

 © 2019, IJCSE All Rights Reserved 307

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

A Brief Study and An Arduino Based Implementation of Booth’s

Multiplication Algorithm

Kushankur Ghosh

1*
, Arghasree Banerjee

2

1,2

Dept. of Computer Science, University of Engineering and Management, Kolkata, India

Corresponding Author: kush1999.kg@gmail.com

 DOI: https://doi.org/10.26438/ijcse/v7i6.307313 | Available online at: www.ijcseonline.org

Accepted: 10/Jun/2019, Published: 30/Jun/2019

Abstract— The main objective behind this paper was to provide a brief overview about some of the well-known multiplication

algorithms and design an Arduino based calculator working on the principles of the Booth’s multiplication Algorithm in the

simplest and cheapest possible way. Our study surrounds some of the algorithms that existed before and around the time when

Booth’s multiplication Algorithm came into the scene. The study found that each of the algorithms had some problems which

ultimately galvanized the popularity of the Algorithm proposed by Arnold Donald Booth. The calculator we designed is

capable of taking a four-bit binary multiplier and a four-bit binary multiplicand as input and will produce the product in an

eight-bit sequence as the output. The calculator is basically constructed with the help of a central controlling Arduino

connected to various input and output specified electronic components such as push buttons and LEDs. The circuit constructed

to perform the algorithm is the simplest possible circuit. The input to the Arduino can be given from the hardware itself and the

output also gets reflected through the hardware.

Keywords—Arduino, Booth’s Algorithm, Multiplier, Multiplicand, Internet of Things, Multiplication algorithms, Calculator,

Algorithm, LSB, MSB, Partial Product, Left Shift (LS), Right Shift (RS)

I. INTRODUCTION

The manual method of multiplication of two integers

suggests a method of repeated bit to bit additions and holds

the commutative property for every addition. The

multiplication of two numbers signifies the repetitive

addition of the multiplicand. The number of times the

multiplicand is added is specified by the multiplier. The

process of multiplication itself satisfies:

 Commutative Property : A.B = B.A

 Associative Property : (A.B).C = A.(B.C)

 Distributive Property : A.(B + C) = A.B + A.C

Sequential Multiplication Algorithm could perform

multiplication between two unsigned numbers by performing

repeated additions and right shift operations. In 1950s,

Arnold Donald Booth invented a special multiplication

algorithm at Birkbeck College in Bloomsbury, London which

was proved to be an efficient method for the multiplication

for signed numbers and was called as Booth’s Multiplication

Algorithm.

When the operands are integers, the product in general is

twice the length of operands in order to protect the

information content [2]. In our experiment we have applied

the algorithm for data inputs of size four bits which can

produce the output in an eight-bit binary sequence. Booth’s

algorithm stores two inputs and deals one of them as the

multiplier and the other as the multiplicand. Following the

properties of multiplication, Booth’s algorithm also supports

the commutative property for its operands. It means that any

of the given input can be used as a multiplier or a

multiplicand and the result will be same for both the cases.

The model that we constructed also supports the

commutative property of multiplication. Here the user of the

device is free to choose the multiplier and multiplicand. The

constructed model is a minimized version of a multiplying

calculator based on Booth’s algorithm. The model consists of

an Arduino Uno board which is the central controller of the

whole operation. It has a Push to On Button which provides

the input data to the Arduino for calculation. Eight LED

(Light Emitting Diode) are used to represent the output via

the hardware circuit.

II. LITERATURE SURVEY

A. Array Multiplier

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 308

In the manual method of binary multiplication the

multiplicands are repeatedly shifted left wise via Left

Shift(LS) operation and then added. If we consider a four bit

multiplicand say M = (2)10 = (0010)2 and a four bit

multiplier say ML = (3)10 = (0011)2 then the manual

multiplication method can be implemented in the following

way:

 0 0 1 0

 0 0 1 1

 0 0 1 0

 0 0 1 0

 0 0 0 0

 0 0 0 0

 = 0 0 0 0 1 1 0

The obtained output is (0000110)2. This process of

multiplication can be performed by a 4x4 Array Multiplier

circuit. The circuit can be constructed with n number of

AND gates and Full Adders(FA). For n-bit. Multiplier, it

requires n
2
 AND gates [4]. The detailed architecture of the

circuit is described in the Figure 1.

