
 © 2017, IJCSE All Rights Reserved 269

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-6 E-ISSN: 2347-2693

An Effective and Optimized Approach to Association Rule Mining using

GPGPU

Milind Kamath
1*

, Ankit Katariya
2
, Gaurav Bhokare

3

1*

Computer Engineering, PES Modern College of Engineering, Pune, India
2
Computer Engineering, PES Modern College of Engineering/ SavitriBai Phule Pune University, Pune, India

3
Computer Engineering, PES Modern College of Engineering/ SavitriBai Phule Pune University, Pune, India

Corresponding Author: milindkamath10@gmail.com, Tel.: +91-9763335324

Available online at: www.ijcseonline.org

Received: 22/May/2017, Revised: 04/Jun/2017, Accepted: 26/Jun/2017, Published: 30/Jun/2017

Abstract— Frequent Pattern Growth (FP-Growth) is a data mining technique, FP-growth algorithm introduced frequent pattern

tree (FP-tree), stored as frequent item-sets in a compressed way. It overcomes drawback of candidate generation approach of

multiple database scan but at the same time the transaction identifiers can be quite long taking substantial memory space and

computation time. An optimised data structure viz. the Multi-Path Graph is used to improve the utilization and increase the

efficiency of data mining techniques. Here we will be using graph as a data structure for storing frequent patterns in the

memory. The graph structure will help to mine these frequent patterns without constructing FP-trees. However FP-Growth and

MP-Graph fail to process extremely vast data-sets optimally. So we will be attempting to compare FP-Growth with MP-Graph

as per its efficiency and memory utilization capability using parallelization techniques. We will try to achieve parallelization

using CUDA, and bring forth a comparison of both the mining techniques.

Keywords—Associative rule mining , heterogenous parallel programming , CUDA , frequent pattern mining

I. INTRODUCTION

Association Rule Mining is a method of extracting data by

uncovering interesting relations amongst variables in large

datasets. Frequent item-set mining (FIM) is a tool use to

discover these frequently co-occurring items. We came

across a proposed novel approach for storing frequent

patterns in the compact form to save the memory space and

improve efficiency of the frequent pattern mining on the

large datasets. The proposed novel structure is a very close-

packed graph structure for store frequent patterns in the

memory. It also reduces the overhead of constructing extra

data structures for mining frequent pattern. Although to

handle input data set consisting of millions of rows takes

quite a long processing time. As data size keeps on

increasing, input data processing cost causes a significant

bottle-neck and this algorithm becomes expensive. We

propose an approach to use CUDA and parallelize fraction of

the target algorithm which focuses to reduce time required

for input data processing. This gives an independent and cost

effective method to solve the computation cost overhead

caused by increasing size of datasets.

In this paper we present an algorithm to optimize input

processing of proposed Multi-Path Algorithm using CUDA.

We propose a sound mathematical analysis and solid figures

to depict the speed up achieved by the optimized code.

II. RELATED WORK

Association rule mining algorithms can be classified based

on candidate generation and test approach like in Apriori [1]

[2], frequent pattern growth based algorithms such as FP-

growth, CT-PRO, CP-TREE and algorithms that use vertical

data format like Eclat. FP-growth [3] resolves the problems

of huge candidate set generation, the time complexity and the

multiple data scans for Apriori like algorithms. FP-growth

reduces the number of scans from maximum length of

frequent patterns to two scans. But the mining complexity in

such approaches depends on the number of conditional trees

constructed and the traversal cost associated [3] discusses the

way of removing candidate generation techniques by

proposing the FP-Tree structure where the database is first

compressed in a smaller data structure reducing the cost of

scanning the database repeatedly. It then uses the method of

pattern fragment growth to reduce the creation of large

amounts of candidate sets. It then divides the database into

finer tasks to mine patterns within those databases. The

efficient structure for trees did increase efficiency of FP-

growth but when a large dataset is considered the number of

conditional trees are high. Various studies based on this

approach tried to make existing FP-tree structure more

compact and improve mining performance. Parallel FP-

Growth [4] implements the FP-growth mining on distributed

architecture around MapReduce [4] discusses the need for

increasing computation of Frequent Item-set mining

techniques by using distributed computing. They propose Fp-

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 270

Tree technique for mining frequent items. Using distributed

computing, each node will be working on its own chunk of

database independent of other nodes. It is said to be

promising in search engines for the support of query

recommendation. The use of multiple systems increases the

cost of such approaches tremendously. MP-Graph [5]

developed a compact structure and the creation of conditional

trees for mining using a graph like structure to attain the

same [5-9] describes the limitation of creating redundant

nodes while generating FP-tree for association mining

techniques. They have proposed a novel structure called

Multi-Path Graph as the name suggests.

III. SCOPE

Today’s world is the world of data, data that is saved in a

gargantuan amount of size. These data are being saved since

two three centuries in the form of papers and now everything

is digitised. Saving of huge data as databases isn’t enough.

