

 © 2018, IJCSE All Rights Reserved 280

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-6, Issue-1 E-ISSN: 2347-2693

 Data Retrieval from Data Warehouse Using Materialized Query Database

Sonali Chakraborty
1*

, Jyotika Doshi
 2

1
*
Gujarat University, Ahmedabad, Gujarat, India
2
GLS University, Ahmedabad, Gujarat, India

*Corresponding Author: chakrabartysonali@gmail.com

Available online at: www.ijcseonline.org

Received: 06/Jan/2018, Revised: 10/Jan/2018, Accepted: 25/Jan/2018, Published: 31/Jan/2018

Abstract— Decision making in an organization requires aggregate as well as non- aggregate results, computed from data stored

in data warehouse. Performance in case of result extraction from a data warehouse is an important factor. Probability that the

same query is fired more often is high. This results into frequent analysis of warehouse data for fetching same results or results

with incremental updates. This paper discusses an approach for storing such frequent queries along with their result, timestamp,

frequency and threshold in a separate database. Past results are fetched from database and only incremental updates are done

through data marts. This approach may improve performance removing or reducing execution time.

Keywords— Data warehouse, Data mart, materialized query, faster execution

I. INTRODUCTION

OLAP queries are fired by the organization for decision

making. Results are retrieved from data warehouse; a

repository of huge amount of data. Probability that a same

query is fired frequently is high. Frequent access to data

warehouse for retrieving results will lead to fetching same

data again and again and thus requiring more processing

time. To avoid frequent data warehouse access, there are

some ways like using materialized views or

multidimensional cubes.

In this paper, we suggest another approach to avoid

execution of frequent queries. Results of high frequency

queries can be materialized and stored in a separate database.

Other details such as timestamp, frequency and threshold are

also stored along with query and its results. Next time when

the same query is fired, only incremental updates if

necessary, are done through data marts, hence reducing data

warehouse access time. Data marts are loaded with copy of

most recent records during data warehouse refresh. Result

retrieval from data marts will result into faster execution of

query compared to data warehouse access.

Rest of the paper is organized as follows: Section II deals

with related work. In section III problems with the current

approaches are highlighted. In section IV methodology of

suggested approach along with examples and model diagram

is described. Section V concludes the research work.

II. RELATED WORK

Issues dealing with materialized views are summarized in

a tabular format in [22]. Approach of querying a multi

version data warehouse by extending SQL language is

discussed in [1] while in [2] authors identify factors for

selecting a proper indexing technique for data warehouse

applications. It also identifies factors to be considered for

building a proper index on base data. Literature [3-11] deal

with various issues and techniques used for maintaining and

using materialized views. Algorithms for incrementally

maintaining materialized views are discussed in [3], while

maintenance expression for dealing with materialized views

with aggregates is discussed in [4]. Algorithm for

maintaining views when data sources are updated is shown

in [5] and a model for keeping the view current according to

the changes in the underlying database is depicted in [6]. The

incremental maintenance problem of an SQL view in case of

database updates using DAG is shown in [7]. Authors [8]

discuss view maintenance overhead issues and deal using a

lazy view maintenance approach. Literature [9] deals with

the issue of computing answers to SQL queries with

grouping and aggregates in case of multiset tables. Authors

[10] designed algorithms SWEEP and NESTED SWEEP for

incremental view maintenance. Determining a part or all of a

query can be computed from materialized view is discussed

in [11].

Panos Vassiliadis [12] proposed a model for

multidimensional databases based on the notion of base cube

and provides mapping of multidimensional model to

relational model and to multidimensional arrays using a

mapping function. Authors [13] explained the three

categories of attributes of cube models while in [14] a lattice

framework is used to investigate the cells to be materialized

when it becomes too expensive to materialize all cells. A

model of data cube and algebra to concisely express complex

OLAP queries is discussed in [15]. Data model based on

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 281

hypercube is shown in [16]. A framework for computing and

evaluating the cube is depicted in [17]. Issue of frequent

change of data elements in a cube and hence the response

time getting affected by the update cost and the search cost

of the cube is dealt in [18] using an index hierarchical data

structure referred as ∆-tree. Authors [19] discuss about the

cube compression technique based on statistical clustering

the data. Authors [20] developed an algebraic query language

called as grouping algebra as an extension of relational

algebra and formalized multidimensional data model for

OLAP with its basic component as multidimensional cube.