Figure 1. 4x4 Array Multiplier Circuit [4]

B. Sequential Multiplication Algorithm

The algorithm proposes a method which performs repetitive

addition and Right Shift(RS) operation in order to obtain the

final result. Here a register R is declared which stores values

that vary from one iteration to the next. The size of the

values stored by the R register which is also known as the

Accumulator, are kept equal to the size of the multiplier and

the multiplicand. The M register holds the multiplicand and

the ML register holds the multiplier value in binary sequence.

The flip flop register F is used to store the carry generated in

the addition and is used as the serial input when the register

pair R and ML is shifted right one position by RS operation.

The sequential multiplication holds a copy of the partial

products. If a new partial product comes then it will be added

to the old partial product. The RS operation can be defined

with the following example:

If we have to perform RS operation in a binary sequence

(1010)2, the shift will take place in the following way:

 1 0 1 0

 0 1 0 1 X

 = (0 1 0 1)2

Therefore we can see that on performing the RS operation on

(1010)2 we obtained (0101)2 as the result. This operation is

used repeatedly in this algorithm. This shift and addition

process will run for n number of times where n is lesser than

or equal to the length of the multiplier ML.

Algorithm 1: Sequential _Multiplication(M, ML)

//The value of R is initially kept (0000)2;

//The value of F is initially kept 0;

//SIZE = length of ML;

//RightShift() performs the right shift operation;

1. while SIZE > 0:

2. if ML[0] = 1

3. then perform binary addition between R and M

4. R = R + M

5. endif
6. Perform Right Shift operation on the combined

value F, R and ML placed side by side in the given order

7. RightShift(F R ML)

8. SIZE = SIZE – 1

9. endwhile

10. Result = (RML)

The Sequential Multiplication algorithm is efficient for

unsigned binary numbers. For signed numbers the sign of the

result is determined by performing XOR operation between

the first bit of the multiplier and the multiplicand.

C. Booth’s Multiplication Algorithm

Booth’s Algorithm was invented by A.D. Booth in 1950 and

which could efficiently perform multiplication between two

signed binary numbers using 2’s complement notation. Booth

multiplication is a fastest technique that allows for smaller,

faster multiplication circuits, by recoding the numbers that

are multiplied [5]. Booth Multiplier reduces number of

iteration step to perform multiplication as compare to

conventional steps thus providing a very smooth way of

calculation [6]. In sequential multiplication, four additions

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 309

are required for a string of four 1s as input but these four

additions can be replaced by one addition and one

subtraction in booth’s algorithm [3].

The algorithm examines the multiplier(ML) or the

multiplicand(M) and converts them in 2’s complement

notations if they are in signed binary sequences. Similar to

the Sequential Multiplication algorithm, the Booth’s

algorithm also deals with ML, M, R(Accumulator Register)

and a flip flop Q-1 which is written just beside the LSB(Least

Significant Bit) of ML. The LSB of ML is written as ML(0).

The value of the R is changed by subtracting or adding it

with the value of the multiplicand or kept constant depending

upon the value of ML(0) and Q-1. After the required addition

or subtraction, Arithmetic Right Shift(ARS) is performed on

the combined value of R, ML and Q-1 written in the order of

R ML Q-1. The diagram of Figure 2 represents the flowchart

of Booth’s Algorithm.

Figure 2. Booth’s Algorithm Flowchart

The ARS operation on any binary expression results in the

right shift of each bit in the expression and the sign bit

replicates itself as the sign bit of the result. If we consider to

perform the ARS operation on a binary sequence say

(1001010)2, it will take place in the following way:

 1 0 0 1 0 1 0

 1 1 0 0 1 0 1 X

= (1 1 0 0 1 0 1)2

Therefore after performing the ARS operation on the

expression we will get (1100101)2 as the result. Here we see

that the ARS operation is similar to that of normal RS

operation except the fact that in ARS operation the sign bit or

the MSB repeats itself as the MSB or the sign bit in the result

also.

Algorithm 2: Booth_Multiplication(M, ML)

//The value of R is initially kept (0000)2;

//The value of Q-1 is initially kept 0;

//SIZE = length of ML;

//ARS() performs the Arithmetic Right Shift operation;

//COMP() performs 2’s complement;

1. while SIZE > 0:

2. if ML = 0 and Q-1 = 1

3. then perform binary addition between R and M

4. R = R + M

5. elseif ML = 1 and Q-1 = 0

6. then perform 2’s complement of M and then

perform binary addition between the obtained value and

R

7. MC = COMP(M)

8. R = R + MC

9. end if
10. Perform Arithmetic Right Shift operation on the

combined value of R, ML and Q-1 placed side by side in

the given order

11. ARS(R ML Q-1)

12. SIZE = SIZE – 1

13. endwhile

14. Result = (RML)

On average, the speed of doing multiplication with Booth’s

Algorithm is almost is the same as with the manual method

of multiplication having very minor differences [7].

