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Abstract— Software testing is process for improving the quality of software by removing all sorts of errors before deployment 

of software system. The quality of the testing also depends on the test data used for the testing. If the test data cover all the 

statements and branches of a source program, then it increases the chances of revealing most of the errors from the given 

program. Normally test data is selected by tester based on his past experience of similar projects. This is time consuming and 

person oriented approach. Automation of this process can make the testing efficient, cost-effective and reliable. So we present 

here the Effective Search Based Algorithm (ESBA) which automatically generates test data to reveal the errors at structural 

test. Here we used branch distance as the optimization function to generate the test data. We applied this method on three 

benchmark programs to generate the test data. The experimental results indicate that our method outperforms genetic 

algorithm, many objective sorting algorithm based upon following criteria: average statement coverage 0.91, average branch 

coverage 0.84 and the average number of evaluations 23824. 
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I.  INTRODUCTION  

Software testing has been the primary way for assuring high 

quality of software systems. Software testing which 

according to [1] is the “process of ensuring that a certain 

piece of software item fulfills its requirements” is one of the 

vital factors that can ensure the reliability of the software. 

According to [2] assurance of software reliability partially 

depends on testing. However, testing itself also needs to be 

reliable. In software testing, testers need to design a set of 

test cases, including test inputs and expected outputs, to 

cover most of the code and find most bugs before releasing 

the software. It is challenging to generate such effective test 

cases manually for complex software systems nowadays. 

Automatic software testing reduces the laborious human 

efforts in testing. It basically follows three steps approach. 

Test Data generation, Test execution, and test output 

inspection. Effectiveness of testing depends upon the test 

data selected for the testing. Selection of test data that could 

cover all the statements and branches of a given module is a 

complex task. So here we proposed the Effective Search 

Based Algorithm (ESBA) to generate the test data which 

could be used to test the system effectively.  

The use of MHS algorithms for test case generation is 

referred to as search-based software testing. Mantere and 

Alander [3] discuss the use of MHS algorithms for software 

testing in general and McMinn provides a survey of some of 

the MHS algorithms that have been used for test data 

generation. The most common MHS algorithms that have 

been employed for search-based software testing are 

evolutionary algorithms, simulated annealing, hill climbing, 

ant colony optimization, and particle swarm optimization. 

Among these algorithms, hill climbing (HC) is a simpler, 

local search algorithm. The SBST techniques using more 

complex global MHS algorithms are often compared with 

test case generation based on HC and random search to 

determine whether their complexity is warranted to address a 

specific test case generation problem. In our proposed ESBA 

we call the search method in order to minimize the distance 

at the branch that deviates the program execution from the 

selected path.  

Rest of the paper is organized as follows; section II contains 

related previous work regarding the automated test data 

generation techniques. In the section III working of ESBA is 

given. Results are discussed in the section IV followed 

conclusion. 

 

II. RELATED WORK  

Lots of researchers have tried to atomize the derivation of 

test cases from specifications. A formal specification like 

UML based approach for test data generation, symbolic 

execution, data flow based are commonly used approaches 

mentioned in [1, 3, 4, 5 and 6]. Apart from formal 
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specification we also have random test data generation 

technique and goal-oriented approach for data generation 

mentioned in [4]. Different algorithms like search based are 

used to generate test cases from specification approaches. A 

major research area in this domain is the application of MHS 

algorithms to test case generation. MHS algorithms are a set 

of generic algorithms that are used to find optimal or near-

optimal solutions to problems that have large complex search 

spaces. There is a natural match between MHS algorithms 

and software test case generation. The process of generating 

test cases can be seen as a search or optimization process [7]. 

There are possibly hundreds of thousands of test cases that 

could be generated for a particular SUT and, from this pool, 

we need to select, systematically and at a reasonable cost, 

those that comply with certain coverage criteria and are 

expected to be fault revealing, at least for certain types of 

faults. Hence, it needs to reformulate the generation of test 

cases as a search that aims at finding the required or optimal 

set of test cases from the space of all possible test cases. 

When software testing problems are reformulated into search 

problems, the resulting search spaces are usually very 

complex, especially for realistic or real-world SUTs. For 

example, in the case of white-box testing, this is due to the 

nonlinear nature of software resulting from control structures 

such as selection statements and loops. In such cases, simple 

search strategies may not be sufficient and global MHS 

algorithms may, as a result, become a necessity, as they 

implement global search and are less likely to be trapped into 

local optima [7, 8, 9, and 10].  

There are some good survey papers on test data generation 

techniques. Shahid Mahmood [11], in his master thesis, he 

provides a systematic review that is aimed at presenting a fair 

evaluation of research concerning ATDG techniques of the 

period 1997-2006. Moreover, it aims at identifying probable 

graphs in the research about ATDG techniques of defined 

period so as to suggest scope for further research. Phill 

Macminn, surveys the application of meta-heuristic search 

techniques to software test data generation. It provides the 

survey of structural, functional and nonfunctional test data 

generation techniques and research focus in these areas. 

Saswat Anand [12], provides an orchestrated survey of 

methodologies for automated software test data generation. 

The review consists of a brief description of the basic ideas 

underlying the technique, a survey of the current state of the 

art in research and practical use of the techniques, a 

discussion of remaining problems for the further research and 

a perspective of the future development of the approach. 

Corina Pasareanu [13], surveys new techniques based on 

symbolic execution and some of their traditional 

applications, such as test data generation and program 

analysis as well as some new, interesting applications.  

Based on earlier studies it is clear that test data generation is 

crucial and of interest topic of many researchers, which plays 

an important role in deciding the effectiveness of testing 

strategy. In the next section we have discussed our ESBA 

structural test data generation process followed by evaluation 

parameters used to compare the different test data generation 

techniques with ESBA. Experimental results are discussed in 

the last section of this paper followed by a conclusion. 

III. METHODOLOGY 

A. Generating Test Data Using ESBA 

In this paper, ESBA is proposed to generate the test data. 

Figure 1. illustrates the working of the proposed method. In 

the proposed method first program is selected. We used the 

three benchmark programs Table 2. for which we generate 

the test data. After program selