

 © 2018, IJCSE All Rights Reserved 321

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-6, Issue-3 E-ISSN: 2347-2693

A Comparative Study of Containers for Live Migration in Cloud
Computing Environment

Anmol Bhandari

1*
, Kiranbir Kaur

2

1*

Dept. CET, Guru Nanak Dev University, Amritsar, India

2
 Dept. CET, Guru Nanak Dev University, Amritsar, India

*Corresponding Author: anmolbhandari60@gmail.com, Tel.: +91-9915074177

Available online at: www.ijcseonline.org

Received: 23/Feb//2018, Revised: 28/Feb2018, Accepted: 21/Mar/2018, Published: 30/Mar/2018

Abstract—Cloud computing, a modern world technology ensures that the resources are efficiently utilized, provisioned and are

available all the time. When one virtual machine is running on one host and then urge rises to migrate that Virtual Machine to

some other host on the same or different network; then live migration of Virtual Machines comes into the picture. In the simple

live migration of processes, applications or virtual machines, process as well as operating system, on which the machine is

operating needs to be migrated. But with the introduction of containers in the cloud computing, migration process becomes

easy and less complex. Now, only the process or the virtual machine is only migrated to another host, regardless of the

underlying operating system. Containers had made migration process easy because they contain inbuilt operating system in

them. In this paper, we are going to review different containers that are used in the live migration of virtual machines.

Keywords—Cloud Computing, Containers, High-Performance Computing, Live Migration, Virtualization

I. INTRODUCTION

 [1] In distributed computing the essential and most
imperative assignment is to arrange the accessible resources.
The cloud resource administration procedures are
fundamentally utilized for observing of administration
demands and smart planning of processes [2]. Distributed
computing turns out to be so prominent in light of the reality
the resources accessible to a specific host isn't segregated.
Virtualization makes it conceivable to separate and offers a
wide range of resources in a disseminated situation. The
limitation that was joining with respect to the equipment
accessibility of resources is expelled in view of the virtualized
conditions that gets rid of all the hardware inter-relations of
the applications. Hypervisors or Virtual Machine Monitor
(VMM) are used to execute the process of virtualization, for
example, XEN which stacks the part and different conditions
related to the visitor working operating systems [3].
Whenever there are undoubting circumstances that a virtual
machine is operating on the top of the host and should be
moved because of various reasons like support or absence of
equipment resource accessibility. There are distinctive
methods for accomplishing this, for example, ceasing the
virtual machine and afterward migrating it to various host,
however when the critical or important application is being
run on the virtual machine, on the off chance that it should be
exchanged without closing it down, that is the point at which
you utilize Live virtual machine migration [3]. There are
diverse situations when the virtual live migration truly has

focal points, however in specific situations when the extent of
the virtual machine is expansive, at that point this proposal is
costly. The Cloud Computing framework gained its
recognization essentially in the way that accessible resources
can be shared flawlessly between virtual machines[3]. In the
event that interoperability and convenience can be
accomplished among cloud stages, it would help expel
merchant secure as well as evacuate imperfections of a
specific cloud stage. To accomplish portability and
interoperability among cloud stages, it is necessary to provide
a consistent migration of the condition of a specific
application frame one cloud stage to another. We have diverse
sorts of virtualization strategies out of which OS-level
virtualization is utilized to join the containers based
virtualization.

Dua, Raja and Kakadia[4] A container is a lightweight
working framework running inside the host framework,
running guidelines local deeply CPU, disposing of the
requirement for direction level copying or without a moment
to spare accumulation. Containers give funds in resource
utilization without the overhead of virtualization, while
likewise giving disengagement.

Since containers have a tendency to be significantly
lighter in memory impression, they are favored design when
contrasted with a VM for every application. VM is being
utilized to have the containers. Different Services in Paas like
Authentication, Routing, Cloud Controller, and Persistent
Storage is still run straightforwardly on Virtual Machines.

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 322

Table[4] gives the mapping between the PaaS Product
and the container usage utilized. A portion of the expansive
PaaS players doesn't appear to utilize any container
depending on VMs or Application runtime containers for
different reasons. For instance, Google App Engine utilizes
some type of Application Container to segregate occupant
applications, however, does not utilize VMs or OS Level
containers.

