
 © 2018, IJCSE All Rights Reserved 512

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-6, Issue-10, Oct 2018 E-ISSN: 2347-2693

Software Bug Prediction and Handling Using Machine Learning

Techniques: A Review

Tamanna

1*
, Om Prakash Sangwan

2

1,2

Dept. of computer science and engineering, Guru JamheshwarUniversity of Science and Technology Hisar,India,

*Corresponding Author: tamannasharma100@gmail.com

Available online at: www.ijcseonline.org

Accepted: 19/Oct/2018, Published: 31/Oct/2018

Abstract— It is Impossible to build a software which is completely tested or bug free. Manual bug fixing is very time taking, costly and

clumsy task. To automate the process of software bug fixing various machine learning techniques are employed. Software bug prediction is

implemented before testing phase of software development life cycle model while bug handling is a post testing phase arises after the failure

of test cases. Software bug handling deals with the phases of software bug life cycle model. Bug reports are one of the most important

software artifacts for handling of bugs. In recent years, due to release of thousands of open source software, large amount of repositories (like

bug repositories) are available for software analytics. Analytics help software practitioners in taking decisions with logic instead of intuitions

which make it more accurate and practical. Prediction and Handling of software bugs uses this analytics in automation with the help of

machine learning techniques. In this paper we focused on predictive capability of different machine learning techniques in association with

software bug prediction and handling. Findings and previous work is summarized with the help of tables (in association with attributes) and
diagrams (in mapping with software bug life cycle model).

Keywords— Software Bug, Computational Intelligence, Analytics, Naïve Bayes (NB), Support Vector Machine (SVM)

I. INTRODUCTION

Failures like 2YK , ARIANE 5 and recent failure of payment

software which left 6.5 million customers of RBS(Royal

Bank of Scotland) without payment.“Prevention is better

than cure” and software evolution supports this saying

because any Malware in software can cause fatal

consequences which can involve human life as well. Bug

report shown in fig.1 describe all the attributes of a standard

bug report. Existing research in bug handling took the help of

various intelligent techniques such as text mining for bug

report analysis, automatic bug triaging, bug fix time

prediction and duplicate bug prediction. Track record of

various defects, bugs, or issues in software evolution is

recorded with the help of software known as bug tacking

system.

Software Repositories contains data in structured (like SRS),

semi structured (like comments in source code) and

unstructured (like developer to client conversation). Different

mining techniques are employed (like text mining,

information retrieval, classification and clustering etc.) for

extraction of useful information. This historical information

is used for training of different predictive algorithms.

Bug handling can be very well understood with the help of

bug life cycle model (BGCM). BGCM constitutes from

submission of issue – unconfirmed to new – new to resolved

– resolved to reopen/closed. In this study we map our

findings with respect to phases of BGCM.

Rest of the paper is organized in various sections, Section 1

is about introduction of various techniques. Section 2

describes open issues in software bug handling from

unconfirmed to closed mapped according to different phases

of software bug life cycle model. Section 3 summarizes

previous studies with specific attributes in tabular form and

section 4 is about conclusion and future scope of machine

learning techniques in prediction and handling of software

bugs.

Fig. 1. Format of a bug report [9]

II. OPEN ISSUES IN SOFTWARE BUG HANDLING
A. Unconfirmed to New: When a report is submitted it is not

confirmed whether it is a bug or an issue. Bug report analysis

is a critical task because wrong analysis resulted in to false

predictions. Whenever an issue arises issue report is

Category Bug ID Bug Overview Bug Details

Label ID No. Name Reporter Submit Date Summary URL Screenshot Actual Result Expected Result Description Severity

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 513

generated but sometimes due to insufficient knowledge of

reporter it is misclassified as bugs. Empirical study carried

out on Mozilla, JBOSS and Eclipse with the help of decision

trees and naïve bayes shows 77% of issues are classified

correctly [7]. Data collected from repositories are not always

qualitatively fine. Survey is carried out on both open source

and closed source projects, shows that differences between

projects in terms of link rate (between bugs and commits)

resulted in lack of quality[9]. Descriptive model is built on

the basis of statistical analysis of surface features shows that

quality increase and cost decrease in bug prediction [13].

