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Abstract— In this paper, we generate paths and cycles using hyperedge replacement graph grammars and hyperedge 

replacement graph P systems. We observe that the generative power is increased when we use P system to generate paths and 

cycles. This paper is the impact of  Jeltsch and Kreowski work on grammatical inference based on hyperedge replacement. For 

special classes of graphs namely paths and cycles an alternative method is given to infer the exact grammar using edge 

contraction between the adjacent vertices.   
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I.  INTRODUCTION  

 

In 1990, D. Janssens and G. Rozenberg introduced Graph 

Grammars.  For Multi-dimensional datas, structural 

manipulations are described by parsing and generating 

graphs using graph grammars. Grammatical manipulation of 

Graphs are used in processing of multi-dimensional pattern 

classes which is often difficult to describe in string 

Grammars.  Hence in the context of languages, graph 

grammar is  a graph rewriting system. The production rule of 

a graph grammar consists of  the mother graph ,daughter 

graph and an embedding mechanism. In a host graph, the 

production rule can be applied by removing the mother graph 

and joining the daughter graph by using the embedding 

mechanism [1 2] . From the large number of context-free 

graph grammars that have been investigated, the hyperedge 

replacement, node replacement, and edge replacement 

grammars are the  three types of  context free graph 

grammars that are mostly used [3]. 

 

A P system consists of membranes that are arranged 

hierarchically inside the skin membrane. The two main 

components of the membrane are objects and evolution rules. 

The rules transforms the object from one membrane to the 

other or  it can also dissolve the membrane where the object 

is  placed. P systems acts as a bridge between well-known 

models of computations in mathematics, computer science 

and biology[4]. 

 

The field of grammatical inference is applied to a number of 

research areas including machine learning, formal language 

theory, computational linguistics, syntactic pattern  

 

recognition, and biology [5]. Path and Cycle graphs have 

applications in combinatorics. Existence of Hamiltonian Path 

and Cycle leads to powerful results in Graph Theory and 

further it has numerous applications in various fields such as 

networking, block designs, and bioinformatics. 

 

In section II, basic definitions with respect to hyperedge 

replacement graph grammars and P systems are recalled. In 

section III , generation of paths and cycles is defined using 

HRG followed by generation paths and cycles is defined 

using P system in section IV.In section V, learning algorithm 

is giver to infer paths and cycles from a given sample set.. 

 

II. PRELIMINARIES 

 

Definition 2.1: [2] Let K be an arbitrary but finite set of 

labels and let type be a typing function from K to ℕ. A  

Hypergraph  H over K is a tuple (Vertices , Hyperedges, 

attach, labelling, external)  Where attach : Hyperedges 

→Vertices*  is   a  mapping that assigns a sequence of pair 

wise distinct attachment   node   attach(e)  to  each   

hyperedge e, labelling is a mapping from Hyperedges to K 

that labels each hyperedge such that type(labelling(e)) = 

|attach(e)|, external ∈ Vertices* is a sequence of pair wise 

distinct external nodes. Hk denotes set of all hypergraphs 

over K 

 

Definition 2.2:[2] A hyperedge replacement grammar is a 

system HRG= (NT, TE, PR, S), Where NE ⊆K is a set of 

non-terminals. TE ⊆ K with TE ∩ NE = ϕ is a set of 

terminals, PR is a finite set of productions. A production over 

NE is an ordered pair PR = (A, R) with A ∈ NE,  R ∈ Hc   and 
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type (A) = type(R).  A is called the left-hand side of P and is 

denoted by  lhs (PR). R is called the right-hand side and is 

denoted rhs(PR).  S є N is a start symbol.The class of all 

hyperedge replacement grammars is denoted by HRG . 

Definition 2.3:[2]A m-hypergraph is defined as a 

hypergraph with m external nodes and a handle e  (single 

hyperedge) with attach H(e) = ext H. If labelling H(e) = A, 

then H is said to be handle induced by A and is denoted by 

A
•
. 

Definition 2.4:[2] The hypergraph language L(HRG) 

generated by HRG is Ls(HRG) where for all A є NE.  

LA(HRG) consists of all hypergraphs in   HT  derivable from 

A
•
 by applying productions of  P . We denote the class of all 

hyperedge replacement grammars by HRL. 

 

The concepts of hyperedge replacement graph P system 

 with conditional communication and maximal parallelism  

rewriting step  has been discussed in [6,7] respectively. 