Table-1 : Mapping between PaaS Product and the Container Used

PAAS PROVIDER IMPLEMENTATION

OpenShift Docker with LXC

Heroku LXC

CloudFoundry Warden Container

Stackato Docker with Warden Container

AppFog Warden Container

Virtuozzo Based on OpenVZ

DotCloud Docker with LXC

One of the significant points of interest of doing OS level
Virtualization is the straightforward migration of
utilization[5]. Also, Osman, Subhraveti, Su and Nieh [6]call
attention to that for a clear application migration, equipment,
and Operating system Virtualization are the principal
accesses. Osman, Subhraveti, Su and Nieh[6] go ahead to
clarify that individual applications are executed in a
virtualized situation with the approach of Virtualization.

Laadan and Nieh [5] underline the way that the process is
confined inside the virtual condition making it conceivable to
run an application inside the situation without affecting
different cases of a similar application running in other
virtualized situations, with OS Virtualization. Hence,
application autonomy could be accomplished, which infers
that distinctive adaptations of a similar application could
keep running at the same physical machine and furthermore
this whole idea could be executed on cloud surroundings in
which physical machines could be supplanted by virtual
machines. In spite of the fact that there are two sorts of OS
Virtualization in particular host independent and host
dependent OS Virtualization, application migration can be
done by only host dependent OS Virtualization. Laadan and
Nieh [5] illustrates that there is a private virtual namespace in
host independent OS Virtualization that could confine and
recognize the resources, referenced by the application.
Container-based Virtualization is another name of Operating-
System Virtualization.

Xavier et al [7] call container-based virtualization the
lightweight elective for hypervisors and furthermore express
that the occasions of utilizations running on container cases
perform at a close local level because of its closeness to the
base working framework. There have been the different
usage of Linux container before; both hypervisors and Linux

containers are developed innovations. It is as of late that
Linux container has increased re-established consideration as
a result of the requirement for quantity in the examples of
utilization.

For instance, hosting organizations have a homogeneous
surroundings where their servers are set up with the same
application yet should be separated from one another,
containers are the best suite for this sort of homogeneous
conditions, in light of the fact that, regardless of what
number of occurrences of containers are made in an OS it
won't influence the framework execution dissimilar to VMs.

There are different executions of Linux containers, to
give some examples OpenVZ, Docker containers and so
forth. The principal advantage of a container over a virtual
machine that is running on a hypervisor is container can
instantiate rapidly in comparison to VMs due to the absence
of the requirement of guest OS for the container. As far as
the migration of containers is concerned, there are a couple
of methodologies that have been actualized. Romero and
Hacker[8] elaborate that there are three steps to live
migration process in OpenVZ. At first, suspend the container
and dump the memory onto a file. Then, replicate the
dumped memory record onto the target machine. At last,
resume the migrated container and halt the source container
and clean the memory. In spite of the fact that downtime is
reduced in live migration, but it is quick to kill and replicate
a container on a different machine. The diverse
methodologies towards migration impact the resources
accessible in the cloud bigly. Romero and Hacker [8] have
correlated live migration approaches with parallel
applications and the outcomes recommend that the
performance of an application is diminished with the
successive checkpointing operations in the application.

Nadgowda, Suneja, Billa and Isci [9] Containers have
been mainstream with the microservice design. In spite of the
fact that container migration may appear redundant for
stateless containerized applications, yet it is as yet
appropriate to a few stateful micro service applications like
databases (e.g. MySQL, Cassandra), message brokers
(Kafka), and state-coordination service(zookeeper), among
others. This is being recognized and upheld in standard
systems like Kubernetes' 'StatefulSet'. In existing systems,
Portability of stateful containers is likewise investigated, for
example, ClusterHQ's Flocker, Virtuozzo[10] and
Picocenter[11].

Flocker, particularly for Docker containers, principally is
an information administration arrangement, It acts as a
supporting system for migration for network-attached storage
backends like Amazon EBS, OpenStack Cinder, and
VMware vSphere and so on, by re-joining these systems
stockpiling for containers. Nearby connected volume
migration is upheld just for ZFS file system. On the other
hand, Voyager is a non-specific, file system-skeptic and
vendor-skeptic migration arrangement.