Data gathered from open repositories are not noise free.

Therefore, removal of redundant data from these large bug

repositories is very clumsy task. In table1.open issues from

various research papers are summarized focusing on quality

of bug report. Study shows that integration of different

repositories (versioning system and bug system) resulted in to

missing traceability links because of heterogeneity between

the repositories[24].Missing links between heterogeneous

repositories are not able to project complete software

evolution

 An approach was proposed in which populate one

repositories with the help of another repositories and

merging point shows complete evolution of software with

improved reasoning capabilities[34].

Bugs are uniformly distributed in the database. Analytical

study is accomplished on two types of bugs surprise bugs and

breakage bugs with imbalanced data and text classification

algorithms and shows that bugs are not classified uniformly it

may be possible

that only a small portion of code may contain large number

of bugs [25].Empirical study on bug reports shows that it is

helpful in knowing the expertise of developers [37]. Study of

72482 bug reports of UBUNTU (9 releases) is experimented

for the prediction of corrective maintenance. Correction

time of bug reports is predicted with the help of linear model

[26].

B. New to Resolved: After the confirmation of bug next step

is resolution, bugs are assigned to the developer for

resolution known as Triaging. Due to large number of

variance in bugs and developers manual assignment becomes

tough and time taking. Extended version of Latent Dirichlet

topic model named multi feature topic model in association

with Rapid miner is employed for mapping of bug reports to

topic space [17].

ISSUE ADDRESSED STUDY

In-efficient use of datasets Structured information taken in to consideration (BLIA).[1]

 Fellegi-Sunter Model is used for integration of databases shows

effective results in recovering of traceability links.[2]

 Empirically tested differences in quality of datasets cause

differences in results .[9]

 Tested unfairness, imbalanceness of datasets with the help of

prediction techniques .[5]

Misclassification of bugs Empirically observed misclassification impact the quality of

prediction.

 Study shows 39% of files actually never have bugs.[6]

Lack of coordination affects quality Empirical study verifies that rich bug histories fill the gap between

social, organizational and technical aspects .[8]

Non standardization of bug reports Recommender system named CUEZILLA was proposed for

measuring quality and recommends elements for the improvement

of bug reports.[14]

How to mine Bug Summaries qualitatively Text mining techniques are employed to find frequent patterns of

bugs from the bug summaries.[10]

 FRASR(framework for analyzing software repositories) in

association with process mining.[11]

 Textual coherence of user comments also shows promising results

in bug prediction.[12]

Table 1 summarized all the issues related with the dataset taken from bug reports.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 514

All bugs are not same in nature and divided in terms of

criticality. According to “Bugzilla” it is labeled as blocker,

critical, major, minor and trivial. BM-25 based document

similarity function is proposed and based on the history of

bug report severity database label of new report is predicted

[19].Association mining is used with a priori algorithm on

summary terms and predicts the developer for bug fixing.

Experiments on various open source projects shows that

approach based on association mining reduces the

development effort and time [33].Automatic assignment of

bug report to developer reduces cost and time of fixing of

bugs.

C. Resolved to Closed: After the reporting of bugs it is passed

to triage team, assigned to someone for fixing and then they

are verified and after that closed but sometime problem arises

(reopening of bugs) which results in increase of software

maintenance cost. resolved to closed is three tier process.

ReopenPredictor is proposed based on extraction of textual

features and help in prediction reopened bugs .

III. SUMMARY OF INTELLIGENT TECHNIQUES

INCORPORATING WITH SOFTWARE BUG

PREDICTION AND HANDLING

Papers are summarized with respect to machine learning

technique employed and its key points like dataset, features,

efficacy measures and experimental results. These findings

are divided in to two parts first one deals with software bug

prediction and other is about software bug handling. Tabular

representation in table 2 of software bug prediction

techniques focused firstly on papers which tries to improve

the prediction capability of software bugs (by tuning of

learning parameters or by feature selection, instance selection

etc.). While handling deals with predictive techniques which

make software bug handling automated, fast and anticipated.

These are like bug severity prediction, developer

prioritization, bug triaging and duplicate bug removal etc.

