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Abstract— In spite of great advances of information retrieval systems and associated natural language processing technologies, 
domain-specific retrieval systems and retrieval systems used with special types of queries continue to represent a challenge for 
current technology and to be a topic of active research. The Forum for Information Retrieval Evaluation (FIRE) is a forum for 
Information Retrieval evaluation that is traditionally mainly focused on Indian languages. India, with its huge population, has a 
very high rate of using mobile phones, with service costs low enough for even very poor people to use the phones actively. 
Accordingly, FIRE 2013 included an SMS-based FAQ retrieval task. The goal of this task was to find a question Q* from 
corpora of FAQs (Frequently Asked Questions) that best answers or matches a given SMS query S 
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I.  INTRODUCTION  

There has been a tremendous growth in the number of new 

mobile subscribers recently. Most of these new subscribers 

are from developing countries where mobile are the primary 

information device. Even for users familiar with computers 

and the internet, the mobile provides unmatched portability. 

This has encouraged the proliferation of information 

services built around SMS technology. Several applications, 

traditionally available on Internet, are now being made 

available on mobile devices using SMS. Examples include 

SMS short code services. Short codes are numbers where a 

short message in a predesigned format can be sent to get 

specific information. For example, to get the closing stock 

price of a particular share, the user has to send a message 

IBMSTOCKPR. 

 

Recent studies have shown that instant messaging is 

emerging as the preferred mode of communication after 

speech and email. 4 Millions of users of instant messaging 

(IM) services and short message service (SMS) generate 

electronic content in a dialect that does not adhere to 

conventional grammar, punctuation and spelling standards. 

Words are intentionally compressed by non-standard 

spellings, abbreviations and phonetic transliteration is used. 

Typical question answering systems are built for use with 

languages which are free from such errors. It is difficult to 

build an automated question answering system around SMS 

technology. This is true even for questions whose answers 

are well documented like in a Frequently-Asked-Questions 

(FAQ) database. 
Different kinds of noise correction techniques exist which 

include: 

a) Statistical translation model which use large 

parallel corpora to learn the translation 

probabilities. 

b) Token based noise correction techniques (such as 

those using LCS, Edit Distance etc.) 

In our proposed model, we use token based noise correction 

techniques i.e. LCS, Edit Distance. These techniques work 

based on the intuition that the user always types the first 

few letters correct. In order to cover the cases which are not 

handled above, we use soundex algorithm to find out the 

required clean text. (Ex: u-you). 

 

 

II. QUESTION CLASSIFICATION AND MATCHING 

In order to correctly answer a question, usually one needs to 

understand what the question asks for. Question 

Classification, i.e. putting the questions into several 

semantic categories, can not only impose some constraints 

on the plausible answers but also suggest different 

processing strategies. For instance, if the system 

understands that the question “Who was the first American 

in space?” asks for a person name, the search space of 

plausible answers will be significantly reduced. In fact, 

almost all the open-domain question answering systems 

include a question classification module. The accuracy of 

question classification is very important to the overall 

performance of the question answering system. 

 

Classifying a question helps in reducing the search space for 

matching the input cleaned query with the questions in the 

archive. We will be using Support Vector Machines to get 

our task done 

 

Community Question Answering (CQA) services have 

accumulated large archives of question-answer pairs. To 

reuse the invaluable resources, it is essential to develop 
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effective retrieval models to retrieve similar questions, 

which are semantically equivalent or relevant to the queried 

questions. 

 

The major challenge for question retrieval, as for most 

information retrieval tasks, is the lexical and semantic gap 

between the queried question and the historical questions in 

the CQA archives. 

 

The similar question matching task is, however, not trivial. 

One of the major reasons is that instead of inputting just 

keywords or so, users form questions using natural 

language, where questions are encoded with various lexical, 

syntactic and semantic features. For example, “how can I 

lose weight in a few month?” and “are there any ways of 

losing pound in a short period?” are two similar questions 

asking for methods of losing weight, but they neither share 

many common words nor follow identical syntactic 

structure. This gap makes the similar question matching 

task difficult. Similarity measure techniques based purely 

on the bag-of-word (BoW) approach may perform poorly 

and become ineffective in these circumstances. Syntactic or 

semantic features hence become vital for such task. The tree 

kernel function is one of the most effective ways to 

represent the syntactic structure of a sentence. In general, it 

divides the parsing tree into several sub-trees and computes 

the inner product between two vectors of sub-trees. 

Although there have been some successful applications 

using it, like Question Classification, the tree kernel-like 

function has not been directly applied to finding similar 

questions in the QA archive. 

 

Moreover, its matching scheme is too strict to be directly 

employed to our question matching problem. We 

reformulate the tree kernel framework, and introduce a new 

retrieval model to find similar questions. We study the 

structural representations of questions to encode not only 

lexical but also syntactic and semantic features into the 

matching model. This model does not rely on training, and it 

is shown to be robust against grammatical errors as well 

 

III. DESIGN DETAILS AND REQUIREMENTS 

We have implemented a modified tree kernel algorithm in 

this project to attain more efficiency. In order to do this, we 

have used several software packages such as Scikit-Learn 

for SVM classification, CORENLP for Parts Of Speech 

(POS) Tagging, ZEROMQ for cross language 

communication between python and C++. We have also 

used Soundex algorithm to add vowels to noisy words and 

Dynamic programming methodologies to calculate 

similarity between two tree kernels. 

 
 

A. CoreNLP 

Stanford CoreNLP provides a set of natural language 

analysis tools which can take raw English language text 

input and give the base forms of words, their parts of 

speech, whether they are names of companies, people, etc., 

normalize dates, times, and numeric quantities, and mark up 

the structure of sentences in terms of phrases and word 

dependencies, and indicate which noun phrases refer to the 

same entities. Stanford CoreNLP is an integrated 

framework, which make it very easy to apply a bunch of 

language analysis tools to a piece of text. Starting from 

plain text, you can run all the tools on it with just two lines 

of code. Its analyses provide the foundational building 

blocks for higher-level and domain-specific text 

understanding applications. 

 

Stanford CoreNLP integrates all our NLP tools, including 

the part-of-speech (POS) tagger, the parser. It is designed to 

be highly flexible and extensible. With a single option you 

can change which tools should be enabled and which 

should be disabled. 

 

B. NLTK 

NLTK (Natural Language Tool Kit) is a leading platform 

for building Python programs to work with human language 

data. It provides easy-to-use interfaces to  over 50 corpora 

and lexical resources such as WordNet, along with a suite 

of text processing libraries for classification, tokenization, 

stemming, and tagging, parsing, and semantic reasoning. 

NLTK has been called “a wonderful tool for teaching, and 

working in, computational linguistics using Python,” and 

“an amazing library to play with natural language.” Some 

simple things we can do with NLTK are tokenize and tag 

some text, identify named entities, display a parse tree. We 
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have used WordNet for finding semantic similarity between 

two words. 

 

C. Zero MQ 

Zero MQ is a library used to implement messaging and 

communication systems between applications and processes 

- fast and asynchronously. One of the types of IPC 

(Interprocess Communication). When compared to some 

much larger projects, which offer all necessary parts of 

enterprise messaging, Zero MQ remains as just a 

lightweight and fast tool. It enables cross platform 

messaging. We have used Zero MQ‟s for communication 

between C++ and Python Codes. 

D. SCIKIT-LEARN 

Scikit-Learn is an open source machine learning library for 

Python. It features various classification, regression and 

clustering algorithms including support vector machines, 

logistic regression, naive Bayes, random forests, gradient 

boosting, k-means and DBSCAN, and is designed to 

interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. We have used SVC with linear 

kernels for classifying the input query. SVC with linear 

kernel is somewhat similar to libsvm with parameter linear, 

but it is found to be more flexible. 

Following is the example classification of svm classifier 

over IRIS data set using different kernels. Small circles 

represent tuples while colored areas represent different 

classes. 

