
 © 2018, IJCSE All Rights Reserved 332

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-8, Aug 2018 E-ISSN: 2347-2693

DFD Schema: A Versatile Approach for XML Based Representation of

DFD

T.R. Shah

Department of ICT, Veer Narmad South Gujarat University, Surat, India

*Corresponding Author: proftejas@gmail.com

Available online at: www.ijcseonline.org

Accepted: 12/Aug/2018, Published: 31/Aug/2018

Abstract— The Requirement Engineering phase begins with inception and elicitation of functional, non functional

requirements and concludes iteratively with modeling and specification. Requirement Engineering demands the coarse level of

requirement specification by primary objectives, design constraints and appropriate artifacts of a system. In system

development life cycle (SDLC), a system model is analysed and developed using Data Flow Diagram (DFD). DFD is graphical

diagram for analyzing, specifying, creating and visualizing the model of a system. The formal requirement analysis and

specification method like DFD experiences the problem of ambiguity with different notation and complex graphical

presentation. This paper introduces DFD Schema; an XML based versatile specification approach for the structural

representation of DFD of a system. Its definition was motivated by lack of available structured and open formats that describe

data flow of system with its artifacts. This schema can be used in an interoperable way to transfer data flow requirements.

Keywords—Requirement Engineering, System Development Life Cycle (SDLC), Data Flow Diagram, DFDS, Data Flow

Diagram Schema, XML

I. INTRODUCTION

Requirement Engineering (RE) means activities involved in

incepting, discovering, analysing, specifying, documenting

and maintaining a set of requirements for a system [1]. The

RE is evolved as most critical and complex processes in

software development life cycle and as a consequence, many

errors are introduced in the requirements’ phase, caused by

incorrectly analysed, poorly written, ambiguous, unclear or

missed requirements. Failure to specify the requirements

correctly can lead to major delays, budget overruns, layoffs.

Good efforts have been made for exploration of alternative

elicitation paradigms beyond a pure automation approach as

well as semi-automated requirement elicitation [2].

 Requirements specification is one of the most essential

RE phase during which incepted, elicited and analyzed

requirements are precisely documented. The conventional

approach of RE may produce the document (like word

document) during the initial requirement phase of a project

which consists of many graphical diagrams. The

consequential manual specification typically becomes

inconsistent, incomplete, ambiguous and hard to trace [3].

 The DFD modelling aids in describing boundaries of

system and provides detailed representation of system

components through graphical techniques. To record and

document the requirements, the natural language is most

influential and communicative medium used by business

analyst and stakeholders. The natural language documents

can be combined with more formal requirement

representation (e.g. DFD model, UML model, mock-ups).

 A DFD is a graphical representation of the "flow" of data

through an information system, modelling

its process aspects. A DFD is often used as a preliminary

step to create an overview of the system without going into

great detail, which can later be elaborated [4].

 A DFD is a graphical tool and model which allows system

analyst and users to show the flow of data in an information

system. The key principle is ensuring balancing of every

level and decomposition the system until system analyst and

user can provide detail description of process. It is having

components from where the information captured, stored and

transferred to. A DFD is incredibly important for the

rejuvenation of old legacy systems. However, DFD lacks

formalism and as an impact ambiguity and inconsistencies

may present. Formal representation of DFD and its formal

semantics help in making unambiguous requirement

specification and design.

 The natural language unstructured documents appear to

be well suited for modelling, articulated and specifying the

requirements, but the specification might be ambiguous,

inconsistent and incomplete [5]. During software

development phase, a huge number of unstructured text

documents from various stakeholders become available. It is

very difficult to perform testing based on various testing

techniques mentioned in [6] to validate textual requirements.

Therefore, the structured specified requirements and more

https://en.wikipedia.org/wiki/Information_system

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 333

specifically entities, processes and flow of the system shall

be recorded in standardized format like XML.

A. Limitations of DFD

Some of the problems and limitations with DFD modelling

and graphical representation are mentioned below.

 Time Consuming:
The DFD simply takes a long time to create, so long that the

analyst may not receive support from management to

complete it. The DFD go through a lot of modification before

handed over to users, so makes the process little slower. The

semi structured data format reduces the delay in

communication over the network.

