
 © 2015, IJCSE All Rights Reserved 243

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Research Paper Volume-3, Issue-5 E-ISSN: 2347-2693

FAQ Retrieval Using Noisy Queries

Vaishnavi Barla
1*

, SriMounika Achanti
2
 and Rohith Uppala

3

1*, 2, 3
 Department of Computer Science and Engineering, National Institute of Technology, Warangal, India,

www.ijcseonline.org

Received: Apr/26/2015 Revised: May/06//2015 Accepted: May/22/2015 Published: May/30/ 2015

Abstract— In spite of great advances of information retrieval systems and associated natural language processing technologies,
domain-specific retrieval systems and retrieval systems used with special types of queries continue to represent a challenge for
current technology and to be a topic of active research. The Forum for Information Retrieval Evaluation (FIRE) is a forum for
Information Retrieval evaluation that is traditionally mainly focused on Indian languages. India, with its huge population, has a
very high rate of using mobile phones, with service costs low enough for even very poor people to use the phones actively.
Accordingly, FIRE 2013 included an SMS-based FAQ retrieval task. The goal of this task was to find a question Q* from
corpora of FAQs (Frequently Asked Questions) that best answers or matches a given SMS query S

Keywords—Question matching,Question classification,Core NLP,Support vector machines,Unigram matching,Syntactic tree

matching,Syntactic tree matching

I. INTRODUCTION

There has been a tremendous growth in the number of new

mobile subscribers recently. Most of these new subscribers

are from developing countries where mobile are the primary

information device. Even for users familiar with computers

and the internet, the mobile provides unmatched portability.

This has encouraged the proliferation of information

services built around SMS technology. Several applications,

traditionally available on Internet, are now being made

available on mobile devices using SMS. Examples include

SMS short code services. Short codes are numbers where a

short message in a predesigned format can be sent to get

specific information. For example, to get the closing stock

price of a particular share, the user has to send a message

IBMSTOCKPR.

Recent studies have shown that instant messaging is

emerging as the preferred mode of communication after

speech and email. 4 Millions of users of instant messaging

(IM) services and short message service (SMS) generate

electronic content in a dialect that does not adhere to

conventional grammar, punctuation and spelling standards.

Words are intentionally compressed by non-standard

spellings, abbreviations and phonetic transliteration is used.

Typical question answering systems are built for use with

languages which are free from such errors. It is difficult to

build an automated question answering system around SMS

technology. This is true even for questions whose answers

are well documented like in a Frequently-Asked-Questions

(FAQ) database.
Different kinds of noise correction techniques exist which

include:

a) Statistical translation model which use large

parallel corpora to learn the translation

probabilities.

b) Token based noise correction techniques (such as

those using LCS, Edit Distance etc.)

In our proposed model, we use token based noise correction

techniques i.e. LCS, Edit Distance. These techniques work

based on the intuition that the user always types the first

few letters correct. In order to cover the cases which are not

handled above, we use soundex algorithm to find out the

required clean text. (Ex: u-you).

II. QUESTION CLASSIFICATION AND MATCHING

In order to correctly answer a question, usually one needs to

understand what the question asks for. Question

Classification, i.e. putting the questions into several

semantic categories, can not only impose some constraints

on the plausible answers but also suggest different

processing strategies. For instance, if the system

understands that the question “Who was the first American

in space?” asks for a person name, the search space of

plausible answers will be significantly reduced. In fact,

almost all the open-domain question answering systems

include a question classification module. The accuracy of

question classification is very important to the overall

performance of the question answering system.

Classifying a question helps in reducing the search space for

matching the input cleaned query with the questions in the

archive. We will be using Support Vector Machines to get

our task done

Community Question Answering (CQA) services have

accumulated large archives of question-answer pairs. To

reuse the invaluable resources, it is essential to develop

Corresponding Author: Vaishnavi Barla

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 244

effective retrieval models to retrieve similar questions,

which are semantically equivalent or relevant to the queried

questions.

The major challenge for question retrieval, as for most

information retrieval tasks, is the lexical and semantic gap

between the queried question and the historical questions in

the CQA archives.

