

 © 2018, IJCSE All Rights Reserved 349

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Flexible Programming Approach using STM

Ryan Saptarshi Ray

 1*
, Parama Bhaumik

 2
, Utpal Kumar Ray

3

1,2,3

Dept. of Information Technology, Jadavpur University, Kolkata, India

*Corresponding Author: ryan.ray@rediffmail.com, Tel.: 9831520613

Available online at: www.ijcseonline.org

Accepted: 19/July/2018, Published: 31/July/2018

Abstract— Software Transactional Memory (STM) is a promising new approach to programming shared-memory parallel

processors which does not suffer from the drawbacks of locks. However STM also has some limitations. One of the limitations

of STM is that while programming with STM users have to identify the critical sections explicitly and enclose them in

transactions using appropriate STM calls to ensure synchronization. This approach is similar to using locks in parallel

programs. This paper introduces a new flexible approach for programming using STM in which users do not need to identify

critical sections explicitly. In this approach whenever users need to perform read or write operations they can do so using

appropriate STM calls and STM will ensure synchronization by its internal constructs. Thus users can concentrate only on the

algorithm of the parallel problem without thinking about synchronization. Thus this approach is very user-friendly. Time taken

will also be less than lock programming as users do not have to identify critical sections explicitly.

Keywords— Multiprocessing, Parallel Processing, Locks, Software Transactional Memory, Flexible Programming Approach

I. INTRODUCTION

Ensuring synchronization is a very important aspect of

parallel programming. Currently locks are used to ensure

synchronization. But locks suffer from some drawbacks.

Software Transactional Memory (STM) is a promising new

approach to programming shared-memory parallel processors

which does not suffer from the drawbacks of locks. But STM

also has some limitations. One of the limitations of STM is

that while programming with STM users have to identify the

critical sections explicitly and enclose them in transactions

using appropriate STM calls to ensure synchronization. This

approach is similar to using locks in parallel programs where

also users have to identify critical sections explicitly and

enclose them using appropriate lock calls to ensure

synchronization. This paper introduces a new flexible

approach for programming using STM in which users do not

need to identify critical sections explicitly. In this approach

whenever users need to perform read or write operations they

can do so using appropriate STM calls and STM will ensure

synchronization by its internal constructs. Thus users can

concentrate only on the algorithm of the parallel problem

without thinking about synchronization. Thus this approach

is very user-friendly. Time taken will also be less than lock

programming as users do not have to identify critical sections

explicitly.

Section III describes the Flexible Programming Approach.

Section IV solves the Readers-Writers Problem using the

Flexible Programming Approach. Section V shows the

experimental results for solving the Readers-Writers Problem

using Flexible Programming Approach.

II. RELATED WORK

Different approaches have been proposed to improve the

performance of STM. These are discussed below.

In 2007 Yang Ni, Vijay Menon, Richard L. Hudson, Ali-

Reza Adl-Tabatabai, J. Eliot, B. Moss, Bratin Saha, Antony

L. Hosking, Tatiana Shpeisman published a paper entitled

“Open Nesting in Software Transactional Memory”. [1] This

paper presented an implementation of open nested

transactions in a Java-based software transactional memory

(STM) system. It described new language constructs to

support open nesting in Java and also discussed new abstract

locking mechanisms that a programmer could use to prevent

logical conflicts. It demonstrated how these constructs could

be mapped efficiently to existing STM data structures.

Finally, it evaluated the system on a set of Java applications

and data structures, demonstrating how open nesting could

enhance application scalability. In 2009 Zhengyu He and Bo

Hong published a paper entitled “Impact of Early Abort

Mechanisms on Lock-Based Software Transactional

Memory”. [2] This paper presented a theoretical analysis

characterizing the properties of early abort and its impact on

the performance of lock-based STMs. Queuing theory was

adopted to model the behaviors of transactional execution.

