
 © 2015, IJCSE All Rights Reserved 268

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Issue-5 E-ISSN: 2347-2693

Empirical Study of Object Oriented Software Metrics for

Evaluating Software Defects: CKMOOD Suits

Aarti Sharma
1*

 and Manoj Wadhwa
2

1*,2
Dept. of Computer Science & Engineering, Echelon Institute of Technology, Faridabad, India

www.ijcseonline.org

Received: May/04/2015 Revised: May/10//2015 Accepted: May/24/2015 Published: May/30/ 2015

Abstract—Today, Object Oriented Design metrics plays a vital role in software development. Object Oriented Metrics are

used for evaluating and predicting the quality and productivity of software. To produce high quality object oriented software,

we need a strong design especially during earlier phases of software development. Many object oriented software metrics were

proposed for increasing the quality of software design such as fault proneness and the maintainability of classes and methods.

In this paper, we provide an empirical evidence for object oriented design complexity metrics with the help of CK suite and

MOOD metric suite for determining software defects. In this paper, we find that the effect of these metrics on defects vary

across object oriented programming languages like C++, ASP and Java. We apply these metrics on java and C++ programs and

find the defects and design high quality software products.

Keywords— Object Oriented Software Metrics, Software Defects, CK Suite, MOOD Suite.

I. INTRODUCTION

Software development process and demand of software is

increasing day by day. Software metric plays an important

role in developing software products or for making them

more effective. Software metrics are used to measure

software products from analysis phase to testing phase (like

analysis, design, coding, testing and maintenance.) and also

for improving efficiency and productivity of a software. The

Object oriented design metric is important part of software

development. The main objective of OODM is to improve

the quality and efficiency of software after analyzing the

defects. The defects of software can be identified with the

help of object oriented design metric at the design phase of

software. There are two metrics CK and MOOD metric

suits which affect the fault proneness of software. The

defects are depends on two factors size and complexity of

software. Software defects are some errors or bugs in a

program which can be measured in two ways: defect density

and failure density [10]. Defect density can be calculated by

total number of defects found in every thousand line of

program source code. Failure density can be calculated by

total number of detected failures per thousand line of code.

In this paper, there is a description about object oriented

software metrics. In 1
st
 section, there is an introduction

about object oriented metrics CK and MOOD suits, which

defines the defects density of software. 2
nd

 section describes

the literature review of object oriented design metrics. 3
rd

section describes the empirical analysis on software defects

based on object oriented design. 4
th

 section describes the

result after applying these metrics. 5
th

 section describes the

conclusion and future scope of the paper and last is

acknowledgement and references.

II. LITERATURE REVIEW

A. Metrics for Object Oriented Design

Object oriented Software metrics primarily focused on

understanding software system in terms of objects, classes

and their properties. Object and properties of a class

describes the structure and behavior of a system. Chidamber

and Kemerer proposed the first set of design complexity

metrics using Bunge’s Ontology as the theoretical basis []

for clear understanding of a system. CK suite work Object

Oriented Design Metric by using inheritance , coupling and

cohesion between classes and objects via metrics such as

Weighted Method per Class (WMC), Coupling between

Objects(CBO), Depth of Inheritance(DIT), Number of

Children(NOC), Response for a Class(RFC), and Lack of

Cohesion(LCOM), which denotes complexity of classes and

coupling , cohesion, inheritance of classes. After that Abreu

proposed MOOD metrics to measure encapsulation and

polymorphism factor via metrics such as Method Hiding

Factor(MHF), Attribute Hiding Factor(AHF),Method

Inheritance Factor(MIF), Attribute Inheritance Factor(AIF) ,

Polymorphism factor(PF), Coupling Factor (CF), which

denotes the hiding aspect and taking different forms of a

class on their usage context.

Corresponding Author: AARTI SHARMA, sharmaaarti05@gmail.com

 Department of Computer Science, EIT, Faridabad, India

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(268-275) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 269

Fig. 1: Metrics Hierarchy

The template is used to format your paper and style the text.

All margins, column widths, line spaces, and text fonts are

prescribed; please do not alter them. You may note

peculiarities. For example, the head margin in this template

measures proportionately more than is customary. This

measurement and others are deliberate, using specifications

that anticipate your paper as one part of the entire

proceedings, and not as an independent document. Please do

not revise any of the current designations.

