

 © 2019, IJCSE All Rights Reserved 326

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-3, March 2019 E-ISSN: 2347-2693

Generation of Paths and Cycles Using Hyperedge Replacement and Their

Learning

Thanga Murugeshwari. V
1*

, Emerald Princess Sheela J.D.
2

1,2

Department of Mathematics, Queen Mary’s College, Chennai, Tamil Nadu, India

*Corresponding Author:thangammathe05@gmail.com, Tel.: 9500402807

 DOI: https://doi.org/10.26438/ijcse/v7i3.326330 | Available online at: www.ijcseonline.org

Accepted: 23/Mar/2019, Published: 31/Mar/2019

Abstract— In this paper, we generate paths and cycles using hyperedge replacement graph grammars and hyperedge

replacement graph P systems. We observe that the generative power is increased when we use P system to generate paths and

cycles. This paper is the impact of Jeltsch and Kreowski work on grammatical inference based on hyperedge replacement. For

special classes of graphs namely paths and cycles an alternative method is given to infer the exact grammar using edge

contraction between the adjacent vertices.

Keywords— Graph Grammars, Hyperedge replacement, Grammatical Inference.

I. INTRODUCTION

In 1990, D. Janssens and G. Rozenberg introduced Graph

Grammars. For Multi-dimensional datas, structural

manipulations are described by parsing and generating

graphs using graph grammars. Grammatical manipulation of

Graphs are used in processing of multi-dimensional pattern

classes which is often difficult to describe in string

Grammars. Hence in the context of languages, graph

grammar is a graph rewriting system. The production rule of

a graph grammar consists of the mother graph ,daughter

graph and an embedding mechanism. In a host graph, the

production rule can be applied by removing the mother graph

and joining the daughter graph by using the embedding

mechanism [1 2] . From the large number of context-free

graph grammars that have been investigated, the hyperedge

replacement, node replacement, and edge replacement

grammars are the three types of context free graph

grammars that are mostly used [3].

A P system consists of membranes that are arranged

hierarchically inside the skin membrane. The two main

components of the membrane are objects and evolution rules.

The rules transforms the object from one membrane to the

other or it can also dissolve the membrane where the object

is placed. P systems acts as a bridge between well-known

models of computations in mathematics, computer science

and biology[4].

The field of grammatical inference is applied to a number of

research areas including machine learning, formal language

theory, computational linguistics, syntactic pattern

recognition, and biology [5]. Path and Cycle graphs have

applications in combinatorics. Existence of Hamiltonian Path

and Cycle leads to powerful results in Graph Theory and

further it has numerous applications in various fields such as

networking, block designs, and bioinformatics.

In section II, basic definitions with respect to hyperedge

replacement graph grammars and P systems are recalled. In

section III , generation of paths and cycles is defined using

HRG followed by generation paths and cycles is defined

using P system in section IV.In section V, learning algorithm

is giver to infer paths and cycles from a given sample set..

II. PRELIMINARIES

Definition 2.1: [2] Let K be an arbitrary but finite set of

labels and let type be a typing function from K to ℕ. A

Hypergraph H over K is a tuple (Vertices , Hyperedges,

attach, labelling, external) Where attach : Hyperedges

→Vertices* is a mapping that assigns a sequence of pair

wise distinct attachment node attach(e) to each

hyperedge e, labelling is a mapping from Hyperedges to K

that labels each hyperedge such that type(labelling(e)) =

|attach(e)|, external ∈ Vertices* is a sequence of pair wise

distinct external nodes. Hk denotes set of all hypergraphs

over K

Definition 2.2:[2] A hyperedge replacement grammar is a

system HRG= (NT, TE, PR, S), Where NE ⊆K is a set of

non-terminals. TE ⊆ K with TE ∩ NE = ϕ is a set of

terminals, PR is a finite set of productions. A production over

NE is an ordered pair PR = (A, R) with A ∈ NE, R ∈ Hc and

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 327

type (A) = type(R). A is called the left-hand side of P and is

denoted by lhs (PR). R is called the right-hand side and is

denoted rhs(PR). S є N is a start symbol.The class of all

hyperedge replacement grammars is denoted by HRG .

Definition 2.3:[2]A m-hypergraph is defined as a

hypergraph with m external nodes and a handle e (single

hyperedge) with attach H(e) = ext H. If labelling H(e) = A,

then H is said to be handle induced by A and is denoted by

A
•
.