 
 

IV. RELATED WORK 

The input query is noisy since it is in “SMS language”. 

Before matching the query with the questions in the archive, 

cleaning of the query is needed.  

 

A. Soundex Algorithm 

The phonetic representation has several applications. It 

allows searching concepts based on pronunciation 

rather than on the spelling, as it is traditionally done. 

The Soundex phonetic algorithm was mainly used in 

applications involving searching of people’s names 

like air reservation systems, censuses, and other tasks 

presenting typing errors due to phonetic similarity. As 

shown, the Soundex algorithm evaluates each letter in 

the input word and assigns a numeric value. The main 

function of this algorithm is to convert each word into 

a code made up of four elements. Soundex uses 

numeric codes for each letter of the string to be 

codified. 

Numeric code  Letter 

0 a, e, i, o, u, y, h, w 

1 b, p, f, v 

2 c, g, j, k, q, s, x, z 

3 d, t 

4 l 

5 m, n 

6 r 

Soundex phonetic codes for the English language 

Numeric 

The Soundex algorithm can be depicted as follows: 

1. Replace all but the first letter of the string by its 

phonetic code  

2.  Eliminate any adjacent repetitions of codes.  

3.  Eliminate all eliminate vowels.  

4. Return the first four characters of the resulting 

string  

The Soundex algorithm has the following features: 

1. It is intuitive in terms of operation.  

2. The simplicity of the code allows to implement 

changes according to the objective.  

3. The processing time is relatively short.  

4. It has a high tolerance for variations in words that 

sound very similar or are exactly the same. 

 

B. Statistical Translation Model 

Typical statistical machine translation systems use large 

parallel corpora to learn the translation probabilities (Brown 

et al., 2007). Traditionally such corpora have consisted of 

news articles and other well written articles. Since the 

translation systems are not trained on SMS language they 

perform very poorly when translating noisy SMS language. 

Parallel corpora comprising noisy sentences in one 

language and clean sentences in another language are not 

available and it would be hard to build such large parallel 

corpora to train a machine translation system. 

 

C. Token Based Techniques 

Token based noise-correction techniques (such as those 

using edit-distance, LCS etc.) cannot be directly applied to 

handle the noise present in the SMS query. These noise-

correction methods return a list of candidate terms for a 

given noisy token (E.g. gud − > god, good, guide). 
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Considering all these candidate terms and their 

corresponding translations drastically increase the search 

space for any multi-lingual IR system. Also, naively 

replacing the noisy token in the SMS query with the top 

matching candidate term gives poor performance. The 

algorithm that we used handles these and related issues in 

an efficient manner. 

 

D. Support Vector Machines For Classification 

Support Vector Machines (SVM) are linear functions of the 

form  

f (x) = w • x + b 

Where w • x is the inner product between the weight vector 

w and the input vector x. The SVM can be used as a 

classifier by setting the class to 1 if f (x) > 0 and to -1 

otherwise. The main idea of SVM is to select a hyperplane 

that separates the positive and negative examples while 

maximizing the minimum margin. This corresponds to 

minimizing w • w subject to y ( w • x + b) ≥ 1 for all i . 

Large margin classifiers are known to have good 

generalization properties. 

 

To deal with cases where there may be no separating 

hyperplane, the soft margin SVM has been proposed. The 

soft margin SVM minimizes w • w + C∑ 

ξ i subject to y w • x + b ≥1 −ξ for all i, where C is a 

parameter that controls the amount of training errors 

allowed. A key property of the Support Vector Machines is 

that the only operation it requires is the computation of dot 

products between pairs of examples. One may therefore 

replace the dot product with a Mercer kernel, implicitly 

mapping feature vectors in R
d
 into a new space R

m
, and 

applying the original algorithm in this new feature space. 

The kernel methods provide an efficient way to carry out 

such computation when m is large or even infinite. 

 

Given a question, we first parse it into a syntactic tree using 

a parser, and then we represent it as a vector in a high 

dimensional space which is defined over tree fragments. 

