
 © 2015, IJCSE All Rights Reserved 252

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Issue-5 E-ISSN: 2347-2693

 Implementation of SHA on FPGA

 Ankit Anand
1*

, Pushkar Praveen
2

and Shruti
3

1
Computer Science, ABES Institute of Technology, Ghaziabad, UP, India

2
Electronics & Communication, RIET, Gr.Noida, UP, India

3
Computer Science, BITS, Bhopal, MP, India

www.ijcseonline.org

Received: Apr/29/2015 Revised: May/07//2015 Accepted: May/20/2015 Published: May/30/ 2015

Abstract— In this paper, an FPGA based SHA1 core is designed and implemented using the hardware description language

VHDL. Hash functions are the most important cryptographic algorithms and used in the several fields of communication

integrity and signature authentication. These functions produce a fixed-size fingerprint or hash value for a variable length (very

long) message. The hash function SHA-1, Secure Hash Algorithm, is examined in order to find the common constructs that can

be used to implement it using hardware blocks of the FPGA. As a result, a hash core supporting SHA-1 and having a standard

single bit SPI is proposed. The hardware is described using VHDL and verified on Xilinx FPGA.

Keywords— ASIC, Digital Signature, FPGA, Message Digest, SHA, RTL, VHDL

I. INTRODUCTION

In this paper, hardware implementation of SHA-1 hash

function on FPGA is described. The design is described and

modeled using a hardware description language, namely

VHDL. The recent advancements in the wireless

communications area and personal communications systems

have made providing information security a more and more

important subject. Cryptographic algorithms need to meet

specific information security requirements such as data

integrity, confidentiality and data origin authentication.

Hash functions are the most important cryptographic

algorithms and used in several fields of communication

integrity and signature authentication. These functions are

operations that take a variable length of input and produce a

compressed, fixed length representation of that input. This

condensed representation of an arbitrary long input is

referred to as a message digest or hash value. The size of

the hash value is fixed depending on the hash function

being used. The security of a hash algorithm is directly

related to the message digest length. A lot of hash functions

have been developed till now, and MD5, SHA-1, SHA-256,

SHA-384 and SHA-512 are the most popular among them.

The oldest of them is the MD5 hash function. This function

was developed in 1991 and has an output digest size of 128

bits. In 1993, the ensuing researches on developing more

secure hash functions gave birth to a more secure hash

function SHA-1 which provides an output hash of 160 bits.

In 2002, in order to match security levels offered by other

cryptographic algorithms, NIST developed three new hash

functions: SHA-256, SHA-384 and SHA-512. These hash

functions were standardized with SHA-1 as SHS (Secure

Hash Standard). A 224-bit hash function SHA-224, based

on SHA-256, has been added to SHS in 2004. Hash

calculations are mainly composed of three sections. In the

first section, the incoming message is padded and fixed size

message blocks are prepared respective to the particular

hash function being applied. After these padding operations,

the message schedule is created. In this state, message block

is further divided into sub blocks to be used in each round

of the hash calculation technique. In the hash calculation

process, message digest is computed after a fixed number of

iterations respective to the algorithm are carried out, using:

I. Algorithm specific constants

II. Message words prepared by the message or word

scheduler

III. The chaining or connecting variables

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(252-257) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 253

Hash functions can be implemented in hardware and/or

software. Though, as security and throughput requirements

of the systems increase, it has been observed that software

implementations cannot provide the required security and

throughput performance. As a result, it is preferred to

implement the hash algorithms in hardware.

II. HASH FUNCTION

A. Introduction to Hash Function

A hash function is a sort of operation that takes an input and

produces a fixed-size string which is called the hash value.

The input string can be of any length depending on the

algorithm used. The produced output is a condensed

representation of the input message or document and

usually called as a message digest, a digital fingerprint or a

checksum. The size of the message digest is fixed

depending on the particular algorithm being used. The

security of a hash function is directly related to the message

digest length. Pre-image resistance, second pre-image

resistance and collision resistance are very important

characteristics of any hash function.

I. Pre-image resistance (one-way property): For all

specified hash values it is computationally very

hard to find an input message having that particular

hash value.

II. Second pre-image resistance: Given an input

message m1, it is computationally very hard to find

another input message m2 such that hash (m1) =

hash (m2).

III. Collision resistance: It is computationally very

hard to find any two different inputs that have the

same hash value.

B. Applications of Hash Functions

The most common use fields of hash functions are verifying

data integrity, providing password authentication and

generating digital signatures with DSA in applications such

as electronic mail, electronic funds transfer, software

distribution and data storage which require data integrity

assurance and data origin authentication.

 Figure 1: Verifying Data Integrity

The application and verification of a digital signature are

illustrated below in Figure 2.2. If a hash function were not

used, the recipient would not be sure that the data integrity

is protected. Since hash functions are one way functions,

any change in the document will change the signature and

the signature would not be validated. As a result, when the

signature is validated, the recipient makes sure that the

document is not altered. Another benefit of digital

signatures is the authentication of the source of the

messages. Since private key used in the encryption process

belongs to a specific user, a valid signature shows that the

message is sent by that user.