 Ambiguity in Understanding:

Different DFD models have different symbols like in Gane

and Sarson process is represented as rectangle where as in

DeMarco and Yourdan symbol it is represented as eclipse.

These differences in pictorial representation cause ambiguity

in system understanding at times.

 Ambiguity in interpretation of Notation:

The different notation like Gane and Sarson, DeMarco and

Yourdan are using different symbols. These graphical

notations are interpreted by practitioners, designers in

ambiguous way. A well defined semantics or DFD formalism

could help to reduce such inconsistencies and uncertainty. It

make the programmers little confusing concerning the

system.

 Control and Process Timing:

It does not show information about process timing,

sequential or parallel process execution. The UML activity

workflow diagram as unified model presents both control

and data flows. However DFD is not showing that control

path.

 One of the better techniques could be one that supports

transforming captured requirements into requirement

repositories in form of XML database. Since its inception,

XML has been used for defining specific vocabularies to

represent different human accomplishments. XML is a

platform independent standardized representation and

structured way to transfer content over network. XML has

become a language of data communication over the web.

XML is semi-structured, open standard, language

independent and extensible [7].

The implementation of DFD diagrams as XML format will

be useful for handling such pictorial data representation. It

facilitates better system understanding by removing any

ambiguities in the notations.

The paper presents a new approach DFDS that uses the XML

Schema Definition Language, which is now a

recommendation of W3C and thus effectively a standard. It

can be used for exchanging requirements amongst

stakeholders, business analysts and developers in internal as

well as external environment. It also incorporates a broad set

of XML elements that define DFD artefacts.

 This paper is organized as follows: Section II consists of

related research in the field of requirement analysis, DFD

representation, and markup languages pertaining to

requirement engineering. Section III includes the design

structure of DFDS specification. The Section IV includes the

scope and potential application areas of DFDS. The result

and test is a part of Section V and last section contains the

concluding remarks regarding DFDS.

II. RELATED WORK

The relevant work has been done in so many projects to

overcome the problems of DFD modelling.

 In [8] authors presented a survey of techniques that

represent formal semantics to the DFD by analysing different

parameters. Techniques were classified as non-standard

formal languages, and standard formal languages.

Incorporation of formalism in DFD removes ambiguities and

helps in checking the syntactic and semantic inconsistencies.

The formalization of DFD reduces the chance of

ambiguousness in requirement elicitation phase. At a same

time formal representation of DFD can also become

beneficial in up-gradation of old legacy systems.

 Kolhatkar proposed the development of an XML

representation of DFDs to overcome a number of identified

weaknesses with the graphical DFDs used. The tool

mentioned in this paper is user friendly and based on the

object oriented features. The diagrams drawn using these

tools can be sent over the network. But majority of the files

are in DTD format which is not extensible [9] .

 In [10], authors presented a tool based on formalized

rules for drawing and defining diagram. They have discussed

about how to model a business process flow using DFD and

presented a set of syntax and semantic rules of DFD.

 The Review focuses only on consistency within UML

models. The authors address the UML model consistency

gaps by introducing a formal consistency management

language. To ensure the correctness of DFD, the human

intervened validation of errors can be influential but not have

the profound impact [11].

 Various researches also stated that no formal language has

been presently used for semantic specification of DFD [8]

[12]. However, Tao and Kung [13] pointed out few CASE

tools which provide automated verification facilities to detect

inconsistency and incompleteness in a DFD specification.

 Dixit et al. in [14] described that the concept of DFD

consistency refers to whether or not the depiction of the

system shown at one level of a nested set of DFD is

compatible with the depictions of the system revealed at

other levels.

 There are only some markup languages and approaches

available in the literature which covers the project

description, requirement specification and DFD

representation. Most of the methodologies proposed for the

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 334

specification of requirements pay less attention to

requirement analysis with data flow diagrams.