The tree fragments of a syntactic tree are all its sub-trees 

which include at least one terminal symbol (word) or one 

production rule, with the restriction that no production rules 

can be broken into incomplete parts. 

 

Implicitly we enumerate all the possible tree fragments 1, 2, 

..., m. These tree fragments are the axis of this m 

dimensional space. Note that this could be done only 

implicitly, since the number m is extremely large. 

 

Every syntactic tree T is represented by an m dimensional 

vector 

v (T) = {v1 (T), v 2 (T),..., vm (T)} , 

where the I th element vi ( T) is the weight of the tree 

fragment in the i th dimension if the tree fragment is in the 

tree T and zero otherwise. The tree kernel of two syntactic 

trees T1 and T2 is actually the inner product of v1 (T) and v2 

(T). 

 

Our task is to determine the hyper plane separating two 

classes. If there happen to be n classes, we get n (n -1)/2 

hyper planes. Every time when we try to find out if the 

query belongs to a particular class, we consider the training 

tuples of that class to be positive and the rest all to be 

negative. And then we determine if the query is positive or 

negative based on its dot product with the hyper plane that 

separates one class with another. Thus we get n(n-1)/2 

results. The class that gets the maximum number of votes is 

considered to be the class of the input query. 

E. Unigram Matching 

Suppose the text of the SMS statement S' contains a word 

pattern that can be expressed as <L1, L2, ..., Ln>, and the 

text of the FAQ statement F' contains the word pattern that 

can be expressed as <W1, W2, ..., Wk>. Then we search for 

the match of each word of S' in F'. If a direct match occurrs, 

then we do not search any further for the word Li and pick 

up the next word from the list and search again for that 

word. We consider that a direct match occurred if there is 

some FAQ word Wi such that Wi = Lj for some i <= k and j 

<= n. 

 

Now, if there is no direct match, then we looked up the 

word in WordNet 3.0 and obtained its hyponyms, 

synonyms, etc., and searched each one of these words in the 

F' list. If a match is found, then we pass on to next word. 

Otherwise, we search for an overlap between the synonym 

and hyponym list of the word Lj and the synonym and 

hyponym list of the word Wi. If any matching words are 

found, then we go to the next word in the S' list and store 

that word as a matched word. Otherwise we skip the word 

and proceed for next word. 

 

The expression used as a score for the unigram matching 

module was: 

Unigram Score=(Number of SMS words that match 

FAQ)÷(Total Number of Words in SMS) 

 

In this module, we aimed to find a match between two 

statements by considering the bigram occurrences of their 

words. We took the two consecutive words from the S' list, 

represented as <Li, Li + 1>, and similarly from the F' list, 

<Wj, Wj + 1>. If a match was found, then we went on to the 

next consecutive bigram. Otherwise, we looked up in 

WordNet all hyponyms and synonyms for the words of the 

bigram <Li, Li+1>, and similarly we retrieved all hyponyms 

and synonyms for the words of the bigram <Wj, Wj + 1>. 

Suppose we have a synonym list for Li as (x1, x2, ...,xn) and 

for Li + 1 a list (y1, y2, …, yk), and similarly for the pair 

<Wj, Wj + 1>, obtaining lists (s1, s2, ..., sn) and (t1, t2, …, 
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tk), correspondingly. If there was any matching words 

between the lists for the SMS bigram <Li, Li+1> and the 

list for the FAQ bigram <Wj, Wj + 1>, then we considered 

that a match was found, and proceed to analyze the next 

bigram sequence. 

 

The expression used as a score for the bigram matching 

module was as follows: 

Bigram Score=(Number of bigram matching)÷(Total 

number of bigrams in SMS) 

 

F. Final Ranking 

Finally, the overall scoring was calculated as the harmonic 

mean of the two particular scores: 

Final Ranking=(Unigram Score*Bigram Score)÷(Unigram 

Score + Bigram Score) 

 

G. Basic Kernal Tree Approach For Question Matchin 

In order to utilize more structural or syntactical information 

and capture higher order dependencies between grammar 

rules, all tree fragments that occur in a parsing tree can be 

considered. A tree fragment can be defined as any sub-tree 

that includes more than one node, with the restriction that 

the entire rule productions must be included. 