Definition 2.4:[2] The hypergraph language L(HRG)

generated by HRG is Ls(HRG) where for all A є NE.

LA(HRG) consists of all hypergraphs in HT derivable from

A
•
 by applying productions of P . We denote the class of all

hyperedge replacement grammars by HRL.

The concepts of hyperedge replacement graph P system

 with conditional communication and maximal parallelism

rewriting step has been discussed in [6,7] respectively.

III. GENERATION OF PATHS AND CYCLES USING HRG

Consider the hyperedge replacement grammar HRG = {{D,

K}, {p1, p2, p3}, z} where the axiom and the three

productions are given in Figure 1

p1 : D

 p2: D

p3: K

Z = D

K

K D K

=

K

D K

=

=

1

1

1

2

2

2

1 2

21

3

3

Figure 1 Generation of Cycles and Paths

The axiom contains a hyperedge D, K. If p1 is applied, the

D-edge is replaced by another path of length two. If p2 is

applied the D edge is replaced by another path which erases

the D-edge such that neither p 1 nor p2 can be applied,

Further K-edges can be replaced by ordinary edges,

eventually. In axiom z, the edge (1,3) and (2,3) with non-

terminal K will be replaced by the edge (1,2) of p3. In p1 the

unlabelled vertex is now labelled 2. The following figure

illustrates the generation of cycles Cn and paths Pn from the

above production rules. Then, L (HRG) = {Cn/n ≥3}

{Pn/n≥3}

 Generation of Cycles:

D D

D

Generation of Path:

D DD

Figure 2 Generation of Cycles and Paths

IV. GENERATION OF PATHS AND CYCLES USING

HYPEREDGE REPLACEMENT GRAPH P SYSTEM WITH

CONDITIONAL COMMUNICATION

Hyperedge replacement graph P system that generates paths

and cycles are given below. Initially we construct a P system

with a single membrane and later we construct a P system

using double membrane with maximal parallelism in which

we have two initial non terminals. Maximum parallelity in

double membrane increases the generative power of this

language.

4.1 Generation of Paths and Cycles in single membrane

 Π=(V,T,µ,M1, ,(R1,P1,F1),(1, 1))

V={Z,D}, µ=[1]1,M1=Z,

p1 : D

 p2: D

p3: K

Z = D

K

K D K

=

K

D K

=

=

R1 =

P1=(true,out),F1= (D,notout),(K,notout)

The corresponding language L(Π) is the set of all paths Pn

and cycles Cn with n≥3 and their generation is same as that of

hyperedge replacement graph grammar in Fig 2. Z has two

rules but one of them is applied to get cycles or paths.

4.2 Generation of Paths and Cycles in Double membrane.

Π=(V,T,µ,M1, ,(R1,P1,F1), (R2,P2,F2) (2, 2))

V={Z1,Z2,D}, µ=[1[2]2]1,M1=Z1,Z2

D

K

K
D KR1 = Z1 = Z2 =

P1=(true,out),(true,in) F1= (D,notout),(K,notout)

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 328

p1 : D

 p2: D

p3: K

=

K

D K

=

=

R2 =

P2=(true,out),F2= (D,notout),(K,notout)

The corresponding language L(Π) is the set of all paths Pn

and cycles Cn with n≥3.Here the rule R1 has two non

terminals Z1 and Z2 that can be applied simultaneously

(maximal parallelity) and enter the inner membrane to get

paths and cycles. Here the generative power is more when

compared with the single membrane P system

V. LEARNING ALGORITHM FOR GENERATING PATHS

AND CYCLES

The grammatical inference algorithm in [8], based on

hyperedge replacement to infer cycles results in many

decompositions which makes the algorithm highly non-

deterministic,For special classes of graphs namely paths and

cycles , an alternative method is given to infer the exact

grammar using edge contraction between adjacent vertices.

5.1. Algorithm:

 INPUT:A positive presentation of Cycles and Paths (Pn and

Cn n≥3) are given as inputs.

OUTPUT:A Sequence of Production rules that generate

input samples and the classes of Paths and Cycles.

PROCEDURE:

Let Gi be the Input Samples.