Table 2. Summarizes different Techniques used for Software Bug Prediction and Handling

Reference Dataset Techniques Used Feature Employed Efficacy

Measures

Experimental results

[25] ANT 1.7 dataset of promise

repository

Gradient descent with adaptive learning

back propagation (GDA)

 _

Accuracy and

performance

Proposed model provide 98.97% accuracy

[27] Predict defects between six

open source projects

GA + Regression tree and generalized

linear model maximize the ratio between

the number of defects found and effort

used

 _

Recall,

Precision,

AUC

Regression Models Using GA

significantly outperform their

counterparts

Future approach is employed on Bayesian

or NN to other software metrics

[28] Study perform on 26 open

source systems

Build a hybrid prediction model in

conjunction with code changes

information.

Eleven predictors

exploited by five

competitive

techniques

 _

Outperform four baseline techniques

based on process metrics and future

involves investigation of factors causing

scattering to developers.

[29] Six large open source

projects BUGZILLA,

COULMBIA, JDT platforms

Mozilla

Ensemble learning approaches bagging

and stacking together with random

forests.

Containing a total of

137,417 changes

Cost effective

and F1 Score

TLEL outperforms

three baselines across the six datasets and

will optimize the parameters of TLEL

[30] Baseline extensive dataset is

composed

Five systems are used Source code

metrics, past defects

 _

Concluded that prediction technique

based on single metric do not work

consistently

[31] Five open source java

systems

Feature selection is done automatically

with regularization method on linear and

poison regression

Software metrics are

taken as features /

independent

variables

Root mean

square error

up to 50%

Regularization methods reduce the

prediction error of regression and

improve stability

39 studies out of 64 doesn’t apply feature

selection method

[20]

 _

Applied Naïve Bayes and SVM classifier

for prediction of bugs in conjuction with

change information

Changes are taken

as features

 _

Future where software engineers commit

it as a buggy or clean

[32] Eclipse dataset Ginni coefficient is used to quantify the AUC and Lorenz curve is used for empirically

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 515

• whenever issue report
is generated
Enhancement,Bug or
Issue ?

Unconfirmed

•Missing Links due to
heterogenity of
databases, Biasing,
Non Uniformity of
bugs.

New

• Triaging must be
domain oriented so
that bug fixing must
be assigned to most
relevant developer

Assigned

•According to
severity/priority

•Bug fix time
prediction

Resolved
•Duplicate bugs

must be
acknowledged and
bugs can be
Reopened

Closed

inequality of a distribution

Random forest analyze the relationship

between code ownership and bugs in

source files using Ginni co-efficient

 _

LORENZ

curve

investigation between the code ownership

and bugs in source files

Future other than eclipse is used for

experimentation and source code changes

[34] Five open source java

systems

Machine learning adjustable parameters

called hyper

parameters

KNN and SVM

Multi search WEkA

tool is employed

 _

Tuning hyper parameters gives at least as

accurate models for SVM

Plan to extend this study to cover more

machine learning models

[24] Seven Datasets of Eclipse

Projects Mozilla Product

Summary terms are extracted with text

mining technique KNN, SVM and NB

are used

Bug summary

Attribute

F-measure,

Accuracy,

Precision and

Recall

KNN performs better than the support

vector machine.

Try to develop cross project bug severity

predictions

[9]

Open source project, Aspect

J, SWT, and Zxing.

Bug localization using integrated

analysis (BLIA) is proposed

on method level

Texts, Stacks,

Traces and

comments.

Average

Precision,

MAP, MRR

are used

Determine BLIA’s potential for

improving the accuracy of bug

localization at method level

[26] Mozilla, Gnome and Eclipse Text mining algorithm Tf-IDF Modelling

 _

Frequently used terms are used to

describe bugs

[35] 1200 failures extracted from

the change tracking system of

a large NASA mission

Three supervised machine learning and

three sampling technique

 _

 _

83% of total fix implementation effort

was associated with only 20% of failures

[36]

 _

Use instance selection with feature

selection to reduce bug data scale

 _

 _

Which developer should be assigned is

based on text categorization results.

[37] Eclipse and Mozilla Bug triaging, severity identification and

reopened bug prediction based on

developer prioritization

 _

 _

Empirically investigate the model and

proved that developer prioritization

positively impact bug triaging

[38] NETBEANS and Eclipse

using BUGZILLA bug

repositories

Linearly discrimnant analysis (LDA) ,

NB

PCA for feature selection and PSO for

instance selection

Bug report instances Accuracy,

precision,

Recall and

processing

time

Feature selection to instance selection

gives good results than instance selection

to feature selection

Fig.2 Issues encountered at every stage of software Bug life Cycle

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 516

IV. MAJOR FINDINGS AND CONCLUSION

In this paper we presented machine learning techniques

employed for prediction and handling of software bugs.

Software bug handling used different computational

techniques for making it automated, efficient and fast but

these techniques are not completely justifiable and lots of

efforts are needed to make it more automated. Review of

following papers on bug prediction techniques shows that

most of the studies neglect parameter tuning, statistical tests

which plays a crucial role in accuracy of machine learning

algorithms. Other open issues concluded with respect to the

phases of SBLC in fig 2 which can be used for future

research. Mapping of future research is done with respect to

software bug life cycle model for example: when bug report

is submitted it is unconfirmed whether it is bug or issue and

it is still an open area of research. Similarly when bug is

confirmed it is entered in to new state and problems like

missing links, biasing, heterogeneity of language between

bug reports and source code occurs which takes too much

time if done manually. Other phases (like assigned, resolved

and closed) also have issues which are very time taking and

clumsy for software developers to do manually and correct

implementation of intelligent techniques make this work fast,

efficient and within in budget of software development cost

because of efficient utilization of resources.

REFERENCES

[1]Youm, K.C., Ahn, J. and Lee, E., 2017. Improved bug localization

based on code change histories and bug reports. Information and

Software Technology, 82, pp.177-192.

[2]Sureka, A., Lal, S. and Agarwal, L., 2011, December. Applying

fellegi-sunter (fs) model for traceability link recovery between bug

databases and version archives. In Software Engineering

Conference (APSEC), 2011 18th Asia Pacific (pp. 146-153). I

[3]Bhattacharya, P. and Neamtiu, I., 2011, May. Bug-fix time prediction

models: can we do better?. In Proceedings of the 8th Working

Conference on Mining Software Repositories (pp. 207-210).

ACM.

[4]Osman, H., Ghafari, M. and Nierstrasz, O., 2017, February.

Hyperparameter optimization to improve bug prediction accuracy.

In Machine Learning Techniques for Software Quality Evaluation

(MaLTeSQuE), IEEE Workshop on (pp. 33-38). IEEE.

[5] Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov,

V. and Devanbu, P., 2009, August. Fair and balanced?: bias in

bug-fix datasets. In Proceedings of the the 7th joint meeting of the

European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software

engineering (pp. 121-130). ACM.

[6] Herzig, K., Just, S. and Zeller, A., 2013, May. It's not a bug, it's a

feature: how misclassification impacts bug prediction.

In Proceedings of the 2013 international conference on software

engineering (pp. 392-401). IEEE Press.

[7] Antoniol, G., Ayari, K., Di Penta, M., Khomh, F. and Guéhéneuc,

Y.G., 2008, October. Is it a bug or an enhancement?: a text-based

approach to classify change requests. In Proceedings of the 2008

conference of the center for advanced studies on collaborative

research: meeting of minds (p. 23). ACM.

[8] Aranda, J. and Venolia, G., 2009, May. The secret life of bugs:

Going past the errors and omissions in software repositories.

In Proceedings of the 31st International Conference on Software

Engineering (pp. 298-308). IEEE Computer Society.

[9] Bachmann, A. and Bernstein, A., 2009, August. Software process

data quality and characteristics: a historical view on open and

closed source projects. In Proceedings of the joint international

and annual ERCIM workshops on Principles of software evolution

(IWPSE) and software evolution (Evol) workshops (pp. 119-128).

ACM.

[10] Jayadev Gyani, Narsimha G. and Kiran Kumar B 2014, May

Mining Frequent Patterns From Bug Repositories .International

Journal of Advanced Research

[11] Poncin, W., Serebrenik, A. and Van Den Brand, M., 2011, March.

