

 © 2019, IJCSE All Rights Reserved 517

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-3, March 2019 E-ISSN: 2347-2693

An Effective Search Based Algorithm for Structural Test Data Generation

Sachin D. Shelke

1*
, S.T. Patil

2

1,2

Department of Computer Engineering, Vishwakarma Institute of Technology, Pune, India

*Corresponding Author: sacheenshelke@gmail.com, Tel.: +91-9975614005

DOI: https://doi.org/10.26438/ijcse/v7i3.517522 | Available online at: www.ijcseonline.org

Accepted: 14/Mar/2019, Published: 31/Mar/2019

Abstract— Software testing is process for improving the quality of software by removing all sorts of errors before deployment

of software system. The quality of the testing also depends on the test data used for the testing. If the test data cover all the

statements and branches of a source program, then it increases the chances of revealing most of the errors from the given

program. Normally test data is selected by tester based on his past experience of similar projects. This is time consuming and

person oriented approach. Automation of this process can make the testing efficient, cost-effective and reliable. So we present

here the Effective Search Based Algorithm (ESBA) which automatically generates test data to reveal the errors at structural

test. Here we used branch distance as the optimization function to generate the test data. We applied this method on three

benchmark programs to generate the test data. The experimental results indicate that our method outperforms genetic

algorithm, many objective sorting algorithm based upon following criteria: average statement coverage 0.91, average branch

coverage 0.84 and the average number of evaluations 23824.

Keywords—Automated Software Testing, Automated Test Data Generation, Structural Testing,, Search based Algorithm,

Branch Coverage

I. INTRODUCTION

Software testing has been the primary way for assuring high

quality of software systems. Software testing which

according to [1] is the “process of ensuring that a certain

piece of software item fulfills its requirements” is one of the

vital factors that can ensure the reliability of the software.

According to [2] assurance of software reliability partially

depends on testing. However, testing itself also needs to be

reliable. In software testing, testers need to design a set of

test cases, including test inputs and expected outputs, to

cover most of the code and find most bugs before releasing

the software. It is challenging to generate such effective test

cases manually for complex software systems nowadays.

Automatic software testing reduces the laborious human

efforts in testing. It basically follows three steps approach.

Test Data generation, Test execution, and test output

inspection. Effectiveness of testing depends upon the test

data selected for the testing. Selection of test data that could

cover all the statements and branches of a given module is a

complex task. So here we proposed the Effective Search

Based Algorithm (ESBA) to generate the test data which

could be used to test the system effectively.

The use of MHS algorithms for test case generation is

referred to as search-based software testing. Mantere and

Alander [3] discuss the use of MHS algorithms for software

testing in general and McMinn provides a survey of some of

the MHS algorithms that have been used for test data

generation. The most common MHS algorithms that have

been employed for search-based software testing are

evolutionary algorithms, simulated annealing, hill climbing,

ant colony optimization, and particle swarm optimization.

Among these algorithms, hill climbing (HC) is a simpler,

local search algorithm. The SBST techniques using more

complex global MHS algorithms are often compared with

test case generation based on HC and random search to

determine whether their complexity is warranted to address a

specific test case generation problem. In our proposed ESBA

we call the search method in order to minimize the distance

at the branch that deviates the program execution from the

selected path.

Rest of the paper is organized as follows; section II contains

related previous work regarding the automated test data

generation techniques. In the section III working of ESBA is

given. Results are discussed in the section IV followed

conclusion.

II. RELATED WORK

Lots of researchers have tried to atomize the derivation of

test cases from specifications. A formal specification like

UML based approach for test data generation, symbolic

execution, data flow based are commonly used approaches

mentioned in [1, 3, 4, 5 and 6]. Apart from formal

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 518

specification we also have random test data generation

technique and goal-oriented approach for data generation

mentioned in [4]. Different algorithms like search based are

used to generate test cases from specification approaches. A

major research area in this domain is the application of MHS

algorithms to test case generation. MHS algorithms are a set

of generic algorithms that are used to find optimal or near-

optimal solutions to problems that have large complex search

spaces. There is a natural match between MHS algorithms

and software test case generation. The process of generating

test cases can be seen as a search or optimization process [7].