 
 

The tree kernel was designed based on the idea of 

counting the number of tree fragments that are common 

to both parsing trees, and it could be defined as: 

k(T1,T2) = ∑n1€N1∑n2€N2 C(n1,n2) 

 

Where, N1 and N2 are sets of nodes in two syntactic trees 

T1 and T2, C (n1, n2) equals to the number of common 

fragments rooted in nodes n1 and n2. 

However, to enumerate all possible tree fragments is an 

intractable problem. The tree fragments are thus implicitly 

represented, and with dynamic programming, the value of C 

(n1, n2) can be efficiently computed as follows:  

C (n1, n2) = 0, if n1≠n2  

C (n1, n2) =1, if n1=n2 and they are terminal nodes.  

C (n1, n2) = λ, if n1=n2 and they are pre-terminal nodes.  

C (n1, n2) = λ π j=1 nc (n1) [1 + C (ch (n1, j), ch (n2, j))],  

Where,   

λ is a weighting factor,  

nc (n) is no. of children of node n. ch (n1,j) is the jth 

child of node n. 

 

H. SyntacticTtree Matching 

The weighting factor δi denotes the importance of node i in 

the parsing tree. Its value differs for different types of 

nodes:  

• δi=1.2, where node i is either the POS tag VB or 

NN.  

• δi=1.1, where node i is either VP or NP  

• δi=1 for all other types of nodes.  

We believe that different parts of the sentence have 

different importance, and the nouns and verbs are 

considered to be more important than other types of terms 

such as article, adjective or adverb. We also boost up the 

nodes of verb and noun phrases, to show their higher 

priority over other ordinary ones. The weighting coefficient 

θk for tree fragment k conveys the importance of the tree 

fragment, whose value is the production of all weighing 

factors of node i that belongs to the tree fragment k, i.e.,  

θk=πiεk δi 

The size of the tree fragment Si is defined by the number of 

nodes that it contains. The size of weighing factor λ is a 

tuning parameter indicating the importance of the size 

factor. The depth of the tree fragment Di is defined as the 

level of the tree fragment root in the entire syntactic parsing 

tree, with Droot=1. The depth weighing factor µ is a tuning 

parameter indicating the importance of the depth factor.  

The weight of a tree fragment wi is defined as θiλ
Si

µ
Di

, 

where θi is its weighting coefficient, Si is the size of the 

sub-tree, λ is the size weighing factor, Di is the depth of the 

subtree and µ is the depth weighting factor. If two tree 

fragments TF1 and TF2 are identical, the weight of their 

resulting matching tree fragment TF is defined to be:  

w(TF) = w(TF1)w(TF2 ) . 

 

In the STM model above, if two parsing trees employ 

different leaf wordings or slightly transformed production 

rules, the tree fragments can hardly be matched. This 

becomes an evident drawback from the semantic point of 

view, and it motivates a modification to our original 

matching model. In order to capture more semantic 

meanings, we: 

 (a) allow partial contribution from terminal words if they 

are shown to be closely related. 

(b) Relax the production rules to allow for partial matching. 

(c)Use answer matching to bring in more semantically 

related questions. 

 

Firstly, we use WordNet, a freely available semantic 

network, to help measure the semantic similarity between 

two words. We employ Leacock’s measure, which uses the 

distance of the shortest path between two synsets to 

represent the semantic distance between two words, where 
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the value is scaled by the overall depth of the taxonomy. In 

order to fit our matching model, in which the semantic 

score needs to be scaled between 0 and 1, we modify the 

Leacock’s measure into the following: 

Sem (w1, w2) = 1- distance (w1, w2) /2D 

Where, distance (w1, w2) is the length of the shortest path 

between two synsets of w1 and w2, and D is the maximum 

depth of the taxonomy. In particular, we define the path 

length between two identical words to be 0, i.e., 

distance(w,w)=0, or Sem(w,w)=1. 

