 distances from ‘LB’ to ‘MID_1’

be ‘MID_0’.

Let the element at 1/2 distances from ‘MID_1’ to

‘MID_3’ be ‘MID_2’.

Let the element at 1/2 distances from ‘MID_3’ to ‘UB’

be ‘MID_5’.

Let the element at 1/2 distances from ‘MID_3’ to

‘MID_5’ be ‘MID_4’.

Let the element at 1/2 distances from ‘MID_5’ to ‘UB’

be ‘MID_6’.

Now,

MID_3 = (LB+UB) / 2

MID_1 = (LB+MID_3) / 2

MID_0 = (LB+MID_1) / 2

MID_2 = (MID_1+MID_3) / 2

MID_5 = (MID_3+UB) / 2

MID_4 = (MID_3+MID_5) / 2

MID_6 = (MID_5+UB) / 2

For Example,

We assume that array indexes starts from 1.

A[100]={1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,

31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,

51,52,53,54,55,56,57,58,59,60,

61,62,63,64,65,66,67,68,69,70,

71,72,73,74,75,76,77,78,79,80,

81,82,83,84,85,86,87,88,89,90,

91,92,93,94,95,96,97,98,99,100}

The number of times the loop executes is given by

Log8
n
 where n is the number of elements of the array.

This is because the array is divided into eight equal

parts every time the loop is executed.

Number to be searched (KEY) = 22

Lower bound (LB) = 1

Upper bound(UB) = 100

By use of our equations values obtained are,

MID_0 = 13

MID_1 = 25

MID_2 = 37

MID_3 = 50

MID_4 = 62

MID_5 = 75

MID_6 = 87

Key is not equal to MID_0, MID_1, MID_2, MID_3, MID_4,

MID_5 or MID_6.

Now, MID_0<Key< MID_1

Hence, the search is repeated between MID_0 & MID_1.

Now,

LB = MID_0 + 1

UB =MID_1 - 1

LB = 14

UB = 24

Key = 22

Therefore,

MID_0 = 15

MID_1 = 16

MID_2 = 17

MID_3 = 19

MID_4 = 20

MID_5 = 21

MID_6 = 22

Now, Key is equal to MID_6 & index of MID_6 is obtained.

Working of Octonary (O) search is explained in given

below algorithm.

This algorithm is divided into two parts.

1. Calling recursive octonary function and passing initial

leftmost and rightmost indexes and a key.

2. A recursive function octonary where mid values are

obtained by leftmost and rightmost values and search

will be performed.

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 254

IV. ALGORITHM OCTONARY (O) SEARCH

Part 1. Calling Octonary.

Input: A [1….N] is an array of N elements and K is the

key to be searched, where N is the total number of

elements in an array A.

MID is an array that stores mid values in it.

Output: A successful message and the location of the

array element where K matches, otherwise unsuccessful

message and return -1.

Remarks: All elements in are arranged in ascending

order and array indexes ranges from 1 to N. L is the

leftmost index of an array and R is the rightmost index

of an array.

Steps:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

START

L = 1, R = N

I = OCTONARY(L,R,K)

IF (I != -1) THEN

PRINT ”Successful” at Location

I

ELSE

PRINTF ”Unsuccessful”

END IF

STOP

Part 2. Octonary Procedure.

Input: Leftmost and rightmost indexes from an array

and a key to be searched.

Output: Returning an array index to the

Remark: LB and UB are lower and upper bound index

ranges of an array where search will be performed. Initially

LB=L, UB=R.

Proof that octonary search is faster than binary,

ternary, and quaternary search (the amount of time

taken by if-else statement is unconsidered).

Given below table shows approximate number of search

loops & comparison between different search algorithms.

Table 1

Number of

Elements

(n)

BIN

Log2
n

TERN

Log3
n

QUATER

Log4
n

OCTO

Log8
n

10 3.32 2.09 1.16 1.10

100 6.64 4.19 3.32 2.21

1000 9.96 6.28 4.98 3.32

10000 13.28 8.38 6.64 4.42

100000 16.60 10.47 8.83 5.53

1000000 19.93 12.57 9.96 6.64

10000000 23.25 14.67 11.62 7.75

100000000 26.57 16.76 13.28 8.85

It is seen that number of loops runs for octonary search is

Steps:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

.

40.

41.

42.

43.

START

IF (UB>=LB) THEN

MID[3]=(LB+UB)/2

MID[1]=(LB+MID[3])/2

MID[0]=(LB+MID[1])/2

MID[2]=(MID[1]+MID[3])/2

MID[5]=(MID[3]+UB)/2

MID[4]=(MID[3]+MID[5])/2

MID[6]=(MID[5]+UB)/2

IF(A[MID[0]]==K)

RETURN MID[0]

ELSE IF (A[MID[1]]==K)

RETURN MID[1]

ELSE IF (A[MID[2]]==K)

RETURN MID[2]

ELSE IF (A[MID[3]]==K)

RETURN MID[3]

ELSE IF (A[MID[4]]==K)

RETURN MID[4]

ELSE IF (A[MID[5]]==K)

RETURN MID[5]

ELSE IF (A[MID[6]]==K)

RETURN MID[6]

ELSE IF(K<A[MID[0]])

RETURN

OCTONARY(LB,MID[0]-1,K)

ELSE IF(K<A[MID[1]])