 Figure 2: Verification of a Digital Signature

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(252-257) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 254

C. Hash Computation Flow

Every hash computation process consists of two stages. The

first stage is the preprocessing stage. In this stage the

message is padded, parsed into n blocks and the chaining

variables are initialized. In the second stage, hash

calculation is done. In the hash calculation stage, constants,

functions and word operations specific to the hash function

are used. Hash calculation generates a message schedule

from the padded message and uses that schedule, along with

functions, constants and word operations to iteratively

generate a series of hash values. The final hash value

generated by the hash computation is used to generate the

message digest. This scenario is illustrated below in figure.

 Figure 3: General Hash Computation Flow

D. SHA1 Functions

SHA1 uses three different logical functions. These

functions operate on 32 bit words and each has three

parameters. These functions are:

1. Ch(x,y,z) = (x . y) (~x . y)

This function is used in first 20 rounds of SHA1

calculations. The architecture of this function is

illustrated in Figure 2-5.

2. Parity(x,y,z) = x y z

This function is used in second and last 20 rounds

of SHA1 calculations. The architecture of this

function is illustrated in Figure 2-6.

3. Maj(x,y,z) = (x . y) (x . z) (y . z)

This function is used in third 20 rounds of SHA1

calculations. The architecture of this function is

illustrated in Figure.

 Figure 4: Ch Function Architecture

 Figure 5: Parity Function Architecture

 Figure 6: Maj Function Architecture

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(252-257) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 255

These functions are listed below in Table 2-1 according to

the SHA1 round number.

SHA1 Functions Round number, t

f(b,c,d) = Ch(b,c,d) 0 ≤ t ≤ 19

f(b,c,d) = Parity(b,c,d) 20 ≤ t ≤ 39

f(b,c,d) = Maj(b,c,d) 40 ≤ t ≤ 59

f(b,c,d) = Parity(b,c,d) 60 ≤ t ≤ 79

Table 2-1 SHA1 Functions

1) SHA1 Constants

There are four constants which are used in SHA-1

computations. These are given in Table 2-2

SHA1 Constants Round number, t

5A827999 0 ≤ t ≤ 19

6ED9EBA1 20 ≤ t ≤ 39

8F1BBCDC 40 ≤ t ≤ 59

CA62C1D6 60 ≤ t ≤ 79

Table 2-2 SHA1 Constants

2) SHA1 Computation Flow

SHA-1 computation is composed of two stages,

preprocessing stage and hash calculation stage. In the

preprocessing stage, message is padded, divided into 16 32-

bit sub blocks and message schedule is prepared.

Message Padding: Suppose that the length of the message,

M, is l bits. Append the bit “1” to the end of the message,

followed by k zero bits, where k is the smallest, non-

negative solution to the equation l +1+ k ≡ 448(mod 512).

Then append the 64-bit block that is equal to the number l

expressed using a binary representation. For example, the

(8-bit ASCII) message “abc” has length 8x3 = 24, so the

message is padded with a one bit, then 448 − (25 +1) = 423

zero bits, and then the message length, to make the 512-bit

padded message.

Setting the initial hash value: The 160-bit initial hash value

H
(0)

 is composed of five 32-bit words which are shown in

table.

Hash Calculation: SHA1 may be used to hash a message,

M, having a length of l bits, where 0 ≤ l ≤ 2
64

. The

algorithm uses:

A message schedule of 80 x 32-bit words. The words of the

message schedule are labeled W0, W1, …………, W80.

Five working variables of 32-bits each. The working

variables are labeled as: A, B, C, D and E.

A hash value of five 32-bit words. The words of the hash

value are labeled as: H0
(i)

, H1
(i)

, H2
(i)

, H3
(i)

, H4
(i)

 which will

hold the initial hash value H
(0)

, replaced by each

intermediate hash value (after each message block is

processed) H
(i)

 where i denotes the number of 512 bit block

being processed in the message M, and ending with the final

hash value, H
(N)

 where N is the number of the last 512 bit

block in the message M. A single temporary word, T.

Previously defined constants which are labeled Kt, where t

is the round number. The calculation is carried out as

follows:

The message schedule is prepared, i.e. the message word

that is going to be used in that round is prepared. This

computation is done as described in the following formula:

In the above formula M

i
t denotes the t

th
 32-bit message

word of the i
th

 512-bit message block in the message M.