Analytical results were obtained for STMs with and without

early abort. The analysis was validated through extensive

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 350

experiments. Also in 2009 Yossi Lev, Victor Luchangco,

Virendra J. Marathe, Mark Moir, Dan Nussbaum and Marek

Olszewski published a paper entitled “Anatomy of a Scalable

Software Transactional Memory”. [3] This paper described

novel techniques to eliminate bottlenecks from existing STM

mechanisms and presented SkySTM. SkySTM was the first

STM that supported privatization and scaled on modern

multicore multiprocessors with hundreds of hardware threads

on multiple chips. A central theme in this work was avoiding

frequent updates to centralized metadata, especially for

multi-chip systems, in which the cost of accessing

centralized metadata increased dramatically. A key

mechanism used to do so was a scalable nonzero indicator

(SNZI), which was designed for this purpose. A secondary

contribution of the paper was a new and simplified SNZI

algorithm. The scalable privatization mechanism imposed

only about 4% overhead in low-contention experiments;

when contention was higher, the overhead still reached only

35% with over 250 threads. In contrast, prior approaches had

been reported as imposing over 100% overhead in some

cases, even with only 8 threads. In 2010 Justin E.

Gottschlich, Manish Vachharajani, Jeremy G. Siek published

a paper entitled “An Efficient Software Transactional

Memory Using Commit-Time Invalidation”. This paper

presented an efficient implementation of committime

invalidation, a strategy where transactions resolved their

conflicts with in-flight (uncommitted) transactions before

they commited. [4] Commit-time invalidation supplied the

contention manager (CM) with data that was unavailable

through commit-time validation, allowing the CM to make

decisions that increased transaction throughput. Commit-

time invalidation also required notably fewer operations than

commit-time validation for memory-intensive transactions,

used zero commit-time operations for dynamically detected

read-only transactions, and guaranteed full opacity for any

transaction in O(N) time, an improvement over incremental

validation’s O(N
2
) time. The experimental results showed

that for contending workloads, the efficient commit-time

invalidating software TM (STM) was up to 3 times faster

than TL2, a state-of-the-art validating STM. In 2011

Sandhya S.Mannarswamy and Ramaswamy Govindarajan

published a paper entitled “Variable Granularity Access

Tracking Scheme for Improving the Performance of

Software Transactional Memory”. [5] In order to mitigate the

disadvantages associated with Uniform Granularity Access

Tracking (UGAT) scheme, this paper proposed a Variable

Granularity Access Tracking (VGAT) scheme. It proposed a

compiler based approach wherein the compiler used inter-

procedural whole program static analysis to select the access

tracking granularity for different shared data structures of the

application based on the application’s data access pattern. It

described the prototype VGAT scheme, using TL2 as the

STM implementation. The experimental results revealed that

VGAT-STM scheme could improve the application

performance of STAMP benchmarks from 1.87% to up to

21.2%.

In our work we have used the flexible approach to improve

the performance of STM which has not been used earlier.

III. FLEXIBLE PROGRAMMING APPROACH

In the flexible approach with STM programmers do not need

to identify the critical sections of the code explicitly. For

performing read operation on a shared element

stm_unit_load() function is used. Similarly for performing

write operation on a shared element stm_unit_store()

function is used. Then STM by its internal constructs ensures

synchronization in the program. stm_unit_load() reads the

specified memory location outside of the context of any

transaction and returns its value. The operation behaves as if

executed in the context of a dedicated transaction (i.e., it

executes atomically and in isolation) that never aborts, but

may get delayed. Similarly stm_unit_store() writes a value

to the specified memory location outside of the context of

any transaction. It also behaves as if executed in the context

of a dedicated transaction (i.e., it executes atomically and in

isolation) that never aborts, but may get delayed.

STM follows the principle of optimistic execution. The

benefit of this optimistic approach is increased concurrency:

no thread needs to wait for access to a resource, and different

threads can safely and simultaneously modify disjoint parts

of a data structure that would normally be protected under

the same lock. This means that all the transactions can

execute simultaneously without being concerned about the

execution of other transactions. When all transactions finish

their execution the variables whose values were changed are

checked to ensure that the values are consistent. If not then

all the transactions are aborted and again started, otherwise

the transactions are committed. So there is no situation of

deadlock like in the case of locks.