 

Secondly, we allow partial matching of production rules in 

the way that two nodes with sufficiently similar production 

rules can be matched. This sufficiency includes omission or 

reversion of the modifiers, preposition phrases, 

conjunctions and so on. For instance, “NP→DT·JJ·NN” is 

considered to be similar to “NP→DT·NN”, and can be 

matched. 

 

The weight of the matching tree fragment TF resulted 

from matching TF1 and TF2 is defined as: 

• w (TF) = Sem (w1,w2) δ1 δ2 λ
s1+s2

µ
d1+d2

, if TF1 and TF2 are 

two terminal nodes w1 and w2; 

• w (TF) =θ1θ2λ
s1+s2

µ
d1+d2

, if the root of TF1 and TF2 

are identical and their production rules can be 

partially matched. 

 

V. ALGORITHMS 

 

A. Cleaning of text 

Initially a corpus containing the SMS word and its 

corresponding cleaned text is to be maintained. This corpus 

is implemented in the form of a dictionary. The data set (as 

provided by FIRE) is in xml format. Using Element Tree 

module in python, we parse it and retrieve the required set 

of FAQs. Thus we get the noisy input queries and FAQs. A 

dictionary (can be implemented in python) is constructed 

from the FAQs. This dictionary is used for cleaning of the 

inputted noisy words. Each input sentence is now split into 

words (represented as a sequence). A list of lists is created 

to store the input word and its corresponding matched 

cleaned texts along with the measure γ. Each word is now 

checked for in the corpus. If an exact match occurs then the 

corresponding cleaned text is returned. Else, this input 

word’s first letter is compared with the first letter of each 

word in dictionary. If a match occurs, the following steps 

are followed. Let the matched word be W and the input 

word be S. If a digit happens to occur in the input word, it is 

replaced with its corresponding spelling. (i.e. 1 is replaced 

with one) .Length of the longest common subsequence 

between W and S is determined. The ratio of length of LCS 

to the maximum of length of S and W is taken (LCS ratio). 

Leveinstein distance between the consonant skeletons of W 

and S is found. (Consonant skeletons-words without any of 

the vowels). Ratio of the length of the longest common 

subsequence and Leveinstein distance is considered as the 

measure γ for knowing the similarity between W and S. A 

list consisting of the words whose first letter matches with 

the first letter of S is created. If the input word matches 

with any of the words in the list, the word itself is returned. 

Else, the word with highest γ is returned. Each time the 

returned word is appended to a list (this is the cleaned text). 

Thus the cleaned text is obtained.  

 

B. Question Classification 

Scikit-Learn provides utilities for the most common ways to 

extract numerical features from text content, namely 

1. Tokenizing strings and giving an integer id for 

each possible token, for instance by using white-

spaces and punctuation as token separators. 

2. Counting the occurrences of tokens in each 

document. 

3. Normalizing and weighting with diminishing 

importance tokens that occur in the      majority of 

samples / documents. 

In this scheme, features and samples are defined as follows 

1. Each individual token occurrence frequency 

(normalized or not) is treated as a feature. 

2. The vector of all the token frequencies for a given 

document is considered a multivariate sample. 

Questions are classified using SVM’s [scikit-learn has 

provided us with the required software. Using the already 

classified data, SVM is trained. Using all the questions in 

the archive, a list of words for each domain is generated. 

Stop words from each question are removed. Each question 

is represented as a vector using the above word i.e. if that 

word is present in the question, a 1 is put or else a 0. Thus 

we get vectors representing each question. Now a centroid 

point is calculated for each domain using these points. Plane 

joining two centroid points gives us the plane of separation 

between two classes. Now our input query is classified 

using these planes. We get n(n-1)/2 planes in total [If n is 

the total number of classes. For a given cleaned input query, 

we check which class it falls into using these planes. The 

class that gets the maximum number of votes is considered 

as the domain of the input query.  