III. METHODOLOGY

This section of the paper describes our approach to construct

the Arduino based calculator based on the Booth’s algorithm.

The model is constructed with very less number of electronic

devices to make the circuit less complex and cheap. The

hardware components required for the model are as follows:

 Arduino UNO board (Quantity-1)

 Jumper Cables

 2-Pin Tactile Switch Micro – Push to On Button

(Quantity-1)

 5 mm Multi Colour LED(Light Emitting Diode)

(Quantity-8)

 1 K ohm Resistors (Quantity-8)

 Bread Board (Quantity-1)

R = 0

Q-1 = 0

SIZE = n

if

 ML(0), Q-1

R = R - M R = R + M

ML(0) Q-1 = 1 0

ML(0) Q-1 = 0 1

ARS(R ML Q-1)

SIZE = SIZE - 1

if

SIZE = 0

NO

RESULT = R ML

ML(0) = Q-1

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 310

The model comprises of a Hardware part which is

constructed with the help of the above mentioned circuit

materials and a software part which is nothing but a set of

instructions which chalks out the Booth’s algorithm in the

Arduino.

The Arduino UNO board is an open source hardware system

which is used as the central computing device in this model.

The board is trained with the Booth’s Multiplication

algorithm via Arduino IDE(Integrated Development

Environment). The IDE is an application which runs on most

of the Operating Systems. It is the platform where all the

programming part of the model is done. The IDE supports C

and C++ languages. In our model Arduino is used as the

central hub for all the mathematical and logical operations

required to implement the algorithm.

Figure 3. Proposed Circuit Diagram

The image of Figure 3 describes the circuit diagram of our

model. The principle goal of our experiment was to construct

an interactive device which could perform both input and

output through both hardware and software. The input can be

provided from the circuit itself with the help of one 2-pin

Push to On Button. More than one button could be used for

the implementation, but our goal was to reduce the circuit

complexity. The Jumper cables are used to connect the

different circuit elements with the Arduino. These are

basically the connecting wires used to transfer the data from

one part of the circuit to another. The Button can be called as

the key element of our model. It is the main medium through

which the programmer or the user can transfer data into the

Arduino board. In our model this data is basically the

Multiplier and the Multiplicand provided by the user. The

internal Pullup Resistors of the Arduino has a rating around

50 K-ohm. These resistors can be used easily just by calling

them while declaring the input function. The push button

here is connected to the Pullup Resistors of the Arduino.

This connection has proved a very smooth and hazardless

performance of the model while giving any input.

Connecting the button with the Pullup Resistor actually

connects a 50 K-ohm resistor between the button pin and the

+5 v supply of the Arduino. One leg of the button connects to

the Pin 2 of the Arduino and the other leg connects to the

GND pin of the Arduino. The input is provided to the

Arduino through Pin 2 bitwise. When the push button circuit

is open which means that it is not pressed there is no

connection between its two legs as the internal pullup resistor

is active and connected to +5 v supply of the Arduino. This

means that when the button is not pressed the state of the

button is HIGH and when it is pressed the state becomes

LOW as the button gets connected to the ground. In our

model when the button is pressed repeatedly to enter the

binary equivalents of the Multiplicands and the Multiplier

bitwise. When the button is pressed ‘1’ is given as the input

to the Arduino and else ‘0’ is passed.

Figure 4. Actual Circuit

Eight LEDs are used to display the output via hardware. In

our model eight LEDs are used to display the output of eight-

bit binary sequence. The model takes 4-bit Multiplicand and

4-bit Multiplier as input and so, it will produce the result in 8

bit.

A single 1K ohm resistor is connected to the negative pin for

each LED which is further connected to the GND pin of

Arduino. A single Bread board is used to build the entire

circuit. The bread board is the only platform where the entire

circuit stands.