RETURN

OCTONARY(MID[0]+1,MID[1]-1,K)

ELSE IF(K<A[MID[2]])

RETURN

OCTONARY(MID[1]+1,MID[2]-1,K)

ELSE IF(K<A[MID[3]])

RETURN

OCTONARY(MID[2]+1,MID[3]-1,K)

ELSE IF(K<A[MID[4]])

RETURN

OCTONARY(MID[3]+1,MID[4]-1,K)

ELSE IF(K<A[MID[5]])

RETURN

OCTONARY(MID[4]+1,MID[5]-1,K)

ELSE IF(K<A[MID[6]])

RETURN

OCTONARY(MID[5]+1,MID[6]-1,K)

ELSE

RETURN

OCTONARY(MID[6]+1,UB,K)

END IF

RETURN -1.

END IF

STOP

Above table shows that octonary search

Is terminated after 6
th

 iteration. Where binary, ternary &

quaternary search terminated after 14
th

, 9
th

 and 8
th

 iteration
respectively. By observation it is also seen that in octonary

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 255

three times lesser than binary search, approximately two

times lesser than ternary search and one and half time

lesser than quaternary search.
Given below table shows different search algorithms

applied on 10000 elements.

It shows total number elements which can be found in a

particular iteration.

Table 2

Iteration

Number.

BIN TERN QUATER OCTO

1. 1 2 3 7

2. 2 6 12 56

3. 4 18 48 448

4. 8 54 192 3584

5. 16 162 768 4608

6. 32 486 3072 1297

7. 64 1458 4305

8. 128 4374 1600

9. 256 3440

10. 512

11. 1024

12. 2048

13. 4096

14. 1809

15.

 denotes unsuccessful search.

//Function Octonary

int octo(int lb, int ub,int k)

{

if(ub>=lb)

{

mid[3]=(lb+ub)/2;

mid[1]=(lb+mid[3])/2;

mid[0]=(lb+mid[1])/2;

mid[2]=(mid[1]+mid[3])/2;

mid[5]=(mid[3]+ub)/2;

mid[4]=(mid[3]+mid[5])/2;

mid[6]=(mid[5]+ub)/2;

if(a[mid[0]]==k)

return mid[0];

else if(a[mid[1]]==k)

return mid[1];

else if(a[mid[2]]==k)

return mid[2];

else if(a[mid[3]]==k)

return mid[3];

else if(a[mid[4]]==k)

return mid[4];

else if(a[mid[5]]==k)

return mid[5];

else if(a[mid[6]]==k)

return mid[6];

search maximum number of elements could be found in 5
th

iteration where maximum number of elements could be found

in 13
th

 iteration of binary search, 8th iteration of ternary

search and 7
th

 iteration of quaternary search.

Where can Octonary Search be Helpful?

It can be used when user have large set of data. For example:

user wants to search a name of particular customer from a table

which contains details about millions of customers.

An Implementation of Octonary Search Using C Language.

#include<stdio.h>

#include<conio.h>

int a[10000],i,j,key,l=0,r,mid[7],res,c,n;

void main()

{

printf("Enter Total Number of Elements in List:");

scanf("%d",&n);

r=n;

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("Enter a Key To Be Searched:");

scanf("%d",&key);

//Calling Function for Finding Mid Values & //Storing in Array

of Mids

res=octo(l,r,key);

if(res!=-1)

{

printf("\n#~~Sucessful: %d is Available at %d~~#",a[res],res);

}

else

{

printf("\n#~~Unsucessful~~#");

 }

getch();

}

V. CONCLUSION

The Octonary (O) search algorithm is designed to search

desired of inputted data from large pool of storage faster than

other search algorithms mentioned above. This project will

help to perform search quickly in huge database.

REFERENCES

[1] D Samanta, Classic Data Structure(2

nd
 Edition), PHI Learning Private

Limited ISBN - 10: 9788120337312 PP. 722-724

[2] Taranjit Khokhar, September 2016, IJIRT, Volume-3, Issue-4,

PP.143908. ISSN: 2349-6002.

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 256

else if(k<a[mid[0]])

return octo(lb,mid[0]-1,k);

else if(k<a[mid[1]])

return octo(mid[0]+1,mid[1]-1,k);

else if(k<a[mid[2]])

return octo(mid[1]+1,mid[2]-1,k);

else if(k<a[mid[3]])

return octo(mid[2]+1,mid[3]-1,k);

else if(k<a[mid[4]])

return octo(mid[3]+1,mid[4]-1,k);

else if(k<a[mid[5]])

return octo(mid[4]+1,mid[5]-1,k);

else if(k<a[mid[6]])

return octo(mid[5]+1,mid[6]-1,k);

else

return octo(mid[6]+1,ub,k);

}

return -1;

}

Author’s Profile

Mr. Bhavesh R Maheshwari pursed

Bachelor of Computer Application from

KSKV Kachchh University of Kachchh-

Gujarat in 2010 and Master of Science in

Information & Communication

Technology from Veer Narmad South

Gujarat University in year 2012. He is

UGC NET Qualified and currently working as Assistant

Professor in DNV International Education Academy,

Gandhidham - Kachchh, Gujarat, India since 2013 his main

research work focuses on Data Structure Algorithms,

Information & Communication Technology. He has 6 years

of teaching experience and 1 year of Research Experience.