 The RGML (Requirement Generation Markup Language)

has created the formal specification method for

characterizing the structure, process flow and activities

intrinsic to the requirements generation process. The work

focuses on characterization of application instantiation, the

use of templates and the productions of artifacts to assist the

system analyst and requirement engineer. The language is

having set of activity elements, however processes and flow

of data is not included. [15]

 The SRS template is represented in XML by considering

the object oriented environment. The template contributed to

the simplification and standardization of the procedure for

writing requirements and the validation of the domain

against use case models. However, it is only focuses section

wise SRS representation [16].

 The semantic part of use case descriptions are represented

in XML. As modelling requirements with use cases is proven

useful, the authors Dimitris et al in [17] presented the

structure of use cases with appropriate tags. The work

revealed in [18] focuses on the formal and informal

classification of requirement and specifying those

requirements with the XML Schema. However, only few

requirements metadata elements are represented.

 Requirements Markup Language (RQML) is a XML

dialect for specifying software requirements. The goal of

RQML is to overcome the drawback of natural language

requirement representation, including the relationship among

all requirement items. RQML is implemented as the

representation of requirements document. The RQML

structure is in DTD and not in XML schema. RQML has rich

of element types, but only few of them are uniquely defined

[19].

Notations used in DFD are usually graphical and researchers,

analyst, practitioner interpret these notations separately.

Therefore well defined semi-structured XML based

formalized model is required.

 From the above it has been observed that the work

mentioned in RQML, RGML cover all the metadata of the

requirements without DFD analysis. The RGML approach

covers the process description language also but not covering

the DFD properties of the requirements. The RGML is using

requirement generation process, describing the process

structure, flow of control, and individual activities. The

RQML is implanted with objective to run on Palm OS. But it

forms the requirement representation with basic class in DTD

form. The other XML based and consistency checking

methodologies of DFD are not having profound impact on

setting DFD as common exchangeable format.

III. DESIGN STRUCTURE OF DFDS

The DFD Schema enables the organizations to represent

complex and unstructured DFD components in electronic and

interoperable form. The captured field wise requirement in

the form of XML can be easily validated against DFD

schema. DFDS reduces ambiguity, making clear definitional

distinctions where diagrammatic representation leaves room

for uncertainty while analysing the requirements with

traditional approach. The XML and its supporting formats

together provide a correct metadata for parsing provision by

any tool. The exchange of DFD (in XML) improves the

efficiency in transferring data over network, as it is easily

transferrable and improves readability of data due to

metadata description. It can be merged with use case schema.

This section describes the design structure of DFD Schema.

The design of schema and testing is implemented in Oxygen

XML editor trial version tool.

A. Main DFD Schema

DFDS provides a broad set of XML elements that define project detail and context level diagram detail. The DFDS schema is

integration of 2 different schemas depicted in “Figure. 1”.

Figure 1 DFD Schema

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 335

The ContextDFD Type is having 2 important elements like input source and output source. They are having the same

schematic description with parameters, data type which is having set of external entities and which actor has performed that

operation. The following code snippet shows the sample elements of the main DFD schema.

Sample Element Tags of DFDS

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:include schemaLocation="DFD_Leve1_9oct.xsd"/>

<xs:element name="DFDSchema">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ProjectName" type="xs:string"/>

 <xs:element name="ContextDFD" type="ContextDFDType"

 maxOccurs="unbounded"/>

 <xs:element name="Level1" type="xs:Level1"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:complexType name="ContextDFDType">

 <xs:sequence>

 <xs:element name="ContextName" type="xs:string"/>

 <xs:element name="IPSource" type="IPSourceContextType"

 maxOccurs="unbounded"/>

 <xs:element name="OPDest" type="OPDestContextType" maxOccurs="unbounded"/>

 <xs:element name="MISReport" type="xs:string"/>

 </xs:sequence>

 <xs:attribute type="xs:integer" id="SystemID"/>

</xs:complexType>

<xs:complexType name="IPSourceContextType">

 <xs:sequence>

 <xs:element name="Entity" type="EntityType"/>

 <xs:element name="DataFlow" type="DataFlowType"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="OPDestContextType">

 <xs:sequence>

 <xs:element name="Entity" type="EntityType"/>

 <!-- DataStore can be described with type of primary and secondary -->

 <xs:element name="DataFlow" type="DataFlowType"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="EntityType">

 <xs:sequence>

 <xs:element name="EntityName" type="xs:string"/>

 <xs:element name="EntityChoice" type="xs:string"/>

 <!-- Entity choice can have multiple levels like Person, Stakeholder, Customer, Object or any other entity involves in

system -->

 </xs:sequence>

</xs:complexType>

</xs:schema>

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 336

B. OutputSoucre Type and Entity Type

The Figure 2 shows the sub elements of input and output sources. The sources can be from entity or data store. The Data flow

can have extension of multiple data flow in the form of text.