Proposed Algorithm: Booth_Multiplication_Implement()

//A[] is an array representing the accumulator register;

//M[] is an array representing the Multiplicand;

//MC[] is an array storing the value obtained after 2’s

complement of M;

//Q[] is an array representing the Multiplier;

//Q1 represents the temporary Flip Flop bit which is initially

kept 0;

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 311

//SIZE = length of M (SIZE = 4 for our Model);

//ARS() performs the Arithmetic Right Shift operation and

returns the value;

//COMP() returns 2’s complement;

//RCA() returns the sum after performing Ripple Carry

Adder;

//RES[] array stores the result;

//Bstate returns the state of the button;

//STORE() stores the result in the RES[];

1. Button = input;

2. LED[] = output;

3. while (True) (*Run the infinite Loop*)

4. A = [0,0,0,0];

5. Q1 = 0;

6. for i = 1 to 4

7. input the binary equivalent of the multiplicand

bitwise

8. if Bstate = LOW

9. then input ‘1’ to M[i]

10. M[i] = 1;

11. else M[i] = 0;

12. endif

13. endfor
14. Press the button to input the sign bit for the

multiplicand

15. if Bstate = LOW (*Sign bit = 1)

16. then store the value returned after 2’s

complementing M in M

17. M = COMP(M);

18. Endif
19. Perform 2’s complement of M and store it in MC

20. MC = COMP(M);

21. for i = 1 to 4

22. input the binary equivalent of the multiplier bitwise

23. if Bstate = LOW

24. then input ‘1’ to Q[i]

25. Q[i] = 1;

26. else Q[i] = 0;

27. Endif

28. endfor
29. Press the button to input the sign bit for the multiplier

30. if Bstate = LOW (*Sign bit = 1)

31. then store the value returned after 2’s

complementing Q in Q

32. Q = COMP(Q);

33. endif
34. for SIZE = 4 to 1

35. if Q[3] = 0 and Q1 = 1

36. then perform binary addition between A and M

and store the value in A

37. A = RCA(A, M);

38. if Q[3] = 1 and Q1 = 0

39. then perform binary addition between A and MC

and store the value in A

40. A = RCA(A, MC);

41. endif
42. ARS(A, Q, Q1);

43. endfor
44. STORE(A, Q);

45. if RES[0] = 1

46. then perform 2’s complement on RES and store the

result in

47. RES = COMP(RES);

48. endif
49. Light_LED();

50. endwhile

Light_LED() (*Displays the result via hardware by

switching the corresponding LEDs*)

51. if RES[0]=1

52. LED[0] = HIGH;

53. endif
54. if RES[1]=1

55. LED[1] = HIGH;

56. endif
57. if RES[2]=1

58. LED[2] = HIGH;

59. endif
60. if RES[3]=1

61. LED[3] = HIGH;

62. endif
63. if RES[4]=1

64. LED[4] = HIGH;

65. endif
66. if RES[4]=1

67. LED[4] = HIGH;

68. endif
69. if RES[5]=1

70. LED[5] = HIGH;

71. endif
72. if RES[6]=1

73. LED[6] = HIGH;

74. endif
75. if RES[7]=1

76. LED[7] = HIGH;

IV. RESULTS AND DISCUSSION

The result of the experiment can be obtained via both

hardware and software. Eight LEDs either HIGH or LOW

represents the eight-bit binary sequence obtained as the

result. The input is supplied with the help of the push button.

The experiment is conducted on a 1.8 GHz Intel Core i5

machine and the coding part is done using Arduino IDE

version 1.8.9. The procedure of inputting the binary

sequences of the multiplicand and the multiplier and their

sign bits is the most sensitive part in the whole experiment.

As the input is to be done bit by bit, there is a huge chance of

overlapping of corresponding bits if the time interval is not

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 312

perfect which will result in the submission of incorrect input

values. Keeping this hazard in mind, to make the input

procedure easy an interval of 3000 milliseconds is kept

between the input of two corresponding bits. This interval

has reduced the rate of bits overlapping up to a greater

extent. The following tables portraits the results of each

experiment done on the model:

Table 1. Shows the result obtained from the Serial monitor of Arduino IDE:

EXP 4-BIT

Multiplicand

Sign

Bit

4-BIT

Multiplier

Sign

Bit

RESULT

(Output)