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 323

Virtuozzo[10] is an uncovered metal virtualization
arrangement in which container virtualization is
incorporated. It encourages Zero-downtime live migration for
containers[10]. The first step in the process of this migration
is the transfer of container's file system and virtual memory
to the destination. When the exchange is done, it solidifies all
container forms and incapacitates organizing. Then, dump
this memory state to document and these dump records are
replicated to the destination machine. The memory and disk
blocks that are modified since the last transfer are the
migrated to the destination host and at last, the container is
assumed again. It has a hidden presumption that measure of
memory pages and plate pieces changed (deltas) is little, in
this manner blackout time indistinct. For any information
concentrated application, these deltas exceptionally tenacious
information changes could be substantial.

The main contribution of this paper is to enhance containers
in live migration in cloud computing and increase time
efficiency by considering space metrice and post migration
algorithms. To optimize better results we will review some
paper and find the better results to remove the barriers.Rest
of the paper is organized as follows, Section II provides the
overview of different containers used in the live migration
technique, Section III contains the observation table of the
different containers, Section IV contains the future scope in
the area of containers, Section V contains the methodology
followed and Section VI concludes the research work with
future directions.

II. RELATED WORK

[4]Containers are methods for giving separation and
resource administration in Linux condition. The term is
gotten from delivery containers standard technique to store
and ship any sort of load. A working framework container
gives a non-exclusive method for disengaging a procedure
from whatever is left of the framework. The regulation
applies to all the youngster forms. Subsequently, one can
boot a whole working framework by generating the init
procedure.

It guarantees the same level of separation and security as
a virtual machine and is all the more firmly coordinated with
the host working framework. No reliance on equipment
imitating gives execution benefits over full virtualization yet
confines the quantity of upheld working frameworks which
can be produced as visitor working frameworks; one can't
boot Windows in a Linux/Unix Container. This is normal,
not a necessity for PaaS suppliers and along these lines,
containers are appropriate for giving low-overhead
separation.

Presently, we will audit diverse containers that fuse the
live migration and backs out the activity of virtualization.

 A. Linux Containers

Linux Containers (LXC) are lightweight piece control usage
bolstered on few flavors or Linux like Ubuntu and Oracle
Linux.

Key Characteristics of the Linux Containers are,

Process - Each container relegates an exceptional PID.
Every container can run a solitary procedure.

Resource Isolation-Uses cgroups and namespaces to
disconnect resources.

Network Isolation - Containers get a private IP address
and veth interface associating with a Linux connect on the
host.

File System Isolation-Each container gets a private
document framework by utilizing chroot.
The key favorable position of an LXC is a lightweight
execution which performs at local places which giving better
system and file system confinement. Presently, LXC
experiences following the constraints:

• Containers utilize a Shared bit

• Limitations as far as for secure regulation condition

• Limited to Linux based conditions

• Implementation firmly fixing to a Linux Kernel

B. Warden Container
Warden container gives a piece free control execution which
can be stopped to different fundamental Host OS. This
container execution is utilized by Cloud Foundry task to have
applications.

A portion of the Important properties of Warden Container
are,

• For separation of Process and Network, namespaces
are used.

• For isolation of resources, cgroup idea from Linux is
used.

• Every container can run various procedures.

• Supported just on Ubuntu, however, the plan makes it
OS unbiased

C. C. Docker

Docker is a daemon which gives the capacity to handle Linux
containers as independent images. For the container
execution, it uses LXC (Linux Containers) and also includes
image administration and Union File System ability to it.

Docker container is a Linux container that authorizes the
container based live migration. This container is a noticeable
decision for application versatility and support. Despite the
fact that Live migration is not supported by Docker
containers but when combined with CRIU; it is feasible to

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 324

efficiently segregate a running application by stopping and
continuing a Docker container. It implements live migration
utilizing the strategies of checkpointing and live migration.

The key quality of Docker Containers is

 Process - Each Container is doled out a one of a
kind procedure id and a private IP. Can't run various
procedures in a solitary container.

 Resource Isolation - Uses cgroups and namespaces
idea from Linux Containers.

 Network Isolation – It is attained by leverage the
usefulness of LXC.

 File System Isolation- It is also attained by leverage
the usefulness of LXC.

 Container Lifecycle – To utilize a daemon and
command line, container lifecycle is managed.

 Container State – It is stored and recovered by the
Docker enabled ability.