Process mining software repositories. In Software maintenance

and reengineering (CSMR), 2011 15th european conference

on (pp. 5-14). IEEE.

[12] Dit, B., Poshyvanyk, D. and Marcus, A., 2008. Measuring the

semantic similarity of comments in bug reports. Proc. of 1st

STSM, 8, p.64.

[13] Hooimeijer, P. and Weimer, W., 2007, November. Modeling bug

report quality. In Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering (pp.

34-43). ACM.

[14] Khomh, F., Dhaliwal, T., Zou, Y. and Adams, B., 2012, June. Do

faster releases improve software quality? an empirical case study

of Mozilla Firefox. In Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories (pp. 179-188). IEEE

Press.

[15] Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A.

and Weiss, C., 2010. What makes a good bug report?. IEEE

Transactions on Software Engineering, 36(5), pp.618-643.

[16] Bachmann, A. and Bernstein, A., 2010, May. When process data

quality affects the number of bugs: Correlations in software

engineering datasets. In Mining Software Repositories (MSR),

2010 7th IEEE Working Conference on(pp. 62-71). IEEE.

[17] Xia, X., Lo, D., Ding, Y., Al-Kofahi, J.M., Nguyen, T.N. and

Wang, X., 2017. Improving automated bug triaging with

specialized topic model. IEEE Transactions on Software

Engineering, 43(3), pp.272-297.

[18] Kumar, R. and Gupta, D.L., 2016. Software Bug Prediction System

Using Neural Network. European Journal of Advances in

Engineering and Technology, 3(7), pp.78-84.

[19] Tian, Y., Lo, D. and Sun, C., 2012, October. Information retrieval

based nearest neighbor classification for fine-grained bug severity

prediction. In Reverse Engineering (WCRE), 2012 19th Working

Conference on (pp. 215-224). IEEE.

[20] Lamkanfi, A., Demeyer, S., Giger, E. and Goethals, B., 2010, May.

Predicting the severity of a reported bug. In Mining Software

Repositories (MSR), 2010 7th IEEE Working Conference on (pp.

1-10). IEEE.

[21] Xuan, J., Jiang, H., Ren, Z. and Zou, W., 2012, June. Developer

prioritization in bug repositories.

In Software Engineering (ICSE), 2012 34th International Conference

on(pp. 25-35). IEEE.

[22] Jain, S. and Wilson, S.R., 2016, August. Automated bug

assortment system in datasets. In Inventive Computation

Technologies (ICICT), International Conference on (Vol. 2, pp. 1-

7). IEEE.

[23] D'Ambros, M., Lanza, M. and Robbes, R., 2010, May. An

extensive comparison of bug prediction approaches. In Mining

Software Repositories (MSR), 2010 7th IEEE Working

Conference on (pp. 31-41). IEEE.

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 517

[24] Ayari, K., Meshkinfam, P., Antoniol, G. and Di Penta, M., 2007,

October. Threats on building models from cvs and bugzilla

repositories: the mozilla case study. In Proceedings of the 2007

conference of the center for advanced studies on Collaborative

research (pp. 215-Yang, X.L., Lo, D., Xia, X., Huang, Q. and Sun,

J.L., 2017. High-impact bug report identification with imbalanced

learning strategies. Journal of Computer Science and

Technology, 32(1), pp.181-198.228). IBM Corp..

[25] Yang, X.L., Lo, D., Xia, X., Huang, Q. and Sun, J.L., 2017. High-

impact bug report identification with imbalanced learning

strategies. Journal of Computer Science and Technology, 32(1),

pp.181-198.

[26] Anbalagan, P. and Vouk, M., 2009, September. On predicting the

time taken to correct bug reports in open source projects.

In Software Maintenance, 2009. ICSM 2009. IEEE International

Conference on (pp. 523-526). IEEE.

[27] Anvik, J., Hiew, L. and Murphy, G.C., 2006, May. Who should fix

this bug?. In Proceedings of the 28th international conference on

Software engineering (pp. 361-370). ACM.

[28] Puranik, S., Deshpande, P. and Chandrasekaran, K., 2016. A Novel

Machine Learning Approach for Bug Prediction. Procedia

Computer Science, 93, pp.924-930.

 [29] Arudkar, S. and Pimpalkar, A., Design of an Effective Mechanism

For Automated Bug Triage System.

[30] Singla, H., Sharma, G. and Sharma, S., 2016. Domain Specific

Automated Triaging System for Bug Classification. Indian Journal

of Science and Technology, 9(33).

[31] Singh, V.B., Misra, S. and Sharma, M., 2017. Bug Severity

Assessment in Cross Project Context and Identifying Training

Candidates. Journal of Information & Knowledge

Management, 16(01), p.1750005.

[32] Chaturvedi, K.K. and Singh, V.B., 2012. An empirical comparison

of machine learning techniques in predicting the bug severity of

open and closed source projects. International Journal of Open

Source Software and Processes (IJOSSP), 4(2), pp.32

[33] Sharma, M., Kumari, M. and Singh, V.B., 2015, June. Bug

assignee prediction using association rule mining. In International

Conference on Computational Science and Its Applications (pp.

444-457). Springer, Cham.

[34] Fischer, M., Pinzger, M. and Gall, H., 2003, September. Populating

a release history database from version control and bug tracking

systems. In Software Maintenance, 2003. ICSM 2003.

Proceedings. International Conference on (pp. 23-32). IEEE.

 [35] Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto, R.

and De Lucia, A., 2018. A developer centered bug prediction

model. IEEE Transactions on Software Engineering, 44(1), pp.5-

24.

[36] Anvik, J. and Murphy, G.C., 2007, May. Determining

implementation expertise from bug reports. In Proceedings of the

Fourth International Workshop on Mining Software

Repositories (p. 2). IEEE Computer Society.

[37] Osman, H., Ghafari, M. and Nierstrasz, O., 2017, February.

Automatic feature selection by regularization to improve bug

prediction accuracy. In Machine Learning Techniques for

Software Quality Evaluation IEEE Workshop on (pp. 27-32).

 [38] Shivaji, S., Whitehead, J.E.J., Akella, R. and Kim, S., 2009,

November. Reducing features to improve bug prediction.

In Proceedings of the 2009 IEEE/ACM International Conference

on Automated Software Engineering (pp. 600-604).

 [39] Giger, E., Pinzger, M. and Gall, H., 2011, September. Using the

gini coefficient for bug prediction in eclipse. In Proceedings of the

12th International Workshop on Principles of Software

Evolution (pp. 51-55).

 [40] Xia, X., Lo, D., Shihab, E., Wang, X. and Zhou, B., 2015.

Automatic, high accuracy prediction of reopened bugs. Automated

Software Engineering, 22(1), pp.75-109.

[41] Xia, X., Lo, D., Wang, X., Yang, X., Li, S. and Sun, J., 2013,

March. A comparative study of supervised learning algorithms for

re-opened bug prediction. In Software Maintenance and

Reengineering (CSMR), 2013 17th European Conference on(pp.

331-334).

Authors Profile

Tamanna is doing PhD in Software Engineering and Soft

Computing from Guru Jambheshwar University of Science

and Technology, Hisar, Haryana and Master of Technology

in Computer Science and Engineering from Banasthali

University, Rajasthan. Her area of research is Software

Engineering with Machine Learning, Mining Software

Repositories, Software Reliability engineering and

Automated Software Debugging.

Dr. Om Prakash Sangwan is presently working as Professor, in

department of Computer Science & Engineering, Guru

Jamheshwar university of Science and Technology, Hisar. He

received his PhD in Computer Science & Engineering and

Master of Technology (M.Tech) degree in Computer Science &

Engineering from Guru Jambheshwar University of Science &

Technology, Hisar, Haryana. His area of research is Software

Engineering focusing on Planning, Designing, Testing, Metrics and application of

Neural Networks, Fuzzy Logic and Neuro-Fuzzy. He has numbers of publications in

International / National Journals and Conferences. He is presently working as

Professor, Department of Computer Science & Engineering, GJUS&T.