The similar question matching task is, however, not trivial.

One of the major reasons is that instead of inputting just

keywords or so, users form questions using natural

language, where questions are encoded with various lexical,

syntactic and semantic features. For example, “how can I

lose weight in a few month?” and “are there any ways of

losing pound in a short period?” are two similar questions

asking for methods of losing weight, but they neither share

many common words nor follow identical syntactic

structure. This gap makes the similar question matching

task difficult. Similarity measure techniques based purely

on the bag-of-word (BoW) approach may perform poorly

and become ineffective in these circumstances. Syntactic or

semantic features hence become vital for such task. The tree

kernel function is one of the most effective ways to

represent the syntactic structure of a sentence. In general, it

divides the parsing tree into several sub-trees and computes

the inner product between two vectors of sub-trees.

Although there have been some successful applications

using it, like Question Classification, the tree kernel-like

function has not been directly applied to finding similar

questions in the QA archive.

Moreover, its matching scheme is too strict to be directly

employed to our question matching problem. We

reformulate the tree kernel framework, and introduce a new

retrieval model to find similar questions. We study the

structural representations of questions to encode not only

lexical but also syntactic and semantic features into the

matching model. This model does not rely on training, and it

is shown to be robust against grammatical errors as well

III. DESIGN DETAILS AND REQUIREMENTS

We have implemented a modified tree kernel algorithm in

this project to attain more efficiency. In order to do this, we

have used several software packages such as Scikit-Learn

for SVM classification, CORENLP for Parts Of Speech

(POS) Tagging, ZEROMQ for cross language

communication between python and C++. We have also

used Soundex algorithm to add vowels to noisy words and

Dynamic programming methodologies to calculate

similarity between two tree kernels.

A. CoreNLP

Stanford CoreNLP provides a set of natural language

analysis tools which can take raw English language text

input and give the base forms of words, their parts of

speech, whether they are names of companies, people, etc.,

normalize dates, times, and numeric quantities, and mark up

the structure of sentences in terms of phrases and word

dependencies, and indicate which noun phrases refer to the

same entities. Stanford CoreNLP is an integrated

framework, which make it very easy to apply a bunch of

language analysis tools to a piece of text. Starting from

plain text, you can run all the tools on it with just two lines

of code. Its analyses provide the foundational building

blocks for higher-level and domain-specific text

understanding applications.

Stanford CoreNLP integrates all our NLP tools, including

the part-of-speech (POS) tagger, the parser. It is designed to

be highly flexible and extensible. With a single option you

can change which tools should be enabled and which

should be disabled.

B. NLTK

NLTK (Natural Language Tool Kit) is a leading platform

for building Python programs to work with human language

data. It provides easy-to-use interfaces to over 50 corpora

and lexical resources such as WordNet, along with a suite

of text processing libraries for classification, tokenization,

stemming, and tagging, parsing, and semantic reasoning.

NLTK has been called “a wonderful tool for teaching, and

working in, computational linguistics using Python,” and

“an amazing library to play with natural language.” Some

simple things we can do with NLTK are tokenize and tag

some text, identify named entities, display a parse tree. We

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 245

have used WordNet for finding semantic similarity between

two words.

C. Zero MQ

Zero MQ is a library used to implement messaging and

communication systems between applications and processes

- fast and asynchronously. One of the types of IPC

(Interprocess Communication). When compared to some

much larger projects, which offer all necessary parts of

enterprise messaging, Zero MQ remains as just a

lightweight and fast tool. It enables cross platform

messaging. We have used Zero MQ‟s for communication

between C++ and Python Codes.

D. SCIKIT-LEARN

Scikit-Learn is an open source machine learning library for

Python. It features various classification, regression and

clustering algorithms including support vector machines,

logistic regression, naive Bayes, random forests, gradient

boosting, k-means and DBSCAN, and is designed to

interoperate with the Python numerical and scientific

libraries NumPy and SciPy. We have used SVC with linear

kernels for classifying the input query. SVC with linear

kernel is somewhat similar to libsvm with parameter linear,

but it is found to be more flexible.