To enhance security, there are High-level Goals of Docker
venture (which are constraints of Linux Containers)

 Root client of the container and non-root client of
Docker are mapped

 Docker daemon is made to keep running as a non-
root client

D. OpenVZ
OpenVZ utilizes an adjusted Linux Kernel with an
arrangement of expansions. OpenVZ deals with numerous
physical and Virtual servers, by utilizing dynamic ongoing
apportioning. Like containers, OpenVZ has minimal
overhead and offers higher execution and can be overseen
superior to Hypervisor advancements. Much the same as
different containers, OpenVZ utilizes cgroups and
Namespaces. OpenVZ furthermore gives formats that
assistance in precreated Virtual situations.

 Process - Each container has its own PID
namespace, IPC namespace with its own mutual
memory, semaphores and messages.

 Resource Management- Resource are being
managed by sharing utilizing Bean Counters, Fair
Share CPU Scheduler, disk portions in light of
clients and Containers, and can oversee per
container disk I/O need

 Network Isolation - Uses net namespace, has its
own virtual system gadget, its own particular IP
Address, channels and steering tables

 File System Isolation - Provides separation to
Application Files, System Libraries and so forth.

 Container Lifecycle - Supports make, begin, change
and stop works as part the lifecycle. Can be moved
down, moved. Backings remote administration with
the Libvirt API

 Container State - Provides Checkpointing highlight
for putting away and recuperating the last known
state. The Complete condition of the container like
running procedures, open files, arrange associations,
cradles, memory fragments can be put away on a
document. This empowers Live Migration of
OpenVZ containers

E. Voyager

Voyager[9] is a Just-in-Time (jit) Zero-duplicate migration
arrangement, wherein the container is moved instantly before
the entire information is replicated to the destination host.
Also, the task of second information exchange performed by
Virtuozzo is not required by Voyager, in this manner
application downtime for Voyager is as yet littler than
Virtuozzo. Promote Voyager gave highlights like information
alliance get, double band information replication, OCI
consistency which is not given by any current container
migration arrangement.

Voyager[9] gives userspace-level filesystem-skeptic
migration of locally relentless container state, while
guaranteeing consistency over every one of these states, and
also least application downtime. Basically, we are migrating
container state crosswise over three distinct information
stores, to be specific in-memory, neighborhood file system,
and organize file system. We talk about each of these
migration abilities underneath.

III. OBSERVATION TABLE OF DIFFERENT

CONTAINERS

Table-2: Comparison Table of Different Containers in Cloud Computing

PARAM

ETER ->

PROCE

SS

ISOLAT

ION

RESOUR

CE

ISOLATI

ON

NETWO

RK

ISOLAT

ION

FILESY

STEM

ISOLA

TION

CONTAI

NER

LIFECY

CLE

LXC pid

namespa

ce is used

Cgroups

is used

 net

namespa

ce is used

Chroot is

used

To create,

start and

stop a

container,

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 325

Tools

lxc-

create,

lxc-stop,

lxc-

create is

used

WARDE

N

pid

namespa

ce is used

Cgroups

is used

 net

namespa

ce is used

Overlay

File

System

using

Overlays

To

manage

the

container

s, execute

the

command

s on

warden

client

which

further

talks to

warden

server

DOCKE

R

pid

namespa

ce is used

cgroups is

used

net

namespa

ce is used

Chroot is

used

Docker

daemon

and a

client is

used to

manage

the

container

s

OpenVZ pid

namespa

ce is used

cgroups is

used

net

namespa

ce is used

Chroot is

used

Uses

vzctl to

manage

container

lifecycle

VOYAG

ER

 pid

namespa

ce is used

cgroups is

used

net

namespa

ce is used

userspac

e level

filesyste

m-

skeptic

migratio

n of

locally

persisten

t

container

state is

provided

 -nil-

IV. METHODOLOGY

 Following are the steps that are considered in the

methodology:-

1. Available resources are checked, whether available or

not

2. The memory utilized and the required memory of the

destination node is checked.

3. The space required for creating a new container is

checked.

4. The fitness of destination node whether it will be able

to handle the migration process is checked

5. After all the evaluation, memory and space are

reserved on the destination node

6. The same base image of the to be migrated application

is pulled down from the global repository

7. Network proxy is initiated and diverted to the

destination node

8. All the traffic is diverted to new container and initial

container is removed or paused.

9. Evaluate and analyse the post migration process for better

results

V. FUTURE SCOPE

Intercloud migration involves data and applications to the
destination host. In the existing literature, the focus is to
migrate the Linux container to the host machine depending
upon the availability of the resource. Job requirements and
fitness of host machine are not considered during the
migration process. The fitness of destination host is given in
terms of available resources such as RAM, and processors.
The speed with which host can complete the operation is also
not considered. The metric which is considered in existing
literature is a space constraint. Migration consumes less time
through the proposed technique but the execution of the job
i.e. post-migration process is not considered that can be
optimized in future work.