The execution speed of the codes when this approach is used

is same as when only the critical section is enclosed with

STM calls or lock calls. However since in this approach

users do not have to identify the critical section explicitly the

total time taken is less. Also the user does not need to bother

about synchronization at all and can concentrate entirely on

the algorithm of the problem. So it can also be said that this

approach proves that STM is more user-friendly than locks.

IV. READERS-WRITERS PROBLEM USING

FLEXIBLE PROGRAMMING APPROACH

In the Readers/Writers Problem an object (a buffer which can

be a global array) is shared among many threads which can

perform either read or write operation on the object. Readers

(Reader threads) read data, but never modify the data.

However Writers (Writer threads) can both read data and

modify them. So multiple reads may be performed

simultaneously. But only one write operation can be

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 351

performed at a time to ensure consistency. In the

Readers/Writers Problem there are multiple readers and

writers accessing the elements in the same buffer at the same

time. The buffer is of fixed size. We have taken the buffer

size as 100000000. The problem is to synchronize these

accesses properly so that when a write operation is occurring

it should not be affected by any other read or write operation.

[6]

In the parallel program using threads and STM using

Flexible Programming approach which solves the Readers-

Writers problem there are two processes, reader and writer

whose functions are respectively, as the names suggest. The

array is divided into several parts depending on the value of

NUM_THREADS and the reader/writer pair accesses the

corresponding part of the array. The reader thread is invoked

using the thread ID which is passed to it as the parameter

num_ptr. Based on this parameter, each thread accesses the

corresponding part of the array. The writer process works in

a similar manner. The read operation in the reader thread and

the write operation in the writer thread are the critical

sections. But in the flexible approach there is no need to

identify the critical sections. Read and write operations are

performed using appropriate STM calls (stm_unit_load() for

read and stm_unit_store() for write) and then STM by its

internal constructs ensures synchronization. In the program

reader and writer are the two thread processes for reading

and writing elements from the buffer respectively. The array

arr is the buffer. The global array rcount keeps track of the

position of elements in the buffer.

In the thread reader, elements are read from the buffer by

the following statements.

for((k=(((num1*ARRAY_SIZE)/(NUM_THREADS))));k<(((n

um1+1)*ARRAY_SIZE)/(NU

M_THREADS))/2;k++)

 {

 byte_under_stm1=(unsigned char)

UNITLOAD(&rcount);

 printf("The data read is %d\n",arr[rcount[num1]]);

 UNITSTORE(&rcount,byte_under_stm1);

 gettimeofday(&ini_tv,NULL);

}

In the thread writer elements are written into the buffer by

the following statements.

for(k=((((num)*ARRAY_SIZE)/(NUM_THREADS)));k<((nu

m+1)*ARRAY_SIZE)/(NUM_

THREADS)/2;k++,ki++)

 {

 byte_under_stm1=(unsigned char)

UNITLOAD(&rcount);

 arr[rcount[num]]=1;

 printf("The data written is %d\n",arr[rcount[num]]);

 rcount[num]++;

 UNITSTORE(&rcount,byte_under_stm1);

}

The following statement is used to record the time before the

threads are created:

gettimeofday(&ini_tv,NULL);

The same call is also used to record the time when all threads

have just finished their executions.

The total time taken is then calculated and printed using the

following statement:

printf("Total Time Taken = %ld\n", final_tv.tv_sec -

ini_tv.tv_sec);

Some STM calls which have been used in the program are

shown below.

stm_unit_load() reads the specified memory location

outside of the context of any transaction and returns its value.

The operation behaves as if executed in the context of a

dedicated transaction (i.e., it executes atomically and in

isolation) that never aborts, but may get delayed.

stm_unit_store() writes a value to the specified memory

location outside of the context of any transaction. It also

behaves as if executed in the context of a dedicated

transaction (i.e., it executes atomically and in isolation) that

never aborts, but may get delayed.