Following is the example classification of svm classifier

over IRIS data set using different kernels. Small circles

represent tuples while colored areas represent different

classes.

IV. RELATED WORK

The input query is noisy since it is in “SMS language”.

Before matching the query with the questions in the archive,

cleaning of the query is needed.

A. Soundex Algorithm

The phonetic representation has several applications. It

allows searching concepts based on pronunciation

rather than on the spelling, as it is traditionally done.

The Soundex phonetic algorithm was mainly used in

applications involving searching of people’s names

like air reservation systems, censuses, and other tasks

presenting typing errors due to phonetic similarity. As

shown, the Soundex algorithm evaluates each letter in

the input word and assigns a numeric value. The main

function of this algorithm is to convert each word into

a code made up of four elements. Soundex uses

numeric codes for each letter of the string to be

codified.

Numeric code Letter

0 a, e, i, o, u, y, h, w

1 b, p, f, v

2 c, g, j, k, q, s, x, z

3 d, t

4 l

5 m, n

6 r

Soundex phonetic codes for the English language

Numeric

The Soundex algorithm can be depicted as follows:

1. Replace all but the first letter of the string by its

phonetic code

2. Eliminate any adjacent repetitions of codes.

3. Eliminate all eliminate vowels.

4. Return the first four characters of the resulting

string

The Soundex algorithm has the following features:

1. It is intuitive in terms of operation.

2. The simplicity of the code allows to implement

changes according to the objective.

3. The processing time is relatively short.

4. It has a high tolerance for variations in words that

sound very similar or are exactly the same.

B. Statistical Translation Model

Typical statistical machine translation systems use large

parallel corpora to learn the translation probabilities (Brown

et al., 2007). Traditionally such corpora have consisted of

news articles and other well written articles. Since the

translation systems are not trained on SMS language they

perform very poorly when translating noisy SMS language.

Parallel corpora comprising noisy sentences in one

language and clean sentences in another language are not

available and it would be hard to build such large parallel

corpora to train a machine translation system.

C. Token Based Techniques

Token based noise-correction techniques (such as those

using edit-distance, LCS etc.) cannot be directly applied to

handle the noise present in the SMS query. These noise-

correction methods return a list of candidate terms for a

given noisy token (E.g. gud − > god, good, guide).

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 246

Considering all these candidate terms and their

corresponding translations drastically increase the search

space for any multi-lingual IR system. Also, naively

replacing the noisy token in the SMS query with the top

matching candidate term gives poor performance. The

algorithm that we used handles these and related issues in

an efficient manner.

D. Support Vector Machines For Classification

Support Vector Machines (SVM) are linear functions of the

form

f (x) = w • x + b

Where w • x is the inner product between the weight vector

w and the input vector x. The SVM can be used as a

classifier by setting the class to 1 if f (x) > 0 and to -1

otherwise. The main idea of SVM is to select a hyperplane

that separates the positive and negative examples while

maximizing the minimum margin. This corresponds to

minimizing w • w subject to y (w • x + b) ≥ 1 for all i .

Large margin classifiers are known to have good

generalization properties.

To deal with cases where there may be no separating

hyperplane, the soft margin SVM has been proposed. The

soft margin SVM minimizes w • w + C∑

ξ i subject to y w • x + b ≥1 −ξ for all i, where C is a

parameter that controls the amount of training errors

allowed. A key property of the Support Vector Machines is

that the only operation it requires is the computation of dot

products between pairs of examples. One may therefore

replace the dot product with a Mercer kernel, implicitly

mapping feature vectors in R
d
 into a new space R

m
, and

applying the original algorithm in this new feature space.

The kernel methods provide an efficient way to carry out

such computation when m is large or even infinite.

Given a question, we first parse it into a syntactic tree using

a parser, and then we represent it as a vector in a high

dimensional space which is defined over tree fragments.

The tree fragments of a syntactic tree are all its sub-trees

which include at least one terminal symbol (word) or one

production rule, with the restriction that no production rules

can be broken into incomplete parts.