1) Chidamber and Kemerer(CK) metrics suite

Chidamber and Kemerer invented six metrics for measuring

object oriented programs. These metrics discussed as

follow:

(a) Weighted Method per Class (WMC)

WMC is defined as the sum of the complexity of the

methods of the class. It is equal to the number of methods

when all methods are of the complexity equal to UNITY

[3][4].

If a Class C has n methods and c1, c2 …cn be the

complexity, then WMC(C) = c1 + c2 +… + cn.

WMC is the predictor of how much Time and Effort is

required to develop and to maintain the class. Greater the

number of methods more is the impact on the children.

Classes with large WMC are likely to have more faults,

limiting the possibility of re-use and making the effort

expended one-shot investment. Large WMC increases the

density of bugs and decreases the quality of software. A

class with a low WMC usually points to greater

polymorphism [8].

(b) Depth of Inheritance Tree (DIT)

 DIT is defined as the maximum length inheritance path

from the class to the root class. Classes with large DIT are

likely to inherit, making more complex to predict its

behavior. Greater value of DIT leads to greater the potential

re-use of inherited methods. Large DIT increases density of

bugs and decreases the quality of software. Small values of

DIT in most of the system’s classes may be an indicator that

designers are forsaking re-usability for simplicity of

understanding. More is the depth of the inheritance tree

greater will be the reusability of class and reduces coding,

testing and documentation time. A class situated too deeply

in the inheritance tree will be relatively complex to develop,

debug and maintain. If DIT is large then testing will be

more expensive. As a positive factor, deep trees promote

reuse because of method inheritance. Although, inheritance

decreases complexity by reducing the number of operations

and operators, but this abstraction of objects can make

maintenance and design difficult. The depth and breadth of

the inheritance hierarchy are used to measure the amount of

inheritance.

As depth of the inheritance tree increases, the number of

faults also increases. However, it’s not necessarily the

classes deepest in the class hierarchy that have the most

faults. Most fault-prone classes are the ones in the middle of

the tree. The root and deepest classes are consulted often,

and due to familiarity, they have low fault-proneness

compared to classes in the middle [8].

(c) Number of Children (NOC)

NOC is defined as the number of immediate subclasses

subordinated to a class in the class hierarchy [].

Small values of NOC may be an indicator of lack of

communication between different class designers. A class

with a high NOC and a high WMC indicates complexity at

the top of the class hierarchy. The class is potentially

influencing a large number of descendant classes. This can

be a sign of poor design. A redesign may be required.

Greater is the value of NOC greater will be the reusability

which in turn enhances productivity. This metric gives an

indication of the number of direct descendants (subclasses)

for each class. Classes with large number of children are

considered to be hard to maintain and thus, difficult to

modify and usually require more testing because of the

effects on changes on all the children. They are also

considered more complex and fault-prone because a class

with numerous children may have to provide services in a

larger number of contexts and therefore must be more

flexible.

A large number of child classes, can indicate that base class

may require more testing and there is improper abstraction

of the parent class. Not all classes should have the same

number of sub-classes. Classes higher up in the hierarchy

should have more sub-classes then those lower down. High

NOC has been found to indicate fewer faults. This may be

due to high reuse, which is desirable [3].

(d) Coupling between Objects (CBO)

Coupling between Object Classes (CBO) for a class is a

count of the number of other classes to which it is coupled

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(268-275) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 270

[8]. A class that is coupled to other classes is sensitive to

changes in those classes and as a result it becomes more

difficult to maintain and gets more error prone. As Coupling

between Object classes increases, reusability decreases and

it becomes harder to modify and test the software system.

So there is the need to set some maximum value of coupling

level for its reusability.

Two classes are coupled when methods declared in one

class use methods or instance variables defined by the other

class. Excessive coupling between object classes is

detrimental to modular design and prevents reuse. So, high

value of CBO is undesirable. Therefore, more independent a

class is, the easier it is to reuse it in another application. In

order to improve modularity and promote encapsulation,

inter-object class couples should be kept to a minimum. The

larger the number of couples, the higher the sensitivity to

changes in other parts of the design, and therefore

maintenance is more difficult. A high coupling has also

been found to indicate fault proneness. Excessive coupled

classes prevent reuse of existing components and they are

damaging for a modular, encapsulated software design. To

improve the modularity of a software the inter coupling

between different classes should be kept to a minimum [3].