Figure 2 Output and EntityType

C. Element Level1 Schema:

This schema is including the main DFD schema. There are various processes in Level 1 which includes ProcessID,

ProcessName elements. The input source and output source is having same schematic elements of entity, data store and data

flow like context level DFD. This element is represented in Figure 3. The processes are dependent by the element

dependencyPID element.

Figure 3 Level1 Schema

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 337

IV. SCOPE OF THE DFD SCHEMA

DFDS can be applied to a broad continuum of Requirement

Engineering. This can make the requirement elicitation and

specification process more rapid. Some of the potential areas

and scope are mentioned below.

A. Web-based requirement Support

The XML has developed into the standard platform for

structured data exchange on the web. The web uses the XML

standard for data exchanges for numerous applications. The

DFDS data can be easily interoperable with other standards

which supports web based requirement analysis and

specification.

B. Use case and actor matching

The processes of level-1 and level-2 DFDs shall be converted

into use cases of Use case Diagram. The set of external

entities of DFD can be matched to the actor elements of the

UML diagram. This mapping can be easily done from raw

data of XML files to use cases.

C. Collaboration with Service oriented application

 Service-Oriented Architecture (SOA) is a way of designing,

developing, deploying systems that are considered by coarse-

grained, loosely coupled web services. The web services are

identified using a business process to identify functional

capabilities needed to accomplish the objectives of system.

The role of DFDS is to map the business process and

requirements which are converted from Functional

requirements specification into web service. The process

presented in XML format can be easily converted into web

service. So after requirement analysis phase, designer will

have the list of web services mapped from DFD processes.

D. Incorporation of DFDS from into Elicitation GUI tool

The requirement elicitation tool can be designed to collect

DFD detail through various forms. This will save time and

reduces the efforts to support semi-automatic requirement

analysis. The GUI based tool can be used to better represent

and map filed wise data collection in XML format which is

to be validated with DFDS Schema.

E. DFD Process to web service mapping

The use of XQuery from the sample DFDS XML file

searches the processes of the module which in turn gives the

relevant result of matching relevant web services. So, the

DFDS process element can help in the process of identifying

web services

V. RESULTS AND TEST CASES FOR

CONFORMANCE REQUIREMENTS

The XML repositories are evaluated for their well formed

and valid criteria against different schema generated from

DFDS which is shown in Table 1, Table2.

Table 1 Sample Test Result for Valid Main DFDS instance

document

 Description

a) Test

purpose

Verify the validity of the DFDS instance

document against the XML Schema

definition of each DFDS module that is

part of the DFDS profile. This may be any

combination of DFDS extension modules

in conjunction with the DFDS core

module.

b) Test method Validate the DFDS XML instance

document against the XML Schema

definitions of all employed DFDS

modules. The process has used appropriate

software tool for validation process that

checks all relevant definitions from the

respective XML Schema specification of

the employed DFDS modules.

c) Reference

DFD Main Schema

d) Test type Basic Test

Table2 Sample Test Result for Valid DFDS Level 1 Schema

instance document

 Description

a)Test

purpose

Verify the validity of the Level 1 instance

document against the XML Schema

definition of Level1 DFD module. This may

be any combination of DFDS extension

modules in conjunction with the DFDS core

module.

b)Test

method

Validate the Level1 schema instance

document against the XML Schema

definitions of Level1 of DFDS modules.