Let Grammar,Gr = {{S}, P2, (S, Gi) / i=1 to n, (S, 0)
 •

}

Initialize Newprod=ϕ

Initialize RENAME NT={S}

Initialize REDUCE= ϕ

Let i=1

Begin
For each Gi do

 Begin

If Gi =C3 or P3

 then DECOMPOSE (Gi)

 else
Apply edge contraction between the adjacent

vertices until C3 or P3 is obtained then

DECOMPOSE (Gi)

 End

Begin DECOMPOSE (Gi)

Introduce a new non-terminal D
j
as a hyperedge of type 2,

not occurring before, where j is a natural number such that

(S, Gi
1
) (D

j
, Gi

2
) = (S, Gi) where k=1,2…

DECOMPOSE (Gi) = (S, Gi
1
) (D

j
, Gi

2
) -(S,Gi).

Newprod = Newprod DECOMPOSE (Gi)

Again, Decompose Gi
2
 such way that

(D
j
, Gi

3
) (D

j+1
, Gi

4
) and Gi

4
is path of length two.

DECOMPOSE (Gi
2
) = (D

j
, Gi

3
) (D

j+1
, Gi

4
) -(D

j
, Gi

2
).

Newprod = Newprod DECOMPOSE (Gi
2
)

 End DECOMPOSE (Gi)

Gr = Gr Newprod

End

RENAME NT (D
j
)

= {S=S, D
1
=D

2
=D

3
=…=D}.

This function is similar to RENAME operation of Jelstch and

Kreowski [4].

Gr=Gr Newprod RENAME NT

REDUCE is where Repeated and redundant productions are

identified and removed [8]

Gr = Gr - REDUCE

Gr= {S, D, P2 NewProd, S} is the grammar obtained from

the above algorithm.

5.2. Learning Cycles and Paths using the above

algorithm:

Consider the input graphs {(S, C4), (S, P5), (S, P4)}

Gr ={{S}, P2, (S, Gi) / i=1 to 3, (S,0)
.
}

Initialize Newprod=ϕ

Initialize RENAME NT={S}

Initialize REDUCE= ϕ

Where G1= C4, G2= P5, G3= P4.

The graph C4 is not equal to C3 or P3. Edge Contraction

Between adjacent vertices are applied to get C3. Introduce a

new non-terminal D
1

as a hyperedge of type 2. Again

introduce a new non-terminal D
2

as a hyperedge of type 2

such that G1
4
 is a path of length two such that (S,

G1
1
) (D

1
, G1

2
)

DECOMPOSE (G1) = (S, G1
1
) (D

1
, G1

2
)- (S, G1).

Newprod = Newprod DECOMPOSE (G1)

And again, Decompose Gi
2
such that

(D
1
, G1

3
) (D

2
, G1

4
).

DECOMPOSE (G1
2
) = (D

1
, G1

3
) (D

2
, G1

4
) – (D

1
, G1

2)
.

Newprod = Newprod DECOMPOSE(G1
2
)

DECOMPOSE(G1) is given in Figure 8.

S= D1 =

D2=

D1

D2D1 =

 Figure 8

S= D3

D4D3=

Figure 9

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 329

Next input is G2, applying the above process Figure 9 is

obtained. (S, G2
1
) (D

3
, G2

2
) = (S, G2),

DECOMPOSE(G2) = (S, G2
1
) (D

3
, G2

2
) - (S, G2).

Newprod = Newprod DECOMPOSE (G2) and Again

(D
3
, G2

3
) (D

4
, G2

4
).

DECOMPOSE (G2
2
) = (D

3
, G2

3
) (D

4
, G2

4
) -(D

3
, G2

2
)..

Newprod = Newprod DECOMPOSE (G2
2
)

D5=

S= D5

D6

Figure 10

For G3, applying the above process Figure 10 is obtained. (S,

G3
1
) (D

5
, G3

2
) = (S, G3) and DECOMPOSE (G3) =

 (S, G3
1
) (D

5
, G3

2
)- (S, G3).

Newprod= Newprod DECOMPOSE(G3) and Again

(D
5
, G3

3
) (D

6
, G3

4
).

DECOMPOSE (G3
2
) = (D

5
, G3

2
) (D

6
, G3

4
)- (D

5
, G3

2
).