(e) Response for a Class (RFC)

RFC is the no. of methods in the response set i.e. the

number of methods of the class plus the number of methods

called by any of those methods [9] As RFC increases, the

effort required for testing also increases because the test

sequence grows. It also follows that RFC increases, the

overall design complexity of the class increases.

Since RFC specifically includes methods called from

outside the class, it is also a measure of the potential

communication between the class and other classes. A large

RFC has been found to indicate more faults. Classes with a

high RFC are more complex and harder to understand.

Testing and debugging is complicated as there is more

number of test sequences. The Response for a class is high

thus increasing the testing effort, test sequence and the

overall design complexity of the class. Therefore, reduce

the number of operations that maybe execute in response to

a message received [8].

(f) Lack of Cohesion of Methods (LCOM)

LCOM is defined as the measurement of the dissimilarity of

methods in a class via instanced variables [21].

Each method within a class, C accesses one or more

attributes. LCOM is the number of methods that access one

or more of the same attributes. If no methods access the

same attributes, then LCOM=0. If LCOM is high, methods

may be coupled to one another via attributes. This increases

the complexity of the class design. As coupling increases,

reusability decreases and testing and debugging are also

complicated and expensive. Although there are cases in

which high value for LCOM is justifiable, it is desirable to

keep cohesion high; i.e. keep LCOM low. Higher value of

Lack of Cohesion in Methods increases the complexity of

class design. Therefore, reduce the lack of cohesion in

methods by breaking down the class into two or more

separate classes. High cohesion indicates good class

subdivision. Lack of Cohesion or low cohesion increases

complexity, thereby increasing the likelihood of errors

during the development process. It does not promote

encapsulation and implies classes should probably be split

into two or more subclasses. High LCOM indicates the low

quality design of the software [3].

Consider a Class C1 with methods M1, M2. . . Mn. Let {Ii}

= set of instance variables used by the method Mi. There are

n such sets I1 . . . In.

LCOM = ǁthe number of disjoint sets formed by the

intersections of the n sets.ǁ

N = number of different possible pairs of methods (N = n

(n−1)/2).

P = |{(mi,mj) : i < j and Ii ∩ Ij = null|

Q = |{(mi,mj) : i < j and Ii ∩ Ij = not null|.

N= P+Q and LCOM = P

B. Metrics for Object Oriented Design (MOOD)

MOOD metrics suits were proposed by Fernando Brito and

Rogerio Carpuca in 1994for identification of quality,

abstraction and quantitative measurement of object oriented

programs. It includes six metrics which measure the

presence of OOD (object oriented design) attribute. These

metrics values lie between 0 and 1. The MOOD metrics are:

1) Method Hiding Factor (MHF)

 It defines the ratio of sum of the invisibilities of all the

methods in all classes to the total number of methods

defined in a system . the invisibilities of method can be the

percentage of all the classes in a system from which this

method is not visible. If methods are private then

MHF=100%.

MHF is defined as:

 (1)

 Md (Ci) is total number of methods, TC is the total

number of classes in a program, V (Mmi) is the visibility of

methods Mmi.

In object oriented programming, an interface of an object is

created to include a group of methods without

implementing the behavior f methods. The interface is

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(268-275) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 271

visible to the whole program. The implementation of the

interface is hidden to itself. MHF is 0 when all methods are

public. MHF was found to be moderately and negatively

correlated with defect density [4]. Defect density would

decrease when MHF increase.

2) Attribute Hiding Factor(AHF)

 AHF is very similar to MHF. It defines the ratio of sum of

the invisibilities of all the attributes in all classes to the total

number of attributes defined in a system. The invisibilities

of attributes can be the percentage of all the classes in a

system from which this attribute is not visible. If methods

are private then MHF=100%. AHF can be defined as:

 (2)

Here Ad(Ci) is the total number of attribute defined , TC is

the total number of classes in the program .

3) Method Inheritance Factor(MIF)

It is the ratio of sum of inherited methods to the total

number of methods in all classes for the system. If no re-

usability of methods then MIF=0.It is defined as :

 (3)

Here Ma(Ci)= Md(Ci)+ Mi(Ci) , where Md(Ci) is the total

number of inherited methods defined in a class Ci and

Mi(Ci) is total number of inherited method in class Ci.