V.I OBJECTIVE

The proposed work consider the post-migration process to
decrease overall execution time associated with the
migration. Fittest machine on the basis of available resource
can be selected in order to save from starvation problem. The
objective in terms of parameters is listed as under

1. Minimise overall execution time associated with
migration.

2. Enhancing reliability by ensuring checkpointing in
case of task failure.

3. Cost in terms of overhead required to be
minimized.

VI. CONCLUSION

Containers are the alternate choice to virtual machines in

cloud computing but with better and advance features.

Containers assure smooth-running, effortless employment

and configuration, secured and safe techniques of

administering particular system requirements. Moreover,

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 326

Containers enables to execute multiple applications to run on

a single operating system by making instance of the

operating system. Containers are better than a virtual

machine for live migration considering every aspect of both.

Containers are not required to instantiate the guest Operating

system on the host machine, which results in the decrease in

the migration time, other performance attributes are also

improved. To improve the overall performance, speed and

fitness of host machine should be considered and post

migration algorithms can also be taken in account.

REFERENCES

[1] C. Computing and I. Dublin, “Inter-Cloud application

migration and portability using Linux containers for better

resource provisioning and interoperability Ivin polo sony,”

no. September 2015.

[2] R. Buyya, “Market-oriented cloud computing: Vision,
hype, and the reality of delivering computing as the 5th
utility,” 2009 9th IEEE/ACM Int. Symp. Clust. Comput.
Grid, CCGRID 2009, vol. 25, no. 6, p. 1, 2009.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
art of virtualization,” Proc. Ninet. ACM Symp. Oper. Syst.
Princ. - SOSP ’03, p. 164, 2003.

[4] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs
containerization to support PaaS,” Proc. - 2014 IEEE Int.
Conf. Cloud Eng. IC2E 2014, pp. 610–614, 2014.

[5] O. Laadan and J. Nieh, “Operating system virtualization,”
Proc. 3rd Annu. Haifa Exp. Syst. Conf. - SYSTOR ’10, p. 1,
2010.

[6] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design
and implementation of Zap: a system for migrating
computing environments,” SIGOPS Oper. Syst. Rev., vol.
36, no. SI, pp. 361–376, 2002.

[7] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T.
Lange, and C. A. F. De Rose, “Performance Evaluation of
Container-Based Virtualization for High-Performance
Computing Environments,” 2013 21st Euromicro Int. Conf.
Parallel, Distrib. Network-Based Process., pp. 233–240,
2013.

[8] F. Romero and T. J. Hacker, “Live migration of parallel
applications with OpenVZ,” Proc. - 25th IEEE Int. Conf.
Adv. Inf. Netw. Appl. Work. WAINA 2011, pp. 526–531,
2011.

[9] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager:
Complete Container State Migration,” Proc. - Int. Conf.
Distrib. Comput. Syst., no. Section III, pp. 2137–2142, 2017.

[10] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers
checkpointing and live migration,” 2008 Linux Symp., pp. 1–
8, 2008.

[11] L. Zhang, J. Litton, F. Cangialosi, T. Benson, D. Levin,
and A. Mislove, “Picocenter,” Proc. Elev. Eur. Conf.
Comput. Syst. - EuroSys ’16, no. Llmi, pp. 1–16, 2016.

Authors Profile

Anmol Bhandari pursed Bachelor of Technology in Computer
Science from Guru Nanak Dev University, Amritsar in year 2016.
She is currently pursuing Masters of Technology in Computer
Science from Guru Nanak Dev University,Amritsar and currently
working as Research Scholar in Department of Computer Science.
Her main research work focuses on Virtualization, Live migration
in Cloud Computing.

Kiranbir Kaur pursed Bachelor of Technology and Master of
Technology in Computer Science from Guru Nanak Dev
University,Amritsar, India in year 2008. She is currently pursuing
Ph. D. and currently working as Assistant Professor in Department
of Computer Science,Guru Nanak Dev University, Amritsar. She
has published more than 10 research papers in Ugc approved
Conferences. Her main research work focuses on Cloud Computing
Interoperability and Portability, Cloud Security and Privacy. She
has 6 years of teaching experience.

