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Abstract— It is Impossible to build a software which is completely tested or bug free. Manual bug fixing is very time taking, costly and 

clumsy task. To automate the process of software bug fixing various machine learning techniques are employed. Software bug prediction is 

implemented before testing phase of software development life cycle model while bug handling is a post testing phase arises after the failure 

of test cases. Software bug handling deals with the phases of software bug life cycle model. Bug reports are one of the most important 

software artifacts for handling of bugs. In recent years, due to release of thousands of open source software, large amount of repositories (like 

bug repositories) are available for software analytics. Analytics help software practitioners in taking decisions with logic instead of intuitions 

which make it more accurate and practical. Prediction and Handling of software bugs uses this analytics in automation with the help of 

machine learning techniques. In this paper we focused on predictive capability of different machine learning techniques in association with 

software bug prediction and handling. Findings and previous work is summarized with the help of tables (in association with attributes) and 
diagrams (in mapping with software bug life cycle model). 
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I. INTRODUCTION 

Failures like 2YK , ARIANE 5 and recent failure of payment 

software which left 6.5 million customers of RBS(Royal 

Bank of Scotland) without payment.“Prevention is better 

than cure” and software evolution supports this saying 

because any Malware in software can cause fatal 

consequences which can involve human life as well. Bug 

report shown in fig.1 describe all the attributes of a standard 

bug report. Existing research in bug handling took the help of 

various intelligent techniques such as text mining for bug 

report analysis, automatic bug triaging, bug fix time 

prediction and duplicate bug prediction. Track record of 

various defects, bugs, or issues in software evolution is 

recorded with the help of software known as bug tacking 

system.  

Software Repositories contains data in structured (like SRS), 

semi structured (like comments in source code) and 

unstructured (like developer to client conversation). Different 

mining techniques are employed (like text mining, 

information retrieval, classification and clustering etc.) for 

extraction of useful information. This historical information 

is used for training of different predictive algorithms.  

Bug handling can be very well understood with the help of 

bug life cycle model (BGCM). BGCM constitutes from 

submission of issue – unconfirmed to new – new to resolved 

– resolved to reopen/closed. In this study we map our 

findings with respect to phases of BGCM.   

Rest of the paper is organized in various sections, Section 1 

is about introduction of various techniques. Section 2 

describes open issues in software bug handling from 

unconfirmed to closed mapped according to different phases 

of software bug life cycle model. Section 3 summarizes 

previous studies with specific attributes in tabular form and 

section 4 is about conclusion and future scope of machine 

learning techniques in  prediction and handling of software 

bugs. 
 
 

Fig. 1. Format of a bug report [9] 

 

II. OPEN ISSUES IN SOFTWARE BUG HANDLING 
A. Unconfirmed to New: When a report is submitted it is not 

confirmed whether it is a bug or an issue. Bug report analysis 

is a critical task because wrong analysis resulted in to false 

predictions. Whenever an issue arises issue report is 

Category Bug ID Bug Overview Bug Details 

Label ID No. Name Reporter Submit Date Summary URL Screenshot Actual Result Expected Result Description Severity 
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generated but sometimes due to insufficient knowledge of 

reporter it is misclassified as bugs. Empirical study carried 

out on Mozilla, JBOSS and Eclipse with the help of decision 

trees and naïve bayes shows 77% of issues are classified 

correctly [7]. Data collected from repositories are not always 

qualitatively fine. Survey is carried out on both open source 

and  closed source projects, shows that differences between 

projects in terms of link rate (between bugs and commits) 

resulted in lack of quality[9]. Descriptive model is built on 

the basis of statistical analysis of surface features shows that 

quality increase and cost decrease in bug prediction [13]. 

Data gathered from open repositories are not noise free. 

Therefore, removal of redundant data from these large bug 

repositories is very clumsy task. In table1.open issues from 

various research papers are summarized focusing on quality 

of bug report. Study shows that integration of different 

repositories (versioning system and bug system) resulted in to 

missing traceability links because of heterogeneity between 

the repositories[24].Missing links between heterogeneous 

repositories are not able to project complete software 

evolution 

 An approach was proposed in which populate one 

repositories with the help of another repositories and  

merging point shows complete evolution of software with 

improved reasoning capabilities[34]. 

Bugs are uniformly distributed in the database. Analytical 

study is accomplished on two types of bugs surprise bugs and 

breakage bugs with imbalanced data and text classification 

algorithms and shows that bugs are not classified uniformly it 

may be possible  

that only a small portion of code may contain large number 

of bugs [25].Empirical study on bug reports shows that it is 

helpful in knowing the expertise of developers [37]. Study of 

72482 bug reports of UBUNTU (9 releases) is experimented 

for the   prediction of corrective maintenance. Correction 

time of bug reports is predicted with the help of linear model 

[26].  