A method for storing queries and their corresponding results

is discussed in [23] where Index is maintained to keep track

of queries and their results.

III. PROBLEMS WITH CURRENT APPROACHES

As per paper published by us [22] the problems / issues

associated with materialized views and multidimensional

cubes are summarized as below:

 Materialized views improve query processing time

majorly in case of aggregate queries [11]. But view

maintenance is necessary as the data sources are

updated [5].

 Views are complex. Hence, it is better and cheaper to

maintain them incrementally. Incremental updates can

be done by applying the changes made to the base data

rather than re-computing the view from the scratch [4].

 Though materialized views speed up query processing,

for ensuring correct results, they should be kept up to

date when accessed by a query. They can be maintained

eagerly i.e. in the same transaction as the base tables

are updated and these updates bear the cost of view

maintenance. Overhead issues arise for maintaining

them which increases as multiple views are maintained.

Hence, results into poor response time for updates.

 Instead of forcing for updates, some database systems

support the deferred maintenance approach, i.e. view

maintenance can be delayed till the user explicitly

triggers. This may lead to out-of-date views producing

incorrect results. Materialized views will no longer be

automatic and transparent. Query users need to have

knowledge about the views used by a query, their

maintenance and requirement of updation [8].

 Multidimensional data cubes are the logical model for

OLAP (Online Analytical Processing). They provide

the functionality needed for summarizing, viewing and

consolidating the information available in data

warehouse [13].

 Results are pre-computed and stored. All aggregates on

all dimensions are computed in anticipation that they

might be required. The problem with this is that, it

occupies huge storage space for n-dimensional data

cube. For materializing whole data cube having n

dimensions, the number of aggregates will be 2n for

snowflake schema [21].

 Few cells can be materialized instead of computing

them from raw data every time. For implementation of

data cube, available options are: 1) materialize the

whole data cube, which will give best query response at

the cost of higher storage, 2) materialize nothing

resulting into computing every cell on request, 3)

materialize only a part of the cube [14].

IV. SUGGESTED APPROACH

When a SQL query is fired, it is materialized and stored

along with other metadata such as its result, timestamp,

threshold and frequency in a separate database.

Next time, when user fires a query, first it is checked if

an equivalent query exists in the database. Two queries are

said to be equivalent if they fetch the same result irrespective

of the order of tables and fields used in the query. Past result

is extracted from the materialized query database and then it

requires only incremental updates. For incremental updates,

the results are retrieved from data marts.

Data marts store recent records which are loaded during data

warehouse refresh. Incremental updates through data mart

retrieves faster results than if fetched from data warehouse.

This leads to less processing time as compared to data

warehouse access, each time the query is fired.

Dimensions on which queries are fired more frequently can

be stored in one data mart instead of performing join

operation from multiple tables. Avoiding join operations

further leads to less query execution time.

 To understand the storing of materialized queries,

consider the example of an insurance company. Organization

stores data about the customers and the policies enrolled by

them through various distribution channels. Policies vary

based on category to which they belong to.

Some relational tables considered for this application are

customer, policy, category, distribution, cust_policy.

Dimensions frequently used in the queries fired by

organisation are customer’s id, customer’s name, gender,

birthdate, marital status, city, state, annual income, policy

name, policy category, distribution channel, maturity amount

etc.

For creating data marts, requirements are gathered and then

dimensions in that data mart are determined.

For example, marketing department frequently fire queries to

retrieve information regarding the enrolment of policies

based on customer’s city, state, gender, income level, marital

status, policy category, maturity amount, distribution channel

etc. Data mart is created having the above required

dimensions.