 

III. GENERATION OF PATHS AND CYCLES USING HRG 

 

Consider the hyperedge replacement grammar HRG = {{D, 

K}, {p1, p2, p3}, z} where the axiom and the three 

productions are given in Figure 1 

p1 : D

   p2: D

p3: K

Z  = D

K

K D K

=

K

D K

=

=

1

1

1

2

2

2

1 2

21

3

3

 

 

Figure 1 Generation of Cycles and Paths 

 

The axiom contains a hyperedge D, K.   If p1 is applied, the 

D-edge is replaced by another path of length two.  If p2 is 

applied the D edge is replaced by another path which erases 

the D-edge such that neither p 1   nor p2 can be applied, 

Further K-edges can be replaced by ordinary edges, 

eventually.  In axiom z, the edge (1,3) and (2,3) with non-

terminal K will be replaced by the edge (1,2) of p3.  In p1 the 

unlabelled vertex is now labelled 2.  The following figure 

illustrates the generation of cycles Cn and paths Pn from the 

above production rules. Then, L (HRG) = {Cn/n ≥3}  

{Pn/n≥3} 

  Generation of Cycles:  

D D

D

 

 

Generation of Path: 

D DD

 
Figure 2 Generation of Cycles and Paths 

IV. GENERATION OF PATHS AND CYCLES USING 

HYPEREDGE REPLACEMENT GRAPH P SYSTEM WITH 

CONDITIONAL COMMUNICATION 

 

Hyperedge replacement graph P system that  generates paths 

and cycles are given below. Initially we construct a P system 

with a single membrane and later we construct  a P system 

using double membrane with maximal parallelism in which 

we have two initial non terminals. Maximum parallelity in 

double membrane increases the generative power  of this 

language. 

 

4.1 Generation of Paths and Cycles in single membrane 

 Π=( V,T,µ,M1, ,(R1,P1,F1),( 1, 1)) 

V={Z,D}, µ=[1]1,M1=Z,  

 

p1 : D

   p2: D

p3: K

Z  = D

K

K D K

=

K

D K

=

=

R1 =

 
P1=(true,out),F1= (D,notout),(K,notout) 

The corresponding language L(Π) is the set of all paths Pn  

and cycles Cn with n≥3 and their generation is same as that of 

hyperedge replacement graph grammar in Fig 2. Z has two 

rules but one of them is applied  to get cycles or paths. 

 

4.2 Generation of Paths and Cycles in Double membrane. 

Π=( V,T,µ,M1, ,(R1,P1,F1), (R2,P2,F2) ( 2, 2)) 

V={Z1,Z2,D}, µ=[1[2]2]1,M1=Z1,Z2    

D

K

K
D KR1 = Z1 = Z2 =

 
P1=(true,out),(true,in) F1= (D,notout),(K,notout) 
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p1 : D

   p2: D

p3: K

=

K

D K

=

=

R2 =

 
P2=(true,out),F2= (D,notout),(K,notout) 

The corresponding language L(Π) is the set of all paths Pn  

and cycles Cn with n≥3.Here the rule R1 has two non 

terminals Z1 and Z2 that can be applied simultaneously 

(maximal  parallelity ) and enter the inner  membrane  to get 

paths and cycles. Here the generative power is more when 

compared with the single membrane P system  

 

V. LEARNING ALGORITHM FOR GENERATING PATHS 

AND CYCLES 

 

The grammatical inference algorithm in [8], based on 

hyperedge replacement to infer cycles results in many 

decompositions which makes the algorithm highly non-

deterministic,For special classes of graphs namely paths and 

cycles , an alternative method is given to infer the exact 

grammar using edge contraction between adjacent vertices.  

5.1. Algorithm: 

 INPUT:A positive presentation of Cycles and Paths (Pn and 

Cn n≥3) are given as inputs. 

OUTPUT:A Sequence of Production rules that generate 

input samples and the classes of Paths and Cycles. 

PROCEDURE: 

Let Gi be the Input Samples. 

Let Grammar,Gr = {{S}, P2, (S, Gi) / i=1 to  n,  (S, 0)
 • 

} 

Initialize Newprod=ϕ 

Initialize RENAME NT={S} 

Initialize REDUCE= ϕ 

Let i=1 

Begin 
For each Gi   do 

  Begin 

If Gi =C3 or P3 

           then DECOMPOSE (Gi) 

           else 
Apply edge contraction between the adjacent 

vertices until C3 or P3 is obtained then     

DECOMPOSE (Gi) 

   End 

Begin DECOMPOSE (Gi) 

Introduce a new non-terminal D
j 
as a hyperedge of type 2, 

not occurring before, where j is a natural number such that 

(S, Gi
1
)  (D

j
, Gi

2
) = (S, Gi) where k=1,2… 

DECOMPOSE (Gi) = (S, Gi
1
)  (D

j
, Gi

2
) -(S,Gi). 

Newprod = Newprod DECOMPOSE (Gi) 

Again, Decompose Gi
2
 such way that  

(D
j
, Gi

3
) (D

j+1
, Gi

4
) and Gi

4 
is path of length two. 

DECOMPOSE (Gi
2
) = (D

j
, Gi

3
) (D

j+1
, Gi

4
) -(D

j
, Gi

2
). 

Newprod = Newprod DECOMPOSE (Gi
2
) 

     End DECOMPOSE (Gi) 

Gr = Gr  Newprod 

End  

RENAME NT (D
j
)  

= {S=S, D
1
=D

2
=D

3 
=…=D}.   

This function is similar to RENAME operation of Jelstch and 

Kreowski [4]. 