B. New to Resolved: After the confirmation of bug next step 

is   resolution, bugs are assigned to the developer for 

resolution known as Triaging. Due to large number of 

variance in bugs and developers manual assignment becomes 

tough and time taking. Extended version of Latent Dirichlet 

topic model named multi feature topic model in association 

with Rapid miner is employed for mapping of bug reports to 

topic space [17]. 

ISSUE ADDRESSED STUDY 

In-efficient use of datasets  Structured information taken in to consideration (BLIA).[1] 

 Fellegi-Sunter Model is used for integration of databases shows 

effective results in recovering of traceability links.[2] 

 Empirically tested differences in quality of datasets cause 

differences in results .[9] 

 Tested unfairness, imbalanceness of datasets with the help of 

prediction techniques .[5] 

Misclassification of bugs  Empirically observed misclassification impact the quality of 

prediction. 

  Study shows 39% of files actually never have bugs.[6] 

 

Lack of coordination affects quality  Empirical study verifies that rich bug histories fill the gap between 

social, organizational and technical aspects .[8] 

Non standardization of bug reports   Recommender system named CUEZILLA was proposed for 

measuring quality and recommends elements for the improvement 

of bug reports.[14] 

 

How to mine Bug Summaries qualitatively  Text mining techniques are employed to find frequent patterns of 

bugs from the bug summaries.[10] 

 FRASR(framework for analyzing software repositories) in 

association with process mining.[11] 

 Textual coherence of user comments also shows promising results 

in bug prediction.[12] 

 

Table 1 summarized all the issues related with the dataset taken from bug reports. 



   International Journal of Computer Sciences and Engineering                                      Vol.6(10), Oct 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        514 

All bugs are not same in nature and divided in terms of 

criticality. According to “Bugzilla” it is labeled as blocker, 

critical, major, minor and trivial. BM-25 based document 

similarity function is proposed and based on the history of 

bug report severity database label of new report is predicted 

[19].Association mining is used with a priori algorithm on 

summary terms and predicts the developer for bug fixing. 

Experiments on various open source projects shows that 

approach based on association mining reduces the 

development effort and time [33].Automatic assignment of 

bug report to developer reduces cost and time of fixing of 

bugs. 

C. Resolved to Closed: After the reporting of bugs it is passed 

to triage team, assigned to someone for fixing and then they 

are verified and after that closed but sometime problem arises 

(reopening of bugs) which results in increase of software 

maintenance cost. resolved to closed is three tier process. 

ReopenPredictor is proposed based on extraction of textual 

features and help in prediction reopened bugs . 

III. SUMMARY OF INTELLIGENT TECHNIQUES 

INCORPORATING WITH SOFTWARE BUG 

PREDICTION AND  HANDLING 

Papers are summarized with respect to machine learning 

technique employed and its key points like dataset, features, 

efficacy measures and experimental results. These findings 

are divided in to two parts first one deals with software bug 

prediction and other is about software bug handling. Tabular 

representation in table 2 of software bug prediction 

techniques focused firstly on papers which tries to improve 

the prediction capability of software bugs (by tuning of 

learning parameters or by feature selection, instance selection 

etc.). While  handling deals with predictive techniques which 

make software bug handling automated, fast and anticipated. 

These are like bug severity prediction, developer 

prioritization, bug triaging and duplicate bug removal etc.  

 

Table 2. Summarizes different Techniques used for Software Bug Prediction and Handling 

 
Reference Dataset Techniques Used Feature Employed Efficacy 

Measures 

Experimental results 

[25] ANT 1.7 dataset of promise 

repository 

Gradient descent with adaptive learning 

back propagation (GDA) 

 

          _ 

 

Accuracy and 

performance 

Proposed model provide 98.97% accuracy 

 

[27] Predict defects between six 

open source projects 

GA + Regression tree and generalized 

linear model maximize the ratio between 

the number of defects found and effort 

used 

 

 

 

           _ 

Recall, 

Precision, 

AUC  

Regression Models Using GA 

significantly outperform their 

counterparts 

Future approach is employed on Bayesian 

or NN to other software metrics 

[28] Study perform on 26 open 

source systems 

Build a hybrid prediction model in 

conjunction with code changes 

information.   

Eleven predictors 

exploited by five 

competitive 

techniques 

 

 

      _ 

Outperform four baseline techniques 

based on process metrics and future 

involves investigation of factors causing 

scattering to developers. 

[29] Six large open source 

projects BUGZILLA, 

COULMBIA, JDT platforms 

Mozilla 

Ensemble learning approaches bagging 

and stacking together with random 

forests. 