A. Storing Materialized Queries Using the Identifiers

Example:

Employee wants to get the average annual income of

customers grouped according to gender, policy category,

marital status and state.

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 282

For the above scenario, there are many different ways the

query can be written in SQL. Some sample SQL queries

generated for the above requirement are as follows:

QueryString1:

SELECT Avg(customer.annual_income) AS Avgincome,

customer.gender, category.cat_name,

customer.marital_status, customer.state

FROM customer, policy, category, cust_policy

WHERE category.cat_id = policy.cat_id AND

 policy.pol_id = cust_policy.po_id AND

 cust_policy.c_id = customer.c_id

GROUP BY customer.gender, category.cat_name,

customer.marital_status, customer.state;

QueryString 2 (Using keyword INNER JOIN)

SELECT Avg(customer.annual_income) AS Avgincome,

customer.gender, category.cat_name,

customer.marital_status, customer.state

FROM ((category INNER JOIN policy ON category.cat_id =

policy.cat_id) INNER JOIN cust_policy ON policy.pol_id =

cust_policy.po_id) INNER JOIN customer ON

cust_policy.c_id = customer.c_id

GROUP BY customer.gender, category.cat_name,

customer.marital_status, customer.state;

QueryString 3 (Changing the order of fields)

SELECT customer.gender, category.cat_name,

customer.marital_status, customer.state,

Avg(customer.annual_income) AS Avgincome

FROM customer, policy, category, cust_policy

WHERE category.cat_id = policy.cat_id AND

 policy.pol_id = cust_policy.po_id AND

 cust_policy.c_id = customer.c_id

GROUP BY customer.gender, category.cat_name,

customer.marital_status, customer.state;

All the above SQL queries fetch the same result. Hence, they

are considered equivalent, but when saved as strings in

database and compared through string matching, it will result

into a string mismatch.

We have considered different logic for matching queries for

equivalence as follows:

B. Storing query along with results and other metadata

considering QueryString1

For storing queries, predefined identifiers can be assigned to

each tables and fields (application specific) and to the

functions. These identifiers can then be saved into the tables.

Considering given example, it generates following tables.

Table for Table identifiers can be generated as follows:

Table 2: Table_Identifier

Table name Table_Id

customer 01

policy 02

category 03

distribution 04

cust_policy 05

Table for Field Identifiers can be generated as follows:

(Identifiers are assigned to fields of table ―customer‖ for

illustration. Identifiers are assigned to fields of other tables in

a similar manner)
Table 3: Field_Identifier

Field fld_id

c_id 01

c_name 02

gender 03

dob 04

marital_status 05

addr1 06

addr2 07

pincode 08

city 09

state 10

mob_num
org_type

annual_income

11
12

13

Table for Function Identifiers are defined as below:

Table 4: Function_Identifier

Function func_id

Sum 01

Avg 02

Min 03

Max 04

Count 05

Stdev 06

Var 07

group by 08

where 09

order by 10

group by and where 89

Inserting details about QueryString1 tables, fields and

functions used are generated as:

Table 5: Tables, fields and functions used in the above discussed query

Table for storing SQL query in the database for QueryString

1:

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 283

Hence, the query stored in the database using identifiers for

will be as:
Table 6: Table: ―Store_query‖

Table for storing SQL query results in the database:

Table 7: Table:‖Result_metadata‖

To understand finding equivalent query from materialzed

query database, assume next time the employee again wants

to get the average annual income of customers grouped

according to gender, policy category, marital status and state.

SQL query written is in the form of QueryString 3.

Tables, fields and functions used in the query are extracted.

Tables ―Table_identifier‖, ―Field_identifier‖ and

―Function_identifier‖ are referred for assigning identifiers to

the tables, fields and functions used in query.

Details about QueryString 3 tables, fields and functions

used are generated as below

Table 8: Tables, Fields and Functions used in QueryString 3

Table ―Store_query‖ is checked to find if any materialized

query has the same table, field and function identifier

combination as that of the fired query irrespective of the

order of tables stored.