Mining of such data for analysing and prediction is also

necessary. Since the database is huge, it takes a large amount

of time to analyse and further process it. Hence, the need for

parallelising the computation of such huge databases for

analysis will be of prime help in the long run.

IV. MP-GRAPH ALGORITHM

Module 1: This module is basically the crunching of huge

datasets to get frequency of unique items for further graph

creation and frequent pattern generation. The first step for

module 1 is to read the dataset in the form of file and get the

total count of transactions. The second step is to calculate the

frequency of unique items in those transactions and save in

the two arrays. These arrays are saved in descending order of

frequencies calculated and pruned according to the support

count. Using these steps we generate a Global Frequent

Header Table GFHTable consisting of itemID and its

frequency count, pointer to its consequent graph node and

pointer to the next node.

Module 2: This module is creation of graph structure by

using GFHTable generated in module 1. The pointer from

Table to the graph node is used to initialise the node, and its

subsequent structure within the node. The graph node

consists of a sub structure which contains a parentreflist. This

parentreflist is used to store the list of parents that the

particular node can possibly have. This parentreflist is within

itself a structure which is used to show the relation between

the graph node and identify its parent. The parentreflist

contains two fields, one being the parentrefnode which

identifies the parent to the graph node and the other being the

transaction bitmap which shows the presence of the parent

child relation in terms of bitmap.

Module 3: This module uses bottom up approach to traverse

the nodes we created in module 1. Frequent patterns are

generated by traversing the graph for a particular item and

going through the parentreflist till it becomes null.

Conditional patterns are generated by using the bitmaps. The

conditional patterns are pruned according to the confidence

and combinations are found to obtain the frequent pattern

sets.

Our Proposition: As we can see that the first module is the

one in which huge processing takes place which consume

more time, we intend to reduce its time by introducing

parallel programming technique. This will substantially

reduce the time complexity of the first module and reduce the

overall time as well. We try to achieve parallelism by using

CUDA programming.

V. PROPOSED ALGORITHM

A. Assumptions:

 Input to the program is given in form of a file.

 Every line in the file is a transaction.

 Transaction consist of item sets.

 Item sets are represented in integer format.

 File size should be minimum 3 lakh or more to

achieve substantial speed up.

 Program requires proper sdk which supports nvcc

compiler.

B. Algorithm Details:

 Aim of our algorithm is to improve time efficiency of the

application and achieve a considerable speed up factor. As

discussed above, we intend to improve speed in the first

module itself and hence we will walk through the algorithm

for our first module only.

Algorithm:

On CPU:

1) For each transaction t in file:

2) For each item i in transaction:

3) Append i to the trans_arr

4) For each item i in trans_arr:

5) Copy i from trans_arr to trans_vect //2D array to 1D

array

6) Sort trans_vect in descending order

7) Create item_arr, freq_arr of size trans_vect

8) Compute frequency count of item i in trans_vect by

reduction, store in freq_arr

9) Pass unique items i from trans_vect to item_arr

10) Shrink item_arr and freq_arr to prune left over zeros.

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 271

11) Rearrange trans_arr according to the to the freq_arr

values.

On Gpu :(enable parallelism)

Considering T threads provided by gpu and for N number of

elements:-

1) For each transaction t in file:

2) For each item i in transaction:

3) Append i to the trans_arr

4) For each item i in trans_arr by thread id N/T*i:

5) Copy i from trans_arr to trans_vect //2D array to 1D

array

6) Sort trans_vect in descending order using T threads

7) Create item_arr, freq_arr of size trans_vect

8) For i in trans_vect:

9) Count unique occurrence of i using T threads i.e N/T*i

partitions

10) For i in trans_vect:

11) Count unique occurrence of i and update item_arr

12) Shrink item_arr and freq_arr to prune left over zeros

using T threads.

13) Rearrange trans_arr according to the to the f

freq_arr values using Threads.

VI. MATHEMATICAL ANALYSIS

For serial code: (on CPU only)

Time complexity:

O (n+m*p) + O (mlogm) + O (m^2) ------ (1)

Similarly for parallel code (on GPU):

Time complexity:

The second and the third module aren’t optimised and hence

their time complexity will be O (mlogm) + O (m^2) ------ (2)

For the first part we have serial complexity as O (n*+m*p)

where n is the transactions in the DB.

We have launched threads in the number of transactions

which means we have launched x threads which are equal to

the number of number of transactions.

I.e. x=n ----- (3)

Thus we have parallelised the first part of GFHTable

generation.

Hence its time complexity is:

O (n/x + m*p)

And from (3) we get:

O (1+m*p) ----- (4)

From (2) and (3) we get time complexity as O (1+m*p) + O

(m logm) + O (m^2) ----- (5)

Since the main concern for parallel code is to find the

optimisation or the speed up,

Hence we will find the speedup

We have to first find out how fast parallel code is than serial

code.