There are possibly hundreds of thousands of test cases that

could be generated for a particular SUT and, from this pool,

we need to select, systematically and at a reasonable cost,

those that comply with certain coverage criteria and are

expected to be fault revealing, at least for certain types of

faults. Hence, it needs to reformulate the generation of test

cases as a search that aims at finding the required or optimal

set of test cases from the space of all possible test cases.

When software testing problems are reformulated into search

problems, the resulting search spaces are usually very

complex, especially for realistic or real-world SUTs. For

example, in the case of white-box testing, this is due to the

nonlinear nature of software resulting from control structures

such as selection statements and loops. In such cases, simple

search strategies may not be sufficient and global MHS

algorithms may, as a result, become a necessity, as they

implement global search and are less likely to be trapped into

local optima [7, 8, 9, and 10].

There are some good survey papers on test data generation

techniques. Shahid Mahmood [11], in his master thesis, he

provides a systematic review that is aimed at presenting a fair

evaluation of research concerning ATDG techniques of the

period 1997-2006. Moreover, it aims at identifying probable

graphs in the research about ATDG techniques of defined

period so as to suggest scope for further research. Phill

Macminn, surveys the application of meta-heuristic search

techniques to software test data generation. It provides the

survey of structural, functional and nonfunctional test data

generation techniques and research focus in these areas.

Saswat Anand [12], provides an orchestrated survey of

methodologies for automated software test data generation.

The review consists of a brief description of the basic ideas

underlying the technique, a survey of the current state of the

art in research and practical use of the techniques, a

discussion of remaining problems for the further research and

a perspective of the future development of the approach.

Corina Pasareanu [13], surveys new techniques based on

symbolic execution and some of their traditional

applications, such as test data generation and program

analysis as well as some new, interesting applications.

Based on earlier studies it is clear that test data generation is

crucial and of interest topic of many researchers, which plays

an important role in deciding the effectiveness of testing

strategy. In the next section we have discussed our ESBA

structural test data generation process followed by evaluation

parameters used to compare the different test data generation

techniques with ESBA. Experimental results are discussed in

the last section of this paper followed by a conclusion.

III. METHODOLOGY

A. Generating Test Data Using ESBA

In this paper, ESBA is proposed to generate the test data.

Figure 1. illustrates the working of the proposed method. In

the proposed method first program is selected. We used the

three benchmark programs Table 2. for which we generate

the test data. After program selection, we set the parameters

that are used for evaluation like branch coverage, statement

coverage etc.

Figure 1. The diagram of proposed method (ESBA)

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 519

The program may have multiple paths in this method we

select a single path at a time. Test data for the selected path

will be generated. Then we select the next path and repeat the

same process until we cover all the paths.

In the test data generation process, tester selects a path

through the program, and then produces a straight-line

version of it, containing only that path. Then we replace

branching statements with a “path constraint” of the form ci

= 0; ci > 0; or ci ≥ 0; where ci is an estimate of how close the

constraint is to being satisfied. For example, a branch

predicate of the form a == b gets rearranged as a path

constraint abs(a − b) = 0. Using these constraints, a function f

is constructed. The value of f provides a real-valued estimate

of how close all of the constraints are to being satisfied,

being negative when one or more of the constraints remain

unsatisfied, and positive when all of the constraints are

satisfied. Initially, input values are randomly selected or

these values may be specified by a tester, then these values

are readjusted using search techniques to satisfy the

constraints. When violation at any branch for selected path

occurs then search function is called. It takes the branch

distance as a measure and adjusts the input values in a way

that the distance becomes zero or negative in order to execute

the branch. Values are updated in such a way that it evaluates

the current branch to true and traverse the already traversed

path again.

B. Branch Predicate

Table 1. shows the branch predicates to be replaced by

branch function of form F rel 0 in order to generate the test

data.

Table 1. Branch predicate and Equivalence Predicate of

Form F rel 0

Branch

Predicate

Branch Function rel

E1 > E2 E2 - E1 <

E1 ≥ E2 E2 - E1 ≤

E1 < E2 E1 – E2 <

E1 ≤ E2 E1 – E2 ≤

E1 = E2 abs (E1 – E2) =

E1 ≠ E2 abs (E1 – E2) ≤

After the path selection, straight line version of the path is

generated. It is done using the branch function of form F rel

0 given in Table 1. All the branch predicates are replaced

with the function of type F rel 0. The value of function

provides the estimate of how close the constraint to being

satisfied. According to the function the input values are

changed using the search technique.