The 5 working variables A, B, C, D and E that are going to

be used in the computation are prepared as follows:

A = H0
(i–1)

B = H1
(i–1)

C = H2
(i–1)

D = H3
(i–1)

E = H4
(i–1)

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(252-257) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 256

After these initializations, the final values of the working

variables for that round are calculated as described below:

T = S^5(A) + f (t; B,C,D) + E + Wt + Kt

E = D

D = C

C = S^30(B)

B = A

A = T

As the final step, intermediate hash values are calculated as

described below:

H0
(i)

 = A + H0
(i-1)

H1
(i)

 = B + H1
(i-1)

H2
(i)

 = C + H2
(i-1)

H3
(i)

 = D + H3
(i-1)

H4
(i)

 = E + H4
(i-1)

After 80 rounds the hash value of the incoming 512 bit

message block is obtained. Basic SHA-1 computation flow

described above is shown below in Figure

Figure 7: Message padding

H0
(0)

 H1
(0)

 H2
(0)

 H3
(0)

 H4
(0)

67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

 Table 2-5 Initial Hash Value for SHA-1

 Figure 8: SHA1 Computation Flow

III. HARDWARE IMPLEMENTATION

SHA-1 hash function is implemented in a FPGA. The

design is described and captured using a hardware

description language Verilog and implemented on Xilinx

FPGA. At first step, core design on FPGA concept is

examined and the design modules that are going to be

implemented are determined. Verilog description of the

hash core is written and synthesized using Xilinx ISE 9.2i.

The implementation is done for Xilinx’s Spartan2 series

XC2S200-PQ208 FPGA. To verify the generated Verilog

design description, and simulate the design, ModelSim 6.5c

is used. The steps in the implementation process are

described below:

1. Synthesis: In the synthesis process the syntax of

the design is checked and the written VERILOG

descriptions are converted to the common

constructs on the FPGA such as multiplexers, flip

flops, BRAMs etc.

2. Implement design: Before implementation, the

constraint file is written to define hardware I/O

connections. The implementation constraints file

includes timing constraints, package pin

assignments and area constraints. Implementing

the design means translating, mapping, placement

and routing of the design into the targeted Xilinx

device. In this process, logical design file

generated in the synthesis process, is converted

into a native circuit description (NCD file). This

file contains hierarchical components used to

develop the design and the Xilinx primitives.

3. Generate programming file: In order to generate

programming file, the design should have been

implemented for the selected FPGA device. This

process generates the “.bit” file required to

program the FPGA.

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(252-257) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 257

4. Configure the device: This process is the process

where the FPGA is programmed. FPGA is

programmed using Xilinx’s Platform Cable USB.

IV. RESULT

The device utilization summary of the design after synthesis

is given below in table:

Logic Utilization Used Available Utilization

Number of Slices 952 2352 40%

Number of Slices Flip

Flops
1632 4704 34%

Number of 4 input LUTs 119 4704 2%

Number of bonded IOBs 1693 140 1227%

Number of GCLKs 2 4 50%

Table 4-1 Device Utilization Summary after Synthesis

(Spartan2)

The simulation results are also given. The throughput of the

design was calculated using LeonardoSpectrum LS2009a_6.

The delay results are given below using Xilinx ISE 9.2i.

Timing Parameter Value

Minimum Period 12.543 ns

Minimum Input Arrival Time

before Clock
10.421 ns

Maximum Output Required Time

after Clock
6.89 ns

Maximum Frequency 79.329 MHz

Table 4-3 Timing Report after Synthesis (Spartan2)

V. CONCLUSION

In this paper, a hash core having the capability of

performing SHA1 calculations is specified, analyzed and

implemented using the hardware description language

Verilog. The hash core proposed in this paper can be used

in various applications as like providing password

authentication, verifying data integrity and generating

digital signatures for both data origin authentication and

verifying the content of the document easily. The designed

hash function core has serial interface that makes

communication with the external units such as a personal

computer possible. So it provides a great flexibility since it

enables remote control of the hash function core. In the

market and in the literature an implementation that enables

serial communication with the device has not been found.

The throughput of the proposed architecture is less

than the present implementations however the proposed

implementation has a serial communication interface which

makes the design easy to use and consumes less area also

high speed and high throughput. The hash function core

described using the Verilog can be implemented on to the

Xilinx Virtex4 FPGA and there can be some modification to

increase the throughput further and also improve the speed

of operation.

VI. REFERENCES

[1] Bowman, M. Debray, S. K., and Peterson L. L,

Reasoning about naming systems,1993. .

[2] Ding, W. and Marchionini G. A Study on Video

Browsing Strategies. Technical Report. University of

Maryland at College Park, 1997.

[3] Fröhlich, B. and Plate J, The cubic mouse: a new

device for three-dimensional input. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems,2000.

[4] Tavel, P. Modeling and Simulation Design. AK Peters

Ltd, 2007.

[5] Sannella, M. J. Constraint Satisfaction and Debugging

for Interactive User Interfaces. Doctoral Thesis. UMI

Order Number: UMI Order No. GAX95-09398.,

University of Washington,1994.

[6] Forman G. An extensive empirical study of feature

selection metrics for text classification. J. Mach. Learn.

Res. 3 (Mar. 2003), 1289-1305.

[7] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[8] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,

MUMCUT and several other coverage criteria for

logical decisions", Journal of Systems and Software,

2005, in press.

[9] Spector, A. Z. 1989. Achieving application

requirements. In Distributed Systems, S. Mullender
[10] Bruce Schneier, “Applied Crptography”, John Wiley and

Sons, Inc. Press, 1996.

[11] NIST, “Secure Hash Standard”, FIPS PUB 180-1, May 1993.