V. EXPERIMENTAL RESULTS

The experimental results of the code with threads and STM

using flexible approach for solving the Readers-Writers

Problem are shown in Table 1.

Table 1. Experimental Results for Readers-Writers Problem using

Flexible Programming Approach

Number of Reader-Writer Pairs Time Taken(seconds)

1 170

2 121

3 73

4 58

5 43

6 36

7 30

8 24

9 23

10 21

11 20

12 15

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 352

The execution time is same as that of the parallel

programs which were used to solve the Readers-Writers

Problem using locks and STM (without the flexible

approach). But as programmers do not have to identify the

critical section explicitly the total time taken is less.

VI. SYSTEM SPECIFICATIONS

The codes were compiled and executed in a server called

PARAM Shavak server which has been developed by CDAC

and is currently present in Jadavpur University. [7] The

specifications of the system are given below:

SYSTEM DESCRIPTION

1. Hardware Configuration

Number of CPU cores: 12

Total Memory Space: 64 GB

2. Operating System

CentOS release 6.9(final)

3. Software Configuration

1) The language used in the programs is C.

2) gcc compiler version 4.4.7

VII. CONCLUSION

In this paper we showed the Flexible Approach to improve

the performance of STM by taking the example of solving

the Readers-Writers Problem. In this approach there is no

need for programmers to identify critical sections explicitly.

While performing read or write operations programmers

need to use appropriate STM calls. Then STM by its internal

constructs ensures synchronization in the program. Thus this

approach is more user-friendly as programmers can

concentrate on the algorithm of the problem only without

thinking about ensuring synchronization. The execution time

using this approach is same as that of the programs in which

locks or STM (without the flexible approach) are used. But

the total time taken is less as programmers do not need to

identify the critical sections explicitly.

REFERENCES

[1] Yang Ni, Vijay Menon, Richard L. Hudson, Ali-Reza Adl-

Tabatabai, J. Eliot, B. Moss, Bratin Saha, Antony L. Hosking,

Tatiana Shpeisman,“Open Nesting in Software Transactional

Memory”, In the Proceedings of the 12th ACM SIGPLAN

symposium on Principles and practice of parallel programming,

pp. 68-78, 2007

[2] Zhengyu He, Bo Hong, “Impact of Early Abort Mechanisms on

Lock-Based Software Transactional Memory”, In the Proceedings

of International Conference on High Performance Computing

(HiPC), 2009

[3] Yossi Lev, Victor Luchangco, Virendra J. Marathe, Mark Moir,

Dan Nussbaum, Marek Olszewski, “Anatomy of a Scalable

Software Transactional Memory”, In the Proceedings of the 4th

ACM SIGPLAN Workshop on Transactional Computing , 2009

[4] Justin E. Gottschlich, Manish Vachharajani, Jeremy G. Siek, “An

Efficient Software Transactional Memory Using Commit-Time

Invalidation”, In the Proceedings of the 8th annual IEEE/ACM

international symposium on Code generation and optimization ,

pp. 101-110, 2010

[5] Sandhya S.Mannarswamy, Ramaswamy Govindarajan, “Variable

Granularity Access Tracking Scheme for Improving the

Performance of Software Transactional Memory”, In the

Proceedings of International Conference on Parallel Architectures

and Compilation Techniques, pp. 232-242, 2011

[6] Anupriya Chakraborty, Sourav Saha, Ryan Saptarshi Ray, Utpal

Kumar Ray,“ Lock-Free Readers/Writers”, International Journal of

Computer Science Issues (IJCSI), ISSN (PRINT): 1694 – 0814,

ISSN (ONLINE): 1694 – 0784, Volume- 10, Issue-4, No-2, pp.