Gr=Gr  Newprod  RENAME NT 

REDUCE is where Repeated and redundant productions are 

identified and removed [8] 

Gr = Gr - REDUCE 

Gr= {S, D, P2 NewProd, S} is the grammar obtained from 

the above algorithm. 

 

5.2. Learning Cycles and Paths using the above 

algorithm: 

Consider the input graphs {(S, C4), (S, P5), (S, P4)}  

Gr ={{S}, P2, (S, Gi) / i=1 to 3, (S,0)
.
} 

Initialize Newprod=ϕ 

Initialize RENAME NT={S} 

Initialize REDUCE= ϕ 

Where G1= C4, G2= P5, G3= P4. 

The graph C4 is not equal to C3 or P3.  Edge Contraction 

Between adjacent vertices are applied to get C3. Introduce a 

new non-terminal D
1 

as a hyperedge of type 2.  Again 

introduce a new non-terminal D
2 

as a hyperedge of type 2 

such that G1
4
 is a path of length two such that (S, 

G1
1
) (D

1
, G1

2
) 

DECOMPOSE (G1) = (S, G1
1
) (D

1
, G1

2
)- (S, G1). 

Newprod = Newprod DECOMPOSE (G1) 

And again, Decompose Gi
2 
such that  

(D
1
, G1

3
) (D

2
, G1

4
). 

DECOMPOSE (G1
2
) = (D

1
, G1

3
) (D

2
, G1

4
) – (D

1
, G1

2)
. 

Newprod = Newprod DECOMPOSE(G1
2
) 

DECOMPOSE(G1) is given in Figure 8.  

 

S= D1 =

D2=

D1

D2D1 =
 

 Figure 8 

 

     

S= D3

D4D3=

 
Figure 9 
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Next input is G2, applying the above process Figure 9 is 

obtained. (S, G2
1
)  (D

3
, G2

2
) = (S, G2),  

DECOMPOSE(G2) = (S, G2
1
)  (D

3
, G2

2
) - (S, G2). 

Newprod = Newprod DECOMPOSE (G2) and Again  

(D
3
, G2

3
) (D

4
, G2

4
). 

DECOMPOSE (G2
2
) = (D

3
, G2

3
) (D

4
, G2

4
) -(D

3
, G2

2
).. 

Newprod = Newprod DECOMPOSE (G2
2
) 

 

                  
D5=

S= D5

D6

 
Figure 10 

 

For G3, applying the above process Figure 10 is obtained. (S, 

G3
1
)  (D

5
, G3

2
) = (S, G3) and  DECOMPOSE (G3)  = 

 (S, G3
1
)   (D

5
, G3

2
)- (S, G3). 

Newprod= Newprod DECOMPOSE(G3) and Again  

(D
5
, G3

3
) (D

6
, G3

4
). 

DECOMPOSE (G3
2
) = (D

5
, G3

2
) (D

6
, G3

4
)- (D

5
, G3

2
). 

Newprod= Newprod DECOMPOSE (G3
2
) 

Then RENAME NT (D
j
) = {S=S, D

1
=D

2
=D

3
=D

4
=D

5
=D

6
=D} 

is given in Figure 11, 12 and 13. 

 

S= D

D = D D =
 

Figure 11 RENAME NT of C4 

S=

D =

D

D D =
 

Figure 12 RENAME NT of P5 

S=

D = D =

D

D
 

Figure 13 RENAME NT of P4 

 

 

Gr=Gr  Newprod RENAME NT. Repeated and 

Redundant productions are identified and removed in  

REDUCE.  The rules corresponding to P5 can reduced when 

renaming is given to the non-terminals. Hence removing the 

REDUCE productions derives the sample inputs and the 

class of all Cycles and Paths.  Gr = Gr-REDUCE. 

Applying the above algorithm, the required production rules 

are obtained in Figure 14. 

      

p1 : D

   p2: D

S = D
D

= D

=
 

 

Figure 14 

 

5.3 Correctness of the Algorithm [8 ]: 

1. Each sample can be derived from the axiom of an inferred 

grammar. 

2. Each production either being an initial one or one obtained 

by decompositions and renaming can be used for deriving 

one of the samples.  

3. The axiom of  an  inferred grammar   is  (S, 0)
 •  

or some 

renaming of it because the axiom has this form initially and 

the RENAME operation is the only one affecting the axiom. 

A grammar with the above properties is called samples 

composing. Hence our grammar is samples composing as it 

satisfies the above conditions. Since the HRG of cycles and 

paths is a subclass of the class of hyperedge replacement 

grammars in [4] it is decidable, that cycles and paths  can be 

inferred. 

  

VI. CONCLUSION 

An grammatical inference algorithm for inferring Paths and 

Cycles using Hyperedge Replacement Graph grammars  is 

given which uses  edge contraction between the adjacent 

vertices, followed by the four operations from which the 

required grammar is obtained.  Our future work is to extend 

it further for varied classes of graphs and also for different 

graph operations namely corona product of graph, graph join 

and composition of graphs. 
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