1 1000 0 0011 0 00011000

2 0111 1 0011 0 00010101

3 0110 0 0011 1 00010010

4 0110 1 0100 1 00011000

5 0000 0 0000 0 00000000

6 0111 1 0110 0 00101010

7 0010 0 0111 1 00001110

8 1000 0 0111 0 00111000

9 0111 1 0111 1 00110001

10 0001 1 0101 0 00000101

Table 2. Shows the result obtained from the Hardware for the corresponding

results. It shows the sequence of LEDs representing the Result:

EXP Result Obtained

from the Serial

Monitor

Corresponding

Hardware Output

1 00011000

2 00010101

3 00010010

4 00011000

5 00000000

6 00101010

7 00001110

8 00111000

9 00110001

10 00000101

In the Table 2 each orange colored LEDs represents the

LEDs which are HIGH representing binary ‘1’ in the eight-

bit result and others represents binary ‘0’.

Figure 5. Timing Diagrams and Practical Output of EXP 4

In Figure 5 the Hardware based output and the timing

diagrams of the input and output sequences of EXP 4 where

the inputs are M = (0110)2 and Q = (0100)2 and the result is

(00011000)2 is described. Each experiment can be described

in the same way like Figure 5. While constructing we

encountered with some problems regarding the construction.

The problems are such as loss of connection between the

resistors and the GND pin due to some defects in the

resistors and some defective LEDs also resulted in showing

some invalid outputs.

V. CONCLUSION

In this research we have documented a study with an

experiment by performing Booth’s Algorithm with the help of

Arduino. The study helped us to get a broader idea of the

some multiplication algorithms and concluded that the

Booth’s Algorithm for multiplication is the most convenient

way to multiply signed numbers than any other algorithm.

The circuit was constructed very efficiently and performed

very well for each of the experiments done on it by giving us

perfect outputs every time. The work also provided us with a

scope to know various electronic components. Each

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 313

component used for the model performed flawlessly during

the random experiments.

REFERENCES

[1] Barun Biswas, Bidyut B Chowdhuri, “Generalization of Booth’s
Multiplication”, International Conference on Computational

Intelligence: Modeling, Techniques and Applications (CIMTA) 2013,

Procedia Technology, Vol.10, pp.304-310, 2013

[2] Deepali Chandel, Gagan Kumawat, Pranay Lahoty, Vidhi Vart

Chandrodaya, Shailendra Sharma, “ Booth Multiplier: Ease of
Multiplication”, International Journal of Emerging Technology and

Advanced Engineering, Vol.3, Issue.3, pp.326-330, March 2013

[3] T.K. Ghosh, “Computer Oganization”, Second Edition, McGraw Hill
Education (India) Private Limited, India, pp.2.1-2.38, 2015

[4] Shoba Mohan, Nakkeeran Rangaswamy “An improved implementation
of hierarchy array multiplier using Cs1A and full swing GDI logic”,
ELECTRONICS, Vol.21, No.1, pp.38-47, June 2017.

[5] Ashwini K. Dhumal, Prof. S.S. Shrigan “Comparison between Radix-2
and Radix-4 basedon Booth Algorithm”, International Journal of
Advanced Research in Computer and Communication Engineering,
Vol.5, Issue.12, pp.498-500, December 2016.

[6] Sandeep Shrivastava, Jaikaran Singh, Mukesh Tiwari, “Implementation
of Radix-2 Booth Multiplier and Comparison with Radix-4 Encoder
Booth Multiplier”, International Journal on Emerging Technologies,
Vol.2, pp.14-16, 2011

[7] Carl Hamacher, Zvonko Vranesic, Safwat Zaky, “Computer
Organization”, Fifth Edition, McGraw Hill Education (India) Private
Limited, India, pp.367-410, 2011

Authors Profile

Mr. Kushankur Ghosh is currently pursuing

Bachelor of Technology from University of

Engineering and Management, Kolkata (UEMK)

in Computer Science and Engineering. He is

currently working as a Research Assistant at

UEMK and working on several research projects.

He is an active member of ACM Student chapter of UEMK since

2018. His research interests focuses on Machine Learning, Data

Science, Data Mining, NLP, Deep Learning and IoT.

Miss Arghasree Banerjee is currently pursuing

her B.Tech degree from University of Engineering

and Management, Kolkata (UEMK) in Computer

Science and Engineering and is also currently

working as a Research Assistant at UEMK. She

is a member of ACM Student chapter of UEMK

since 2018. Her main research interests are Machine Learning, Data

Analysis, NLP, Deep Learning and IoT.