IV. RESULTS AND DISCUSSION

A. Benchmark Programs

We used commonly used three benchmark programs here,

triangle Type Program, calDay Program and calnDays to

generate the test data. We applied Genetic Algorithm, MOSA

[18] and our algorithm on each of these programs for

generation of test data.

First program triangle Type states the type of Triangle. It

takes three real numbers as an input for different triangle

edges and states whether given Triangle is an equilateral

triangle, an isosceles triangle or a scalene triangle.

Table 2. Benchmark Programs for Automated Test Data

Generation

The second program calDay states the day of the week on the

input of a specific date. The date is entered as the three

integer values stating a day, a month and a year. Third

program takes six integer parameters as input, the first three

parameters comprising of a start date and next three

parameters comprising of an end date, to return back the

number of days between the specified dates as an output.

Line of code for each program is also given in the above

Table 2.

B. Evaluation Parameters

In order to decide the effectiveness of the testing technique,

we need to evaluate the applied technique with the help of

certain parameters such as code coverage, number of

iterations etc.

 1. Statement Coverage

Every statement of the source code /program is executed at

least once then we can say that we achieved the 100%

statement coverage. Statement coverage helps us to identify

the typographical errors, logical errors etc. Though statement

coverage is not an effective measure for deciding the

effectiveness of the testing method, it can be definitely used

for analysis purpose. Statement coverage is also useful in

deciding the unreachable code of the module/program. In our

method Effective Search Based (ESB) algorithm, we nearly

achieved 100% statement coverage for three benchmark

programs.

 2. Branch Coverage

Branch coverage criteria require enough test cases such that

each point of entry to a program or subroutine is invoked at

Program #Args #Arg Type LOC Description

triangleType 3 Integer 45 Type classification for for a triangle

calDay 3 Integer 45 Calculate the day of week

calnDays 6 Integer 255 Compute the days between two dates

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 520

least once. That is, every branch (decision) taken each way,

true and false. It helps to validate all the branches in the code

making sure that no branch leads to abnormal behavior of the

application. Using ESB it is shown that the more branch

coverage is achieved for all three benchmark programs than

the GA and MOSA.

 3. Number of Evaluations

The Number of Evaluations is nothing but the number of runs

used by an algorithm/method in order to find the test data.

This measure is helpful in order to compare the methods to

decide which method takes large number of evaluations. As

number of evaluations are directly proportional to the time

required to generate the data.

OTHER PARAMETERS:

Following are the other parameters; these can also be used for

comparison purpose.

1. Success Rate (SR)

It refers to the probability of coverage of all the available

branches in the program via the generated test data. In this

criterion, the output with higher values stands for better

performance.

2. Average Time (AT)

Average time, refers to the time at which all branches are

covered. Time is measured in milliseconds (ms). Here, the

output with lower values indicates a better performance.

C. Experimental Results and Discussion

Table 3. shows the comparative experimental results for three

benchmark programs. We used the statement coverage,

branch coverage and number of evaluations, these three

evaluation parameters for comparing GA, MOSA and

proposed ESB algorithm. We also plotted the same results

using bar chart and pie charts for comparison purpose.

Table 3. Comparison chart for MOSA, GA and Proposed ESB

Figure 10. Statement Coverage and Branch Coverage for Triangle Program

Figure 11. Statement Coverage and Branch Coverage for calDays Program

Figure 12. Statement Coverage and Branch Coverage for calnDays Program

MOSA GA ESB

Test Object #Branches Coverage Coverage Coverage

Statement Branch #Evaluations Statement Branch #Evaluations Statement Branch #Evaluations

triangleType 22 0.900 0.808 29,451 0.976 0.892 35,444 1.000 0.917 33,021

calDays 38 0.748 0.634 9,763 0.750 0.636 11,777 0.755 0.644 9,972

calnDays 145 0.750 0.608 19,356 0.972 0.968 28,428 0.981 0.978 28,481

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 521

Figure 13. Number of Evaluations for Triangle Program

Figure 10 shows the statement and branch coverage for

triangle program. Figure 11 shows the statement and branch

coverage for a calDay program, while Figure 12 shows the

statement and branch coverage for a calnDays program.