180-186, 2013

[7] Sandeep Agrawal, Shweta Das, Manjunatha Valmiki, Sanjay

Wandhekar, Prof. Rajat Moona, “A case for PARAM Shavak:

Ready-to-use and affordable supercomputing solution”, In the

Proceedings of the International Conference on High Performance

Computing & Simulation, pp. 396-401, 2017

[8] Ryan Saptarshi Ray, Parama Bhaumik, Utpal Kumar Ray,“ Hybrid

Parallel Programming Using Locks and STM”, International

Journal of Computer Sciences and Engineering (IJCSE) E-

ISSN:2347-2693, Volume- 5, Issue-10, pp. 185-192, 2017

[9] Anjum Mohd Aslam, Mantripatjit kaur,“ A Review on Energy

Efficient techniques in Green cloud: Open Research Challenges

and Issues”, International Journal of Scientific Research in

Computer Sciences and Engineering ISSN: 2320-7639, Volume-

6, Issue-3, pp. 44-50, 2018

[10] S. Vimala, P. Uma, S. Senbagam,“ Adaptive Vector Quantization

for Improved Coding Efficiency”, International Journal of

Scientific Research in Network Security and Communication

ISSN: 2321-3256, Volume- 6, Issue-3, pp. 18-22, 2018

Authors Profile

Ryan Saptarshi Ray received the degree

of B.E. in I.T. from School of

Information Technology, West Bengal

University of Technology, India in 2007.

He received the degree of M.E. in

Software Engineering from Jadavpur

University, India in 2012. Currently he is

PhD Scholar in the Department of

Information Technology, Jadavpur University, India.

He was employed as Programmer Analyst from 2007 to 2009

in Cognizant Technology Solutions. He has published 3

papers in International Conferences, 13 papers in

International Journals and also a book titled “Software

Transactional Memory: An Alternative to Locks” by LAP

LAMBERT ACADEMIC PUBLISHING, GERMANY in

2012 co-authored with Utpal Kumar Ray.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5426440
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5426440
http://www.isroset.org/pdf_paper_view.php?paper_id=648&10-IJSRCSE-01022.pdf
http://www.isroset.org/pdf_paper_view.php?paper_id=648&10-IJSRCSE-01022.pdf
http://www.isroset.org/pdf_paper_view.php?paper_id=648&10-IJSRCSE-01022.pdf
http://www.ijsrnsc.org/pdf_paper_view.php?paper_id=334&IJSRNSC-PID062.pdf
http://www.ijsrnsc.org/pdf_paper_view.php?paper_id=334&IJSRNSC-PID062.pdf

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 353

Parama Bhaumik received B.Sc

Phy(Hons.), B.Tech and M.Tech in

Computer Science & Engineering from

Calcutta University, India in 1996,1999

and 2002 respectively. She has done

her Ph.D in Engineering from Jadavpur

University, India in 2009. Currently she

is working as Associate Professor in the

Department of Information

Technology, Jadavpur University, India. She has more than

32 research publications in Journals of repute, Book chapters

and International Conferences.

Utpal Kumar Ray received the degree

of B.E. in Electronics and

Telecommunication Engineering in

1984 from Jadavpur University, India

and the degree of M.Tech in Elecrical

Engineering from Indian Institute of

Technology, Kanpur in 1986.

He was employed in different

capacities in WIPRO INFOTECH LTD., Bangalore, India;

WIPRO INFOTECH LTD., Bangalore, India, Client:

TANDEM COMPUTERS, Austin, Texas, USA; HCL

America, Sunnyvale, California, USA, Clent: HEWLETT

PACKARD, Cupertino, California, USA; HCL Consulting,

Gurgaon, India; HCL America, Sunnyvale, California, USA;

RAVEL SOFTWARE INC., San Jose, California, USA;

STRATUS COMPUTERS, San Jose, California, USA;

AUSPEX SYSTEMS, Santa Clara, California, USA and Sun

Micro System, Menlo Park, California, USA for varying

periods of duration from 1986 to 2002. From 2003 he is

working as Assistant Professor in the Department of

Information Technology, Jadavpur University, India. He has

published 23 papers in different conferences and journals. He

has also published a book titled “Software Transactional

Memory: An Alternative to Locks” by LAP LAMBERT

ACADEMIC PUBLISHING, GERMANY in 2012 co-

authored with Ryan Saptarshi Ray.