Implicitly we enumerate all the possible tree fragments 1, 2,

..., m. These tree fragments are the axis of this m

dimensional space. Note that this could be done only

implicitly, since the number m is extremely large.

Every syntactic tree T is represented by an m dimensional

vector

v (T) = {v1 (T), v 2 (T),..., vm (T)} ,

where the I th element vi (T) is the weight of the tree

fragment in the i th dimension if the tree fragment is in the

tree T and zero otherwise. The tree kernel of two syntactic

trees T1 and T2 is actually the inner product of v1 (T) and v2

(T).

Our task is to determine the hyper plane separating two

classes. If there happen to be n classes, we get n (n -1)/2

hyper planes. Every time when we try to find out if the

query belongs to a particular class, we consider the training

tuples of that class to be positive and the rest all to be

negative. And then we determine if the query is positive or

negative based on its dot product with the hyper plane that

separates one class with another. Thus we get n(n-1)/2

results. The class that gets the maximum number of votes is

considered to be the class of the input query.

E. Unigram Matching

Suppose the text of the SMS statement S' contains a word

pattern that can be expressed as <L1, L2, ..., Ln>, and the

text of the FAQ statement F' contains the word pattern that

can be expressed as <W1, W2, ..., Wk>. Then we search for

the match of each word of S' in F'. If a direct match occurrs,

then we do not search any further for the word Li and pick

up the next word from the list and search again for that

word. We consider that a direct match occurred if there is

some FAQ word Wi such that Wi = Lj for some i <= k and j

<= n.

Now, if there is no direct match, then we looked up the

word in WordNet 3.0 and obtained its hyponyms,

synonyms, etc., and searched each one of these words in the

F' list. If a match is found, then we pass on to next word.

Otherwise, we search for an overlap between the synonym

and hyponym list of the word Lj and the synonym and

hyponym list of the word Wi. If any matching words are

found, then we go to the next word in the S' list and store

that word as a matched word. Otherwise we skip the word

and proceed for next word.

The expression used as a score for the unigram matching

module was:

Unigram Score=(Number of SMS words that match

FAQ)÷(Total Number of Words in SMS)

In this module, we aimed to find a match between two

statements by considering the bigram occurrences of their

words. We took the two consecutive words from the S' list,

represented as <Li, Li + 1>, and similarly from the F' list,

<Wj, Wj + 1>. If a match was found, then we went on to the

next consecutive bigram. Otherwise, we looked up in

WordNet all hyponyms and synonyms for the words of the

bigram <Li, Li+1>, and similarly we retrieved all hyponyms

and synonyms for the words of the bigram <Wj, Wj + 1>.

Suppose we have a synonym list for Li as (x1, x2, ...,xn) and

for Li + 1 a list (y1, y2, …, yk), and similarly for the pair

<Wj, Wj + 1>, obtaining lists (s1, s2, ..., sn) and (t1, t2, …,

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 247

tk), correspondingly. If there was any matching words

between the lists for the SMS bigram <Li, Li+1> and the

list for the FAQ bigram <Wj, Wj + 1>, then we considered

that a match was found, and proceed to analyze the next

bigram sequence.

The expression used as a score for the bigram matching

module was as follows:

Bigram Score=(Number of bigram matching)÷(Total

number of bigrams in SMS)

F. Final Ranking

Finally, the overall scoring was calculated as the harmonic

mean of the two particular scores:

Final Ranking=(Unigram Score*Bigram Score)÷(Unigram

Score + Bigram Score)

G. Basic Kernal Tree Approach For Question Matchin

In order to utilize more structural or syntactical information

and capture higher order dependencies between grammar

rules, all tree fragments that occur in a parsing tree can be

considered. A tree fragment can be defined as any sub-tree

that includes more than one node, with the restriction that

the entire rule productions must be included.

The tree kernel was designed based on the idea of

counting the number of tree fragments that are common

to both parsing trees, and it could be defined as:

k(T1,T2) = ∑n1€N1∑n2€N2 C(n1,n2)

Where, N1 and N2 are sets of nodes in two syntactic trees

T1 and T2, C (n1, n2) equals to the number of common

fragments rooted in nodes n1 and n2.