 

We have used dictionaries for storing the SMS text and the 

cleaned text and also for storing the matched word in 

dictionary with the input and its corresponding measure γ 

and also used for storing the questions and its 

corresponding answers. We have used lists for storing the 

cleaned text obtained. And also for storing the entire set of 

words that are encountered in FAQs. These are used for 

matching against the input SMS word.  

 

C. Question Matching using Unigram/Bigram score 

We categorize the input questions into in - domain and out 
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– of – domain questions. When the domain for input 

question could be determined (given by the user), then a 

match for question is searched for only in that domain. If 

the domain for the input questions could not be determined 

then a match for the question is searched for in the entire 

archive. 

 

The cleaned text is obtained after running the above 

algorithm on our input query. The cleaned text is then split 

into words (stored into a list). Thus each word is 

represented as a sequence of words. Each word in the input 

query is matched against each word in the FAQ (if in 

domain, then only with the questions in that domain as 

mentioned by the user, if out of domain then with all the 

questions). If there is no direct match, then we looked up 

the word in WordNet and obtained its hyponyms, 

synonyms, etc., and searched each one of these words in the 

F' list. If a match was found, then we passed on to next 

word. Then the unigram score is calculated. The sequence 

is now divided into bigrams (two consecutive words). The 

FAQs are also divided into the same. These bigrams are 

then matched. Then the bigram score is calculated. After 

the entire set of input queries are matched against the 

FAQs, Mean Reciprocal Rank (MRR) is calculated. MRR= 

Mean of the reciprocals of ranks of matched question with 

the input query. The value of this MRR is returned.  

 

D. Formation of parse tree 

The input query is first converted into a parse tree using the 

Stanford parser. The output that we get from this parser is 

not in a proper tree format. Hence we initially try to convert 

into a tree format. We use stack to achieve the same. The 

initial opening braces are pushed into the stack. When a 

character other than an open braces or closed braces is 

found, it is considered as a string till it encounters a space 

and that whole string is pushed into the stack. All elements 

other than closed braces are pushed into the stack. When a 

closed bracket is encountered, we pop the elements of the 

stack till the open bracket is popped and the elements are 

taken into a vector in the same order. The last element in 

the vector is made the root node and the other elements are 

made the child nodes to the root node and the root node is 

pushed into the stack. Finally the root node will be the last 

one to be left in the stack. 

E. Matching 

Questions in the archive are also converted into parse tree 

using the above procedure. These two trees are compared 

using the weighting scheme of tree fragments (i.e., nouns 

are given higher weight when compared to verb phrase or 

noun phrase). This weighting factor is denoted by δ. δ for 

NN and VB tags is taken to be 1.2,VP and NP tags is 1.1 

otherwise 1. The weighting coefficient for a tree fragment i 

is denoted by θk where k belongs to the fragment i. The size 

of the tree fragment Si is defined by the number of nodes 

that it contains. The size of weighing factor λ is a tuning 

parameter indicating the importance of the size factor. λ is 

taken to be 0.5. The depth of the tree fragment Di is defined 

as the level of the tree fragment root in the entire syntactic 

parsing tree, with Droot=1.  The depth weighing factor µ is a 

tuning parameter indicating the importance of the depth 

factor. µ is taken to be 0.5. The weight of a tree fragment 

wi is defined as θiλ
Si

µ
Di

, where θi is its weighting 

coefficient, Si is the size of the tree and Di is the depth of 

the tree. W(TF)=W(TF1).W(TF2) is the weight of the 

resulting matching tree fragment. In order to find the 

similarity score between two syntactic parsing trees T1 and 

T2, we traverse them in post -order, and calculate the pair-

wise node matching scores between the nodes in these two 

trees. This results in T1*T2 matrix of M(r1,r2).  

The similarity score or the distance metrics between two 

parse trees is given by 

 

Sim (T1, T2) =∑r1εT1∑r2εT2M (r1, r2). 

 

This similarity measure is used for returning the questions 

which match the input question appropriately. 