When a class defines more of its own methods, the MIF is

getting lower. It is suggested to take the value of MIF

between 0.25 and 0.37[1].

4) Attribute Inheritance Factor (AIF)

AIF is very similar to MIF. It is the ratio of sum of

inherited attributes to the total number of attributes in all

classes for the system. If no reusability of attributes then

AIF=0. AIF can be defined as:

AIF = inherited attributes/total attributes available in classes

5) Polymorphism Factor (MIF)

It is the ratio of actual no. of methods override to the

maximum number of methods override in all classes for the

system. If all the methods are overridden in all derived

classes then PF=100%. In object oriented programming,

polymorphism allow message passing with different

implementations. PF value should be lower than 0.1.

PF can be defined as:

 (4)

6) Coupling Factor (CF)

CF is similar to the CBO in CK metric suite. It measure

coupling of classes. It is the ratio of actual coupling among

classes to maximum number of coupling possible in all the

classes. If all the classes are coupled then, CF=100%.

Abreuand Carapuca suggested that CF should be below

0.52. CF is highly correlated with software defects due to

coupling between objects.

III. EMPIRICAL STUDY

 This paper shows an association between object oriented

design and fault proneness .The work is done on publically

available data set and it shows the result and validations for

fault proneness classes and objects. Several metrics like

cohesion, coupling, encapsulation, inheritance and size of

data are used in this study. The OO Metrics mainly work on

independent variables which are used in software

development process. Following are the different

hypotheticals examples with their CK metric value and

MOOD metric value.

A. Figures and Tables

Example 1: Object Oriented Design for multiple inheritance

Figure II shows the Object-Oriented design for multiple

inheritance and Table I shows the CK metrics values for

each class.

Fig. 2:Object-Oriented Design For Multiple Inheritance

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(268-275) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 272

Table 1.CK Metrics Values for Multiple Inheritances

 Example 2: Object-Oriented design for shapes drawing

program

Figure III shows the Object-Oriented design for shapes

drawing program and Table II shows the values of CK

metrics for each class.

Fig. 3: Object-Oriented Design For Shapes Drawing Program

 Table: II

Hierarchy For The Hypothetical Shapes Drawing Program

IV. RESULTS

To perform the empirical analysis on object oriented design

metrics, we design a project model based on CK and

MOOD metrics. After applying these metrics on the

software design metrics we conclude some values based on

fault proneness. Some design metrics have some bugs due

to large classes and methods. So this model calculates the

value of each metrics and defects in programs and designs.

So we can easily increase the performance and quality of

software design with this model.

Table: III

Values of the output metric (Defect Index from CKMOOD metric)

Here are some figures which shows the relationship

between all the object oriented software metrics and defects

in software .

Fig. 4: Graph for Defect Proneness vs. WMC

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(268-275) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 273

Fig. 5: Graph for Defect Proneness vs. NOC.

Fig. 6: Graph for Defect Proneness vs. DIT

.

Fig. 7: Graph for Defect Proneness vs. MHF

Fig. 8: Graph for Defect Proneness vs. AIF.

Fig. 9: Graph for Defect Proneness vs. POF

Fig. 10: Graph for Defect Proneness vs. COF.

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(268-275) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 274

Fig. 11: Graph for Defect Proneness vs. CBO.

Fig. 12: Graph for Defect Proneness vs. LCOM.

Fig. 13: Graph for Defect Proneness vs. RFC

Fig. 14: Pie Chart for Investigated Cost and Quality Attribute.

From the values, it is clear that classes with lesser value of

defect index are less prone to faults as compared to classes

with higher value of defect index and hence, they need to be

reconsidered. In the last figure 14 there is analysis on cost

and quality attribute on the basis of faults proneness.