In our example, it is found that query_id ―q1‖ has the same

table, fields and function combination. Hence q1 and current

fired query can be considered equivalent. The result is

retrieved from ―Result_metadata‖. For incremental updates,

if required, updated results are generated from data mart.

Data loaded after query timestamp value is considered for

generating results. New result thus generated, is appended

with past result, and saved. Query frequency and query date

is update.

Now we need to take care for reducing space load also in

database. For this periodic evaluation of database

―Result_metadata‖ is done based on frequency and threshold.

This will help to eliminate the infrequent queries from

database. Infrequent queries are those queries which have not

been fired since long time, i.e. their frequency value is much

less than defined threshold value. Removing such queries,

helps in reducing the load on the database, making

equivalence check and result retrieval faster.

Number of records to be loaded in data mart is subjective to

data warehouse refresh and timestamp of the materialized

queries. Lowest timestamp value is fetched from updated

―Result_metadata‖ table. Only records loaded post that

timestamp value is stored in the data mart.

Figure 1. Storing of materialized query and performing incremental updates

 International Journal of Computer Sciences and Engineering Vol.6(1), Jan 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 284

V. CONCLUSION

Materialized query is stored only when it is fired by the

user. If an equivalent query is found, results are fetched from

the materialized query database, in case of no incremental

updates. Fetching results from database consumes less time as

compared to generating results using warehouse data. In case

of incremental updates, updated results are generated using

data from data marts. Limited records in data marts make

result retrieval faster as traversal through huge records in data

warehouse is eliminated. Factors like frequency, threshold,

and timestamp helps in eliminating infrequent queries hence

saving storage space compared to multidimensional cubes.

REFERENCES

[1] T. Morzy, R. Wrembel, ―On Querying Versions of Multiversion
Data Warehouse,‖ DOLAP’04, November 12–13, 2004,
Washington, DC, USA. Copyright 2004 ACM 1-58113-977-
2/04/001.

[2] S. Vanichayobon. ―Indexing Techniques for Data Warehouses’

Queries‖. [Online] Available:

http://www.cs.ou.edu/~database/documents/vg99.pdf [Accessed

September 15, 2016]

[3] A. Gupta, I. S. Mumick, V.S.Subrahmanian, ―Maintaining Views
Incrementally,‖ Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Pages 157-166.

[4] D. Quass, ―Maintenance Expressions for Views with Aggregation,‖
Views'96, June 1996, [Online]. Available:
http://ilpubs.stanford.edu:8090/183/1/1996-54.pdf.

[5] Y. Zhuge, H. G.Molina, J. Hammer, J. Widom, ―View
Maintenance in a Warehousing Environment,‖ Proceedings of the
1995 ACM SIGMOD International Conference on Management of
Data, Pages 316-327.

[6] A. Gupta, H.V. Jagadish, I. S. Mumick, ―Data Integration using
Self-Maintainable Views,‖ Advances in Database Technology —
EDBT '96, Volume 1057 of the series Lecture Notes in Computer
Science, pp 140-144.

[7] K. A. Ross, D. Srivastava, S.Sudarshan, ―Materialized View
Maintenance and Integrity Constraint Checking: Trading Space
for Time,‖ Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Pages 447-458.

[8] J. Zhou, P. A. Larson, H. G. Elmongui, ―Lazy Maintenance of
Materialized Views,‖ VLDB '07 Proceedings of the 33rd
International Conference on Very large Databases, Pages 231-242.

[9] D. Srivastava, S. Dar, H. V . Jagadish, A. Y.Levy, ―Answering
Queries with Aggregation Using Views,‖ Proceedings of the 22nd
VLDB Conference, Mumbai (Bombay), India, 1996.

[10] D. Agrawal, A. El Abbadi, A. Singh, T. Yurek, ―Efficient View
Maintenance at Data Warehouses,‖ SIGMOD ’97 AZ,USA @
1997 ACM 0-89791 -911 -419710005.

[11] J. Goldstein, P. A. Larson, ―Optimizing Queries Using
Materialized Views: A Practical, Scalable Solution,‖ Proceedings
of the 2001 ACM SIGMOD International Conference on
Management of Data, Pages 331-342, ISBN:1-58113-332-4.