Thus

execution_time_for_serial_code/execution_time_for_parallel

_code = 1+N/100

N is percentage faster

From our analyses we have for 60 lack transactions

execution_time_for_serial_code = Ts Ms

execution_time_for_parallel_code = Tp Ms

Thus

 Ts /Tp = 1 + N/100

 N/100 = Ts /Tp -1 % faster

 We have parallelised approximately 1/3rd of our code

 I.e. 33.33333%

 Using Amdahl's law:

 Overall speedup if we make 33.33333% of our code Ts /Tp -

1 % faster

 F = 0.333 S= (Ts /Tp -1) /100

 Speedup = 1/ ((1-F) +F/S)

 = 1 / ((1-0.333) + 0.333/(Ts /Tp -1) /100

Using the values of Ts and Tp , we will be able to calculate

the exact speedup of our program.

VII. CONCLUSION

In this paper we discussed the implementation of fractional

parallelization of Association Rule Mining algorithm MP-

Graph using CUDA. The outcome will show that GPU

outperforms CPU and will conclude that in general using

GPU based implementations we can process huge data files

much faster than processing same files on CPU based

implementations. The algorithm resolves a major issue of the

required computational time which will be reduced

significantly by our parallel approach. Combining the space -

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 272

time efficiency achieved by parallel MP-Graph algorithm we

will achieve to produce a balanced algorithm to generate

frequent patterns.

REFERENCES

[1]. R Agrawal, T Imielinski and A Swami, “Mining association

rules between sets of items in large databases” In the

proceedings of the SIGMOD ’93 ACM SIGMOD international

conference on Management of data Pages 207-216

[2]. J Han, J Pei, Y Yin. and R Mao, “Mining Frequent Patterns

without Candidate Generation” In the proceedings of SIGMOD

’00 of the 2000 ACM SIGMOD international conference on

Management of Pages 1-12

[3]. H Li, Y Wang, D Zhang. and M Zhang, “PFP: Parallel FP

Growth for Query Recommendation” In the proceedings on the

ACM conference on Recommender system, pp 107-114 ACM

(2008)

[4]. R.V. Mane, V.R. Ghorpade, "Use of Constraints in Pattern

Mining: A Survey", International Journal of Computer Sciences

and Engineering, Vol.4, Issue.11, pp.95-99, 2016.

[5]. M. Dhivya, D. Ragupathi, V.R. Kumar, "Hadoop Mapreduce

Outline in Big Figures Analytics", International Journal of

Computer Sciences and Engineering, Vol.2, Issue.9, pp.100-104,

2014.
[6]. V. Jain, "Frequent Navigation Pattern Mining from Web usage

data", International Journal of Scientific Research in Computer

Science and Engineering, Vol.1, Issue.1, pp.47-51, 2013.

[7]. Nidhi Sethi and Pradeep Sharma, "Mining Frequent Pattern from

Large Dynamic Database Using Compacting Data Sets",

International Journal of Scientific Research in Computer Science

and Engineering, Vol.1, Issue.3, pp.31-34, 2013.

[8]. Marie Fernandes , "Data Mining: A Comparative Study of its

Various Techniques and its Process", International Journal of

Scientific Research in Computer Science and Engineering, Vol.5,

Issue.1, pp.19-23, 2017.

[9]. Jaswant Meena, Ashish Mandloi , "Classification of Data Mining

Techniques for Weather Prediction", International Journal of

Scientific Research in Computer Science and Engineering, Vol.4,

Issue.1, pp.21-24, 2016.

[10]. Deepti Sharma and Vijay B. Aggarwal, "Mapreduce- A Fabric

Clustered Approach to Equilibrate the Load", International

Journal of Computer Sciences and Engineering, Vol.4, Issue.3,

pp.116-123, 2016.

Authors Profile

Milind Madhav Kamath is a BE Final Year

student in the Computer Department,

Progressive Education Society’s Modern

College of Engineering, Pune. Will receive

Bachelor in Computer Engineering in the

year 2017 from Savitribai Phule Pune

University, Pune, and Maharashtra, India.

Interests in c/c++, java, cuda, android

hacking.

Gaurav Ajay Bhokare is a BE Final Year
student in the Computer Department,
Progressive Education Society’s Modern
College Of Engineering, Pune. Will receive
Bachelor in Computer Engineering in the year
2017 from Savitribai Phule Pune University,
Pune, Maharashtra, India. Interests in c, cuda,
OpenGL.

Ankit Paras Katariya is a BE Final Year
student in the Computer Department,
Progressive Education Society’s Modern
College Of Engineering, Pune. Will receive
Bachelor in Computer Engineering in the
year 2017 from Savitribai Phule Pune
University, Pune, Maharashtra, India.
Interests in c/c++,Algorithm Design.