From Figure 10, 11 and 12 we can see that the proposed

effective search-based method gives the better statement and

branch coverage for all programs. Next parameter used for

comparison is the number of evaluations it takes for finding

the test data. The number of evaluations for used benchmark

programs is shown in Figure 13, 14 and 15.

Figure 14. Number of Evaluations for calDay Program.

From the pie charts we can observe that the number of

evaluations taken in order to find the test data is lesser than

the other methods, GA and MOSA for triangle program and

calDay program. For calnDays program, though the number

of evaluations taken to find test data is higher than MOSA, it

is clear from Figure 15. that it is due the fact that in many

runs MOSA was unable to find the test data and terminated

the runs earlier without covering all the statements from the

source program.

Figure 15. Number of Evaluations for calnDays Program.

Statement coverage, branch coverage and the Number of

Evaluations are the parameters used for comparing the

different methods. We have compared these methods for

three benchmark programs stated in Table 3. ranging LOC

from 45 to 255 and branches ranging from 22 to 145.

Statement coverage gives you the idea regarding how many

statements (% percentage) from the given program are

covered by the generated test data. Though the statement

coverage is not considered as the effective measure for test

data generation, but is important for comparison purpose

when we are evaluating the different methods. Most

commonly used evaluation parameter is branch coverage,

along with branch coverage we may have the condition

coverage but it increases the complexity level and may turn

into higher number of evaluations. The Number of

evaluations is the third parameter used for comparison. From

above data we can clearly state that the proposed ESB

algorithm gives the better statement and branch coverage for

all three benchmark programs with less number of

evaluations.

V. CONCLUSION AND FUTURE SCOPE

Software testing is time-consuming process which may costs

up to 50 % of the overall software development cost. Careful

selection of test data will help to reduce the efforts required in

testing. Selection of test data basically depends upon the

testers’ experience, knowledge regarding the input domain of

similar kind of projects. So at large it is an art and depends

upon the testers’ skill. Automation of this process helps to the

dependence and gives a systematic way to automatically

generate the test data which will help to reduce the efforts

required for testing. Currently there hardly any single

concrete technique that can be used to generate the test data

for industrial applications. Many of the techniques available

to generate the test data for the structural test are applied on

the test examples, and may not be applicable for industrial

applications. Here we used search-based method proposed

(ESB) in order to generate the test data that is used to traverse

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 522

the internal structure. The results are analyzed and evaluated

based upon following three criteria; statement coverage,

branch coverage, and the number of evaluations. The

proposed method is compared with MOSA and GA. The

experimental results indicate that our method outperforms

genetic algorithm and many objective sorting method based

on following criterion: average statement coverage 0.91,

average branch coverage 0.84 and number of evaluations

23824.

Further other parameters like success rate (SR) and average

time (AT) can also be used for comparing proposed ESB with

MOSA and GA. Moreover, we can also compare proposed

ESB with random search as it is a simple but effective test

technique and used by many researchers for comparison

purpose.

REFERENCES

[1] Shaukat Ali, Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel

C. Briand, "Generating Test Data from OCL Constraints with

Search Techniques", IEEE Transaction on Software Engineering,

Vol. 39, NO. 10, October 2013.

[2] Mark Harman and Phil McMinn, "A Theoretical and Empirical

Study of Search-Based Testing: Local, Global, and Hybrid

Search", IEEE Transaction on Software Engineering, Vol. 36, NO.

2, March/April 2010.

[3] T. Mantere and J.T. Alander, “Evolutionary Software Engineering,

a Review,” Applied Soft Computing, vol. 5, pp. 315-331, 2005.

[4] Roy P. Pargas, Mary Jean Harrold, Robert R. Peck, "Test Data

Generation using Genetics Algorithms", Journal of Software

Testing, Verification and Reliability, 1999.

[5] Gilles Bernot, Marie Claude Gaudel, Bruno Marre, "Software

Testing based on Formal Specifications:a theory and a tool",

Software Engineering Journal (SEJ), Vol.6, No-6, p.387-405,

1991.