However, to enumerate all possible tree fragments is an

intractable problem. The tree fragments are thus implicitly

represented, and with dynamic programming, the value of C

(n1, n2) can be efficiently computed as follows:

C (n1, n2) = 0, if n1≠n2

C (n1, n2) =1, if n1=n2 and they are terminal nodes.

C (n1, n2) = λ, if n1=n2 and they are pre-terminal nodes.

C (n1, n2) = λ π j=1 nc (n1) [1 + C (ch (n1, j), ch (n2, j))],

Where,

λ is a weighting factor,

nc (n) is no. of children of node n. ch (n1,j) is the jth

child of node n.

H. SyntacticTtree Matching

The weighting factor δi denotes the importance of node i in

the parsing tree. Its value differs for different types of

nodes:

• δi=1.2, where node i is either the POS tag VB or

NN.

• δi=1.1, where node i is either VP or NP

• δi=1 for all other types of nodes.

We believe that different parts of the sentence have

different importance, and the nouns and verbs are

considered to be more important than other types of terms

such as article, adjective or adverb. We also boost up the

nodes of verb and noun phrases, to show their higher

priority over other ordinary ones. The weighting coefficient

θk for tree fragment k conveys the importance of the tree

fragment, whose value is the production of all weighing

factors of node i that belongs to the tree fragment k, i.e.,

θk=πiεk δi

The size of the tree fragment Si is defined by the number of

nodes that it contains. The size of weighing factor λ is a

tuning parameter indicating the importance of the size

factor. The depth of the tree fragment Di is defined as the

level of the tree fragment root in the entire syntactic parsing

tree, with Droot=1. The depth weighing factor µ is a tuning

parameter indicating the importance of the depth factor.

The weight of a tree fragment wi is defined as θiλ
Si

µ
Di

,

where θi is its weighting coefficient, Si is the size of the

sub-tree, λ is the size weighing factor, Di is the depth of the

subtree and µ is the depth weighting factor. If two tree

fragments TF1 and TF2 are identical, the weight of their

resulting matching tree fragment TF is defined to be:

w(TF) = w(TF1)w(TF2) .

In the STM model above, if two parsing trees employ

different leaf wordings or slightly transformed production

rules, the tree fragments can hardly be matched. This

becomes an evident drawback from the semantic point of

view, and it motivates a modification to our original

matching model. In order to capture more semantic

meanings, we:

 (a) allow partial contribution from terminal words if they

are shown to be closely related.

(b) Relax the production rules to allow for partial matching.

(c)Use answer matching to bring in more semantically

related questions.

Firstly, we use WordNet, a freely available semantic

network, to help measure the semantic similarity between

two words. We employ Leacock’s measure, which uses the

distance of the shortest path between two synsets to

represent the semantic distance between two words, where

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 248

the value is scaled by the overall depth of the taxonomy. In

order to fit our matching model, in which the semantic

score needs to be scaled between 0 and 1, we modify the

Leacock’s measure into the following:

Sem (w1, w2) = 1- distance (w1, w2) /2D

Where, distance (w1, w2) is the length of the shortest path

between two synsets of w1 and w2, and D is the maximum

depth of the taxonomy. In particular, we define the path

length between two identical words to be 0, i.e.,

distance(w,w)=0, or Sem(w,w)=1.

Secondly, we allow partial matching of production rules in

the way that two nodes with sufficiently similar production

rules can be matched. This sufficiency includes omission or

reversion of the modifiers, preposition phrases,

conjunctions and so on. For instance, “NP→DT·JJ·NN” is

considered to be similar to “NP→DT·NN”, and can be

matched.

The weight of the matching tree fragment TF resulted

from matching TF1 and TF2 is defined as:

• w (TF) = Sem (w1,w2) δ1 δ2 λ
s1+s2

µ
d1+d2

, if TF1 and TF2 are

two terminal nodes w1 and w2;

• w (TF) =θ1θ2λ
s1+s2

µ
d1+d2

, if the root of TF1 and TF2

are identical and their production rules can be

partially matched.