The process has used appropriate software

tool for validation process that checks all

relevant definitions from the respective

XML Schema specification of the employed

DFDS modules.

c) Reference

DFD Level1 Schema

d) Test type Basic Test

VI. CONCLUSION

This paper reveals the initial design of the DFD schema

specification is suitable for the use by system analyst,

requirement engineer, business analyst. Some of the sub

schema of DFDS convention facilitates translation and

mapping to requirement representation systems. The semi

automatic process of eliciting and specifying requirements

can be developed by implementation of this schema. The

schema is tested with instance document as conformance of

requirements. The advanced architecture with DFDS can

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 338

extend the application of RE for managing requirement data

exchange and integration, and web service mapping with

processing of module element tag.

REFERENCES

[1] I. Sommerville and P. Sawyer, "Requirements engineering: A

good practice guide", John Wiley & Sons, 1997.

[2] H. Meth, M. Brhel, and A. Maedche, “The state of the art in

automated requirements elicitation,” Information and Software

Technology, vol. 55, no. 10, pp. 1695–1709, 2013.

[3] D. Firesmith, “Modern Requirements Specification”, Journal Of

Object Technology, vol. 2, no. 1, pp. 53–64, 2003.

[4] P. D. Bruza and T. P. Van Der Weide, “The Semantics of Data

Flow Diagram”, 1989.

[5] I. Sommerville and J. Ransom, “An empirical study of industrial

requirements engineering process assessment and improvement”,

ACM Transactions on Software Engineering and Methodology,

vol. 14, no. 1, pp. 85–117, Jan. 2005.

[6] C. Patidar, “A Report on Latest Software Testing Techniques and

Tools”, International Journal of Scientific Research in Computer

Science and Engineering, vol. 1, no. 4, 2013.

[7] F. Yergeau and J. Cowan, “Extensible Markup Language (XML)

1.1 (Second Edition).”

[8] A. A. A. Jilani, A. Nadeem, T. Kim, and E. Cho, “Formal

Representations of the Data Flow Diagram: A Survey”, in 2008

Advanced Software Engineering and Its Applications, pp. 153–

158, 2008

[9] S. Salil Kolhatkar, “XML Based Representation of DFD Removal

of Diagramming Ambiguity”, IJACSA) International Journal of

Advanced Computer Science and Applications, vol. 2, no. 8, 2011.

[10] R. Ibrahim and S. Y. Yen, “Formalization Of The Data Flow

Diagram Rules For Consistency Check”, International Journal of

Software Engineering & Applications (IJSEA), vol. 1, no. 4, 2010.

[11] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of

UML model consistency management ”, 2009.

[12] T. Liu and C. S. Tang, “Semantic specification and verification of

data flow diagrams”, Journal of Computer Science and

Technology, vol. 6, no. 1, pp. 21–31, Jan. 1991.

[13] Y. Tao and C. Kung, “Formal definition and verification of data

flow diagrams” Journal of Systems and Software, vol. 16, no. 1,

pp. 29–36, Sep. 1991.

[14] J. B. Dixit and R. Kumar, "Structured system analysis and design",

Laxmi Publications Pvt. Ltd, 2007.

[15] A. S. Sidky, J. D. Arthur, O. Balci, and S. Mccrickard, “RGML: A

Specification Language that Supports the Characterization of

Requirements Generation Processes”, 2003.

[16] K. Meridji, “Documentation and validation of the requirements

specifications : an XML approach”, 2003.

[17] T. K. Dranidis D., “Writing Use Cases in XML", 9th Panhellenic

Conference in Informatics Thessaloniki, 2003.

[18] S. Chavda and S. Nayak, “Modern Technique To Build Software

Requirements Specification”, IJSRD-International Journal for

Scientific Research & Development|, vol. 2, pp. 2321-0613, 2014.

[19] S. Adibowo, “Rambutan Requirements Management Tool for

Busy System Analysts Technical Report”, 2003.

Authors Profile

Mr.T R Shah pursed Bachelor of Science in

IT from Gujarat University, Ahmedabad in

2002 Master of Science in IT from Gujarat

University in year 2004. He is currently

pursuing Ph.D. and currently working as

Assistant Professor in Department of ICT, Veer Narmad

South Gujarat University, Surat since 2006. He has published

more than 5 research papers in reputed national and

international journals. His main research work focuses on

Requirement Engineering, Service Oriented Architecture. He

has 12 years of teaching experience.