V. CONCLUSION & FUTURE SCOPE

In this paper, we describe 2 metrics CK and MOOD, which

are used for measuring defects in any object oriented

software design. For better performance of software we

need a good design without fault proneness. So, we

proposed a model for making software fault free. It

analyzed the performance of proposed model using the

fuzzy logic approach. The proposed model includes the

metrics given by Chidamber and Abreu (1994). The model

can be effectively used for predicting the faulty classes in

the early phases of SDLC which in result minimize the

effort of the software developers. Hence, the model can help

in improving the quality and reducing faulty classes in the

OOD early. The study can be extended to deal with object

oriented design specifications. More combinations of the

different available metrics can be integrated depending

upon the requirements of the user. We used 6 metrics of CK

and 6 metrics of MOOD metric suite, correlation of other

metrics can also be examined and they can also be used to

estimate the prediction of fault proneness. We used fuzzy

logic approach another approaches like neural networks,

case based systems can also be used to make the system

more effective. We can also find the solution to other

inconsistencies to which the solution has not been proposed

yet.

Due to the inconsistent findings of some metrics relating to

software defect, future studies could systematically validate

International Journal of Computer Sciences and Engineering Vol.-3(5), PP(268-275) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 275

these metrics using different projects in different scales.

Different programming languages may have different

impacts on the use of metrics. Future studies can compare

and contrast the same projects written in different languages

or for different platforms. Mobile applications could be one

of the best candidates since the same application may be

prepared using different programming languages and target

to different platforms such as iOS, Android, Microsoft

Windows Phone, etc.

ACKNOWLEDGMENT

I would like to thank Dr. (Prof.) Manoj Wadhwa , who help

me in all the activities and his support make me able to

complete my work and also thankful to Echelon Institute of

Technology for providing me all the services and facilities

during my studies.

REFERENCES

[1] Abreu, F.B. and Carapuca, R. 1994. Candidate metric

for OOS within taxonomy framework. J. Syst.

Software. 26:

[2] Chandra, E. and Linda, P.E. 2010. Assessment of

software quality through object oriented metrics. CIIT

Int. J. Software Engg. 2: 2.

[3] Dubey, S.K. and Rana, A.2010. A comprehensive

assessment of object-oriented software systems using

metrics approach. IJCSE. 2: 2726-2730.

[4] J. Capers, Software Quality: Analysis and Guidelines for

success, International Thomson Computer Press, USA,

2000.

[5] Khalsa, S.K. 2009. A Fuzzified approach for the

prediction of fault proneness and defect density. Proc.

of the World Congress on Engineering. Vol. I. WCE

2009. July 1-3, London, U.K.

[6] Pressman, R.S. 2001. Software engineering-A

practitioner’s approach. McGraw-Hill international

edition. 5th edition.

[7] Shyam R. Chidamber, Chris F. Kemerer, ―A metrics

suite for object oriented designǁ, IEEE transactions on

software engineering, Vol. 20, No. 6, pp. 476-493, June

1984.

[8] Subramanyam, R., Krishnan, M.S., ―Empirical analysis

of CK metrics for object -oriented design complexity:

Implications for software defectsǁ, IEEE Transactions

on Software Engineering, Vol. 29, No. 4, pp. 297-310,

April 2003.

[9] Subramanyam, R. and Krishnan, M.S. 2003. Empirical

analysis of CK metrics for object-oriented design

complexity: Implications for software defects. IEEE

Trans. Software Engg. 29(4): 297-310.

[10] Wahyudin D., Ramler R. and Biffle S., A framework

for Defect Prediction in Specific Software Project

Contexts. Proc. of the 3rd IFIP CEE-SET, 2008, 295-

308.

[11] Zhou Y. and Leung H., Empirical Analysis of Object-

Oriented Design Metrics for Predicting High and Low

Severity Faults. IEEE Trans. on Software Engineering,

32(10), 2006, 771-789

AUTHORS PROFILE

Aarti Sharma received the B.Tech degrees

in Information Technology from Lingaya’s

Institute of Technology in 2012 and pursuing

M.Tech in Computer Science & Engineering

from Echelon Institute of Technology,

Faridabad, India.

Dr.(Prof.) Manoj Wadhwa is working as a

Professor and Head Department Of

Computer Science and Engineering at

Echelon Institute of Technology(EIT),

Faridabad, India. He has received M.Tech

(Computer Science & Technology) from KU

Kurukshetra. He has been published and

presented more than 30 Research and Technical paper in

International Journals, International Conferences and National

Conferences. His main research interests are Software

Engineering, Software Metrics, Software Testing, Software

Quality and Object Oriented Design. He is the member of IEEE,

CSI and ISTE.