[12] P. Vassiliadis, ―Modeling Multidimensional Databases, Cubes and
Cube Operations,‖ Proceedings of Tenth International Conference
on Scientific and Statistical Database Management, 1998.

[13] P. Vassiliadis, T. Sellis, ―A Survey of Logical Models
for OLAP databases,‖ ACM SIGMOD Record, Volume 28 Issue
4, Dec.1999, Pages 64 – 69.

[14] V. Harinarayan, A. Rajaraman, J. D. Ullman, ―Implementing Data
Cubes Efficiently,‖ Proceedings of the 1996 ACM SIGMOD
International Conference on Management of data, Pages 205-216.

[15] A. Datta, H. Thomas, ―The Cube Data Model: A Conceptual
Model and Algebra for On-Line Analytical Processing in Data
Warehouses,‖ Decision Support Systems, Volume 27, Issue 3,
December 1999, Pages 289-301.

[16] R. Agrawal, A. Gupta, S. Sarawagi, ―Modeling Multidimensional
Databases,‖ Proceedings 13th International Conference on Data
Engineering, pages232-243.

[17] P. Deshpande, S. Agarwal, J. Naughton, R. Ramakrishnan,
―Computation of Multidimensional Aggregates,‖ Proceedings
22nd VLDB Conference.

[18] S. J. Chun, C. W. Chung, J. H. Lee, S. L. Lee, ―Dynamic Update
Cube for Range-Sum Queries,‖ Proceedings of the 27th VLDB
Conference.

[19] J. Shanmugasundaram, U. Fayyad, P. S. Bradley, ―Compressed
Data Cubes for OLAP Aggregate Query Approximation on
Continuous Dimensions,‖ Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining,
Pages 223-232.

[20] C. Li , X. S. Wang, ―A Data Model for Supporting On-Line
Analytical Processing,‖ Proceedings of the fifth international
conference on Information and knowledge management, Pages 81-
88.

[21] G. K. Gupta, Introduction to Data Mining with Case Studies, PHI
Learning Private Limited, 2014.

[22] S. Chakraborty, J. Doshi, ―Faster Query Result Retrieval
Approaches from a Data Warehouse: A Survey,‖ ―International
Journal of Current Engineering and Scientific Research
(IJCESR)‖, Volume 4, Issue 6, 2017, ISSN (PRINT): 2393-8374,
(ONLINE): 2394-0697, Pages 7-14.

[23] F. Sultan, A. Aziz, ―Ideal Strategy to Improve Data warehouse
Performance,‖ International Journal on Computer Science and
Engineering Vol. 02, No. 02, 2010, 409-415.

Authors Profile

Sonali Chakraborty is an Assistant Professor for
MSc (CA & IT) at Gujarat University,
Ahmedabad, India. She has completed her MSc
(CA & IT) from Gujarat University,
Ahmedabad, India in 2007. She has 8+ years of
experience in the field of teaching. Her subjects
of interest include Data Warehousing and Data
Mining, Computer Graphics, Digital Image
Processing, E-commerce and E-governance. She is pursuing PhD in
the area of Data Warehousing and Data Mining from GLS (Gujarat
Law Society) University, Ahmedabad, India. She has published
three research papers in International Journal.

Dr. Jyotika Doshi is an Associate Professor for
MCA at Faculty of Computer Technology, GLS
University, Ahmedabad, India. She earned her
PhD in computer science from Gujarat
University, Ahmedabad; MCA from IGNOU,
Delhi; MSc(Statistics) from M. S. University,
Vadodara. She has 35+ years of experience in the
academic field and 3 years experience in
software development industry. Her research is in the area of Data
compression. Her subjects of interest are Data structures, Database
management, Data analysis, Parallel programming. She has
published nearly 15 research papers in International Journals.

http://www.cs.ou.edu/~database/documents/vg99.pdf
http://ilpubs.stanford.edu:8090/183/1/1996-54.pdf