V. ALGORITHMS

A. Cleaning of text

Initially a corpus containing the SMS word and its

corresponding cleaned text is to be maintained. This corpus

is implemented in the form of a dictionary. The data set (as

provided by FIRE) is in xml format. Using Element Tree

module in python, we parse it and retrieve the required set

of FAQs. Thus we get the noisy input queries and FAQs. A

dictionary (can be implemented in python) is constructed

from the FAQs. This dictionary is used for cleaning of the

inputted noisy words. Each input sentence is now split into

words (represented as a sequence). A list of lists is created

to store the input word and its corresponding matched

cleaned texts along with the measure γ. Each word is now

checked for in the corpus. If an exact match occurs then the

corresponding cleaned text is returned. Else, this input

word’s first letter is compared with the first letter of each

word in dictionary. If a match occurs, the following steps

are followed. Let the matched word be W and the input

word be S. If a digit happens to occur in the input word, it is

replaced with its corresponding spelling. (i.e. 1 is replaced

with one) .Length of the longest common subsequence

between W and S is determined. The ratio of length of LCS

to the maximum of length of S and W is taken (LCS ratio).

Leveinstein distance between the consonant skeletons of W

and S is found. (Consonant skeletons-words without any of

the vowels). Ratio of the length of the longest common

subsequence and Leveinstein distance is considered as the

measure γ for knowing the similarity between W and S. A

list consisting of the words whose first letter matches with

the first letter of S is created. If the input word matches

with any of the words in the list, the word itself is returned.

Else, the word with highest γ is returned. Each time the

returned word is appended to a list (this is the cleaned text).

Thus the cleaned text is obtained.

B. Question Classification

Scikit-Learn provides utilities for the most common ways to

extract numerical features from text content, namely

1. Tokenizing strings and giving an integer id for

each possible token, for instance by using white-

spaces and punctuation as token separators.

2. Counting the occurrences of tokens in each

document.

3. Normalizing and weighting with diminishing

importance tokens that occur in the majority of

samples / documents.

In this scheme, features and samples are defined as follows

1. Each individual token occurrence frequency

(normalized or not) is treated as a feature.

2. The vector of all the token frequencies for a given

document is considered a multivariate sample.

Questions are classified using SVM’s [scikit-learn has

provided us with the required software. Using the already

classified data, SVM is trained. Using all the questions in

the archive, a list of words for each domain is generated.

Stop words from each question are removed. Each question

is represented as a vector using the above word i.e. if that

word is present in the question, a 1 is put or else a 0. Thus

we get vectors representing each question. Now a centroid

point is calculated for each domain using these points. Plane

joining two centroid points gives us the plane of separation

between two classes. Now our input query is classified

using these planes. We get n(n-1)/2 planes in total [If n is

the total number of classes. For a given cleaned input query,

we check which class it falls into using these planes. The

class that gets the maximum number of votes is considered

as the domain of the input query.

We have used dictionaries for storing the SMS text and the

cleaned text and also for storing the matched word in

dictionary with the input and its corresponding measure γ

and also used for storing the questions and its

corresponding answers. We have used lists for storing the

cleaned text obtained. And also for storing the entire set of

words that are encountered in FAQs. These are used for

matching against the input SMS word.

C. Question Matching using Unigram/Bigram score

We categorize the input questions into in - domain and out

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 249

– of – domain questions. When the domain for input

question could be determined (given by the user), then a

match for question is searched for only in that domain. If

the domain for the input questions could not be determined

then a match for the question is searched for in the entire

archive.

The cleaned text is obtained after running the above

algorithm on our input query. The cleaned text is then split

into words (stored into a list). Thus each word is

represented as a sequence of words. Each word in the input

query is matched against each word in the FAQ (if in

domain, then only with the questions in that domain as

mentioned by the user, if out of domain then with all the

questions). If there is no direct match, then we looked up

the word in WordNet and obtained its hyponyms,

synonyms, etc., and searched each one of these words in the

F' list. If a match was found, then we passed on to next

word. Then the unigram score is calculated. The sequence

is now divided into bigrams (two consecutive words). The

FAQs are also divided into the same. These bigrams are

then matched. Then the bigram score is calculated. After

the entire set of input queries are matched against the

FAQs, Mean Reciprocal Rank (MRR) is calculated. MRR=

Mean of the reciprocals of ranks of matched question with

the input query. The value of this MRR is returned.