Containing a total of 

137,417 changes 

Cost effective 

and F1 Score 

TLEL outperforms 

three baselines across the six datasets and 

will optimize the parameters of TLEL 

[30] Baseline extensive dataset is 

composed  

Five systems are used Source code 

metrics, past defects  

 

      _ 

Concluded that prediction technique 

based on single metric do not work 

consistently 

[31] Five open source java 

systems 

Feature selection is done automatically 

with regularization method on linear and 

poison regression  

  

Software metrics are 

taken as features / 

independent 

variables  

Root mean 

square error 

up to 50% 

Regularization methods reduce the 

prediction error of regression and 

improve stability 

39 studies out of 64 doesn’t apply feature 

selection method 

[20]  

              _ 

Applied Naïve Bayes and SVM classifier 

for prediction of bugs in conjuction with 

change information 

Changes are taken 

as features  

 

     _ 

Future where software engineers commit 

it as a buggy or clean 

[32] Eclipse dataset Ginni coefficient is used to quantify the  AUC and Lorenz curve is used for empirically 
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• whenever issue report 
is generated  
Enhancement,Bug or 
Issue ? 

Unconfirmed 

•Missing Links due to 
heterogenity of 
databases, Biasing, 
Non Uniformity of 
bugs. 

New 

•  Triaging must be 
domain oriented so 
that bug fixing must 
be assigned to most 
relevant developer 

Assigned 

•According to 
severity/priority 

•Bug fix time 
prediction 

Resolved 
•Duplicate bugs 

must be 
acknowledged  and 
bugs can be 
Reopened  

Closed 

inequality of a distribution 

Random forest analyze the relationship 

between code ownership and bugs in 

source files using Ginni co-efficient 

 

     

          _ 

LORENZ 

curve 

investigation between the code ownership 

and bugs in source files 

Future other than eclipse is used for 

experimentation and source code changes 

[34] Five open source java 

systems 

Machine learning adjustable parameters 

called hyper 

parameters 

KNN and SVM 

Multi search WEkA 

tool is employed 

 

 

       _  

 

Tuning hyper parameters gives at least as 

accurate models for SVM  

Plan to extend this study to cover more 

machine learning models  

[24] Seven Datasets of Eclipse 

Projects Mozilla Product 

Summary terms are extracted with text 

mining technique KNN, SVM and NB 

are used 

Bug summary  

Attribute 

F-measure, 

Accuracy, 

Precision and 

Recall 

KNN performs better than the support 

vector machine. 

Try to develop cross project bug severity 

predictions  

[9] 

 

 

Open source project, Aspect 

J, SWT, and Zxing. 

Bug localization using integrated 

analysis (BLIA) is proposed 

on method level 

Texts, Stacks, 

Traces and 

comments. 

Average 

Precision, 

MAP, MRR 

are used 

Determine BLIA’s potential for 

improving the accuracy of bug 

localization at method level 

[26] Mozilla, Gnome and Eclipse Text mining algorithm  Tf-IDF Modelling      

        _ 

Frequently used terms are used to 

describe bugs  

[35] 1200 failures extracted from 

the change tracking system of 

a large NASA mission 

Three supervised machine learning and 

three sampling technique 

 

    

       _ 

 

 

        _ 

83% of total fix implementation effort 

was associated with only 20% of failures 

[36]  

               _              

Use instance selection with feature 

selection to reduce  bug data scale  

 

       _ 

 

 

       _ 

Which developer should be assigned is 

based on text categorization results. 

[37] Eclipse and Mozilla Bug triaging, severity identification  and 

reopened bug prediction based on 

developer prioritization 

 

      _ 

 

 

         _ 

 

 

Empirically  investigate the model and 

proved that developer prioritization 

positively impact  bug triaging  

[38] NETBEANS and Eclipse 

using BUGZILLA bug 

repositories 

Linearly discrimnant analysis (LDA) , 

NB 

PCA for feature selection and PSO for 

instance selection   

Bug report instances Accuracy, 

precision, 

Recall and 

processing 

time  

Feature selection to instance selection 

gives good results than instance selection 

to feature selection 

  

 

 

Fig.2 Issues encountered at every stage of software Bug life Cycle 
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IV. MAJOR FINDINGS AND CONCLUSION 

In this paper we presented machine learning techniques 

employed for prediction and handling of software bugs. 

Software bug handling used different computational 

techniques for making it automated, efficient and fast but 

these techniques are not completely justifiable and lots of 

efforts are needed to make it more automated. Review of 

following papers on bug prediction techniques shows that 

most of the studies neglect parameter tuning, statistical tests 

which plays a crucial role in accuracy of machine learning 

algorithms. Other open issues concluded with respect to the 

phases of SBLC in fig 2 which can be used for future 

research. Mapping of future research is done with respect to 

software bug life cycle model for example:  when bug report 

is submitted it is unconfirmed whether it is bug or issue and 

it is still an open area of research. Similarly when bug is  

 

confirmed it is entered in to new state and problems like 

missing links, biasing, heterogeneity of language between 

bug reports and source code occurs which takes too much 

time if done manually. Other phases (like assigned, resolved 

and closed) also have issues which are very time taking and 

clumsy for software developers to do manually and correct 

implementation of intelligent techniques make this work fast, 

efficient and within in budget of software development cost 

because of efficient utilization of resources.  
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