 

F. Filling the Matrix 

We use memorization technique to fill the matrix. Each 

node has the following members: the string, label, depth, a 

vector to store indices of its children, pointers to its children 

and a Boolean variable to know if the string is a terminal or 

not. Labels are assigned to each node in order to represent 

the nodes in the matrix. Each node in tree T1 is compared 

against each node in tree T2. The node matching score is 

then updated in the matrix. Labels are assigned while doing 

Level order traversal. Depth of each node is calculated and 

stored as a member (Post order Traversal). η is a measure of 

the total number of matched tree fragments under that node. 

This value is calculated by summing the number of non-

zero values that got filled in the rows just below the 

required node. (Filling of the matrix goes from bottom to 

top). Initially each node is checked if it is a terminal or not. 

If it is, then the node matching score is calculated using the 

above algorithm (in Matching). Else, the value for the node 

is updated using the values for the child filled in the matrix. 

The node matching score for two nodes is stored in the 

matrix by Matrix[label1][label2]. Label1 is the label of the 

node in tree T1 and Label 2 is the label of the node in tree 

T2. We have used stacks for formation of parse tree. [After 

we get output from the Stanford parser]. and trees for 

implementing Question Matching [Syntactic Tree 

Matching].  

 

The algorithm followed is robust against grammatical errors 

too. This is because whenever any grammatical error 

occurs, the chunks or phrases at the lower level are 
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preserved and the ones at the higher level are modified. 

And weight of the tree fragment at the lower level carry 

more weight when compared to those at the higher level. 

And thus the matching score is not degraded much due to 

such kind of errors. 

 

Semantics are incorporated using Wordnet (freely available 

semantic network) which helps in measuring the similarity 

between two words. Hypernyms are determined for each 

word (input cleaned word and word in the archive).If a 

match occurs then it is considered that the words are 

semantically similar. 

 

Sem(w1,w2)=1 in that case. Thus when the weight of the 

resulting tree fragment is being calculated, it is multiplied 

with this extra measure which helps in ensuring that the 

semantics are taken care of. 

 

 
Module Flow of BOW + TK + SVM Algorithm 

VI. RESULTS AND ANALYSIS 

A. Cleaning noisy query using soundex & LCS algorithm 

Noisy words and corresponding cleaned texts can be 

obtained after applying token based Correction and Soundex 

Algorithm. We observed that almost all of the cases have 

been handled by our above approach. The observed 

efficiency of this approach was found to be 89.97%. 

 

Noisy word Corrected Word 

Wch Which 

Contry Country 

Frst First 

Hostd Hosted 

Mdrn Modern 

Olympcs Olympics 

Table: 1.Noisy word and its corresponding corrected word 

 

B. Efficiency of question classifier using SVM 

Training data consists of 8400 queries in <Question, 

Answer, Domain> format. We have trained all those 

questions using SVM with features like TF-IDF(Term 

Frequency-Inverse Document Frequency) and BOW(Bag of 

Word Approach). 

 
 

C. MRR(Mean Reciprocal Rank) Scores and calculation of 

efficiency for different approaches 

MRR:- For an input query, we retrieve top n best matches. 

if our best matched question for given query is at 3rd 

position ,then reciprocal rank will be 1/3. if it is at nth 

position, it will be 1/n. if it's not present in best matched 

questions, then reciprocal rank will be 0. MRR(Mean 

Reciprocal Rank) will be calculated as the average of all 

reciprocal ranks of given queries. 

 

 

 

 

Method Training 

Data Set 

In-

domain 

Queries 

(2577) 

Out-

Domain 

Queries 

(5400) 

MRR Efficiency 

BOW 8414 1714 2513 0.67 65.4 

BOW 

+TK 

8414 2234 3223 0.83 78.4 

BOW 8414 2323 3552 0.85 83.6 
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+TK 

+SVM 

 

 

 
Hence we see that Semantic smooth matching (BOW + 

TK + SVM) performs better over unigram and bigram 

matching. But Questions like “I am too fat, please help?!!” 

are actually similar to “In what ways can we lose weight?” 

our proposed model doesn’t handle such cases. Handling 

such cases is left behind for future work using potential 

answer matching. 
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