D. Formation of parse tree

The input query is first converted into a parse tree using the

Stanford parser. The output that we get from this parser is

not in a proper tree format. Hence we initially try to convert

into a tree format. We use stack to achieve the same. The

initial opening braces are pushed into the stack. When a

character other than an open braces or closed braces is

found, it is considered as a string till it encounters a space

and that whole string is pushed into the stack. All elements

other than closed braces are pushed into the stack. When a

closed bracket is encountered, we pop the elements of the

stack till the open bracket is popped and the elements are

taken into a vector in the same order. The last element in

the vector is made the root node and the other elements are

made the child nodes to the root node and the root node is

pushed into the stack. Finally the root node will be the last

one to be left in the stack.

E. Matching

Questions in the archive are also converted into parse tree

using the above procedure. These two trees are compared

using the weighting scheme of tree fragments (i.e., nouns

are given higher weight when compared to verb phrase or

noun phrase). This weighting factor is denoted by δ. δ for

NN and VB tags is taken to be 1.2,VP and NP tags is 1.1

otherwise 1. The weighting coefficient for a tree fragment i

is denoted by θk where k belongs to the fragment i. The size

of the tree fragment Si is defined by the number of nodes

that it contains. The size of weighing factor λ is a tuning

parameter indicating the importance of the size factor. λ is

taken to be 0.5. The depth of the tree fragment Di is defined

as the level of the tree fragment root in the entire syntactic

parsing tree, with Droot=1. The depth weighing factor µ is a

tuning parameter indicating the importance of the depth

factor. µ is taken to be 0.5. The weight of a tree fragment

wi is defined as θiλ
Si

µ
Di

, where θi is its weighting

coefficient, Si is the size of the tree and Di is the depth of

the tree. W(TF)=W(TF1).W(TF2) is the weight of the

resulting matching tree fragment. In order to find the

similarity score between two syntactic parsing trees T1 and

T2, we traverse them in post -order, and calculate the pair-

wise node matching scores between the nodes in these two

trees. This results in T1*T2 matrix of M(r1,r2).

The similarity score or the distance metrics between two

parse trees is given by

Sim (T1, T2) =∑r1εT1∑r2εT2M (r1, r2).

This similarity measure is used for returning the questions

which match the input question appropriately.

F. Filling the Matrix

We use memorization technique to fill the matrix. Each

node has the following members: the string, label, depth, a

vector to store indices of its children, pointers to its children

and a Boolean variable to know if the string is a terminal or

not. Labels are assigned to each node in order to represent

the nodes in the matrix. Each node in tree T1 is compared

against each node in tree T2. The node matching score is

then updated in the matrix. Labels are assigned while doing

Level order traversal. Depth of each node is calculated and

stored as a member (Post order Traversal). η is a measure of

the total number of matched tree fragments under that node.

This value is calculated by summing the number of non-

zero values that got filled in the rows just below the

required node. (Filling of the matrix goes from bottom to

top). Initially each node is checked if it is a terminal or not.

If it is, then the node matching score is calculated using the

above algorithm (in Matching). Else, the value for the node

is updated using the values for the child filled in the matrix.

The node matching score for two nodes is stored in the

matrix by Matrix[label1][label2]. Label1 is the label of the

node in tree T1 and Label 2 is the label of the node in tree

T2. We have used stacks for formation of parse tree. [After

we get output from the Stanford parser]. and trees for

implementing Question Matching [Syntactic Tree

Matching].

The algorithm followed is robust against grammatical errors

too. This is because whenever any grammatical error

occurs, the chunks or phrases at the lower level are

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 250

preserved and the ones at the higher level are modified.

And weight of the tree fragment at the lower level carry

more weight when compared to those at the higher level.