[6] Sandra Rapps and Elaine J. Weyuker, "Selecting Software Test

Data Using Data Flow Information", IEEE Transactions On

Software Engineering, Vol. SE-1l, No. 4, April 1985.

[7] Phil McMinn, "Search-based Software Test Data Generation:A

Survey", Software Testing, Verification and Reliability 14(2), pp.

105-156, June 2004.

[8] Mark Harman and Phil McMinn, "A Theoretical and Empirical

Study of Search-Based Testing: Local, Global, and Hybrid

Search", IEEE Transaction on Software Engineering, Vol. 36, NO.

2, March/April 2010.

[9] Hwa-You Hsu and Alessandro Orso, "MINTS: A General

Framework and Tool for Supporting Test-suite Minimization",

IEEE ICSE’09, May 16 - 24, 2009, Vancouver, Canada.

[10] Christoph C. Michael, Gary McGraw, and Michael A. Schatz,

"Generating Software Test Data by Evolution", IEEE Transaction

on Software Engineering, Vol. 27, No. 12, December 2001.

[11] Shahid Mahmood, “A Systematic Review of Automated Test Data

Generation Techniques”, Mater Thesis, Software Engineering

MSE-2007:26, October 2007.

[12] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark,

Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean

Harrold, Phil McMinn, “An Orchestrated Survey Of

Methodologies For Automated Software Test Case Generation”,

Elsevier, April 2013.

[13] Corina S.Pasareanu and Willem Visser, “ A survey of new trends

in symbolic execution for software testing and analysis”, Springer-

Verlag- 2009.

[14] Lionel Briand, Yvan Labiche, "A UML-Based Approach to

System Testing", Software Quality Engineering Laboratory,

Systems and Computer Engineering Department, Carleton

University, 2002.

[15] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, Rajwinder K.

Panesar-Walawege, "A Systematic Review of the Application and

Empirical Investigation of Search-Based Test Case Generation",

IEEE Transaction on Software Engineering, Vol. 36, NO. 6,

November/December 2010.

[16] Annibale Panichella, Fitsum Meshesha, Paolo Tonella,

"Automated Test Case Generation as a many-Objective

Optimization Problem with Dynamic Selection of the Targets",

IEEE 2018.

[17] Bogdan Korel, “Automated Software Test Data Generation”, IEEE

Transactions on Software Engineering, August 1990.

[18] Simone Scalabrino, Giovanni Grano, Darrio Di Nucci, Rocco

Oliveto, and Andrea De Lucia, “Search-based Testing of

Procedural Programs: Iterative Single-Target Approach?”,

Conference Paper October-2016.

[19] Zoreh Karimi Aghdam and Bahman Arasteh, “An Efficient

Method to Genearate Test Data for Software Structural Testing

Using Artificial Bee Colony Optimization Algorithm”,

International Journal of Software Engineering and Knowledge

Engineering Vol-27, No-6, 2017.

[20] Simone Scalabrino, Giovanni Grano, Darrio Di Nucci, Michele

Guerra, Andria De Lucia, Harald C Gall and Rocco Oliveto,

“OCELOT: A Search Based Test Data Generation Tool for C”, An

International Conference on Automated Software Engineering

ASE’18.

Authors Profile

Mr. Sachin D. Shelke pursed Bachelor of

Computer Engineering from Shivaji

University Kolhapur, Maharashtra in 2004

and Master of Information Technology from

Bharti Vidyapeeth, Pune in year 2011. He is

currently pursuing Ph.D. and working as

Assistant Professor in Department of Information

Technology, PICT, Pune since 2007. He is a member of

Computer Society of India (CSI) since 2007. His main

research work focuses on Software Testing, E-commerce

Security. He has 14 years of teaching experience.

Mr. S. T. Patil pursed Bachelor of Electronic

Engineering, Master of Computer Engineering

and Ph. D. in Computer Engineering. He is

working as a Professor, Department of

Computer Engineering, Vishwakarma Institute

of Technology, Pune. He has published more

than 65 papers in reputed international journals. He has

written nine books and has one patent to his credit. His main

research work focuses on Digital Signal Processing, Image

Processing, Neural Networks, Computer Networks, Mobile

Computing, Microprocessor & Micro-controllers, Embedded

Systems, Biomedical Engineering and Bio-informatics.