Newprod= Newprod DECOMPOSE (G3
2
)

Then RENAME NT (D
j
) = {S=S, D

1
=D

2
=D

3
=D

4
=D

5
=D

6
=D}

is given in Figure 11, 12 and 13.

S= D

D = D D =

Figure 11 RENAME NT of C4

S=

D =

D

D D =

Figure 12 RENAME NT of P5

S=

D = D =

D

D

Figure 13 RENAME NT of P4

Gr=Gr Newprod RENAME NT. Repeated and

Redundant productions are identified and removed in

REDUCE. The rules corresponding to P5 can reduced when

renaming is given to the non-terminals. Hence removing the

REDUCE productions derives the sample inputs and the

class of all Cycles and Paths. Gr = Gr-REDUCE.

Applying the above algorithm, the required production rules

are obtained in Figure 14.

p1 : D

 p2: D

S = D
D

= D

=

Figure 14

5.3 Correctness of the Algorithm [8]:

1. Each sample can be derived from the axiom of an inferred

grammar.

2. Each production either being an initial one or one obtained

by decompositions and renaming can be used for deriving

one of the samples.

3. The axiom of an inferred grammar is (S, 0)
 •

or some

renaming of it because the axiom has this form initially and

the RENAME operation is the only one affecting the axiom.

A grammar with the above properties is called samples

composing. Hence our grammar is samples composing as it

satisfies the above conditions. Since the HRG of cycles and

paths is a subclass of the class of hyperedge replacement

grammars in [4] it is decidable, that cycles and paths can be

inferred.

VI. CONCLUSION

An grammatical inference algorithm for inferring Paths and

Cycles using Hyperedge Replacement Graph grammars is

given which uses edge contraction between the adjacent

vertices, followed by the four operations from which the

required grammar is obtained. Our future work is to extend

it further for varied classes of graphs and also for different

graph operations namely corona product of graph, graph join

and composition of graphs.

 REFERENCES

[1] A.Habel , H.J. Kreowski ..:“May We introduce to you: Hyperedge

 Replacement”. Lecture Notes in Computer Science, vol.291,pp 15-

 26 ,1987.

[2] G. Rozenberg.: “Handbook of graph grammars and computing by

graph transformation”, vol I World Scientific ,1997.

[3] J,Engelfriet, “ Context- free graph grammars”. In: G.Rozenberg ,

A.Salomaa, (eds) “Handbook of Formal Languages”, Computer

Science.Springer 4, 18 11, 2006.

[4] G.Paun” A guide to membrane computing”, Theoretical Computer

Science, Vol.287, 73-100, 2002,.

[5] Colin de la Higuera, “Current Trends in Grammatical Inference”,

 Lecture Notes in Computer Science, 1876,28-31, 2000.

[6] G.Paun, Rozenberg.G.,Saloma .A., “The oxford Handbook of

Membrane Computing”,2010

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 330

[7] Meena Parvathy Sankar, N.G.David ,D.G.Thomas ,”Hyperedge

replacement Graph P system”, Proceeding BIC-TA’11,

Proceedings of the 2011 Sixth International Conference on Bio-

Inspired Computing: theories and Applications,2011.

[8] E.Jeltsch , H.J Kreowski.: “Grammatical Inference based on

Hyperedge Replacement” ,Lecture Notes in Computer Science, vol

32, pp 461-474, 1990.

Authors Profile

Mrs.Thanga Murugeshwari .V received

the M.Sc. Degree in Mathematics in the

year 2011, M.Phil. Degree in 2012. She

is currently pursuing her Ph.D in Queen

Mary’s College,Chennai-under

University of Madras. Her research area

includes Formal Languages and Learning theory.

Dr.Mrs. Emerald Princess Sheela J.D.

received the M.Sc. Degree in

Mathematics in the year 1991, M.Phil.

Degree in 1993 and the Ph.D. Degree

in 2001 from the University of Madras.

She has been on the teaching faculty as

Assistant Professor, Department of

Mathematics, since 2001 in various colleges and is currently

working in Queen Mary’s College, Chennai -4. She ha s

presented her research papers in two International

Conferences in USA, one in Malaysia and one in UK. She is

the author or co-author of about 20 research papers in her

field of interest which includes formal languages and

automata theory, cryptography and learning theory. She is

also guiding three research students for the award of Ph.D.

Degree in the University of Madras.