And thus the matching score is not degraded much due to

such kind of errors.

Semantics are incorporated using Wordnet (freely available

semantic network) which helps in measuring the similarity

between two words. Hypernyms are determined for each

word (input cleaned word and word in the archive).If a

match occurs then it is considered that the words are

semantically similar.

Sem(w1,w2)=1 in that case. Thus when the weight of the

resulting tree fragment is being calculated, it is multiplied

with this extra measure which helps in ensuring that the

semantics are taken care of.

Module Flow of BOW + TK + SVM Algorithm

VI. RESULTS AND ANALYSIS

A. Cleaning noisy query using soundex & LCS algorithm

Noisy words and corresponding cleaned texts can be

obtained after applying token based Correction and Soundex

Algorithm. We observed that almost all of the cases have

been handled by our above approach. The observed

efficiency of this approach was found to be 89.97%.

Noisy word Corrected Word

Wch Which

Contry Country

Frst First

Hostd Hosted

Mdrn Modern

Olympcs Olympics

Table: 1.Noisy word and its corresponding corrected word

B. Efficiency of question classifier using SVM

Training data consists of 8400 queries in <Question,

Answer, Domain> format. We have trained all those

questions using SVM with features like TF-IDF(Term

Frequency-Inverse Document Frequency) and BOW(Bag of

Word Approach).

C. MRR(Mean Reciprocal Rank) Scores and calculation of

efficiency for different approaches

MRR:- For an input query, we retrieve top n best matches.

if our best matched question for given query is at 3rd

position ,then reciprocal rank will be 1/3. if it is at nth

position, it will be 1/n. if it's not present in best matched

questions, then reciprocal rank will be 0. MRR(Mean

Reciprocal Rank) will be calculated as the average of all

reciprocal ranks of given queries.

Method Training

Data Set

In-

domain

Queries

(2577)

Out-

Domain

Queries

(5400)

MRR Efficiency

BOW 8414 1714 2513 0.67 65.4

BOW

+TK

8414 2234 3223 0.83 78.4

BOW 8414 2323 3552 0.85 83.6

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(243-251) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 251

+TK

+SVM

Hence we see that Semantic smooth matching (BOW +

TK + SVM) performs better over unigram and bigram

matching. But Questions like “I am too fat, please help?!!”

are actually similar to “In what ways can we lose weight?”

our proposed model doesn’t handle such cases. Handling

such cases is left behind for future work using potential

answer matching.

REFERENCES

[1] Danish Contractor ,Govind Kothari, Tanveer

A.Faruquie,L.Venkata Subramaninan,Sumit Negi. Handling

Noisy Queries in Cross Language FAQ retrieval. EMNLP

Proceedings of the Conference on Empirical Methods in

Natural Language Processing, Pages 87-96, ACM 2010.

[2] Kai Wang, Zhaoyan Ming, Tat-Seng Chua. A syntactic

matching approach to finding similar questions in

Community based QA services. SIGIR ‟09 Proceedings of

the 32nd ACM SIGIR conference on Research and

development in information retrieval, Pages 187-194, ACM

2009.

[3] M. Collins and N. Duffy. Convolution kernels for natural

language. In Advances in Neural Information Processing

Systems 14. Proceedings of the Neural Information

Processing Systems Conference NIPS. Pages 625-632.Dec

2001.

[4] M. Collins and N. Duffy. Convolution kernels for natural

language. In Advances in Neural Information Processing

Systems 14. Proceedings of the Neural Information

Processing Systems Conference NIPS. Pages 625-632.Dec

2001.

[5] Dell Zhang, Wee Sun Lee. Question Classification using

Support Vector Machines. SIGIR ‟03 Proceedings of the

26th annual international ACM SIGIR conference on

Research and development in information retrieval.Pages

26-32. ACM 2003.

[6] Jiwoon Jeon, Bruce Croft ,Joon Lee. Finding Similar

Questions in Large Question and Answer Archives. CIKM

‟05 Proceedings of the 14th ACM international conference

on information and knowledge management. Pages 84-90.

ACM 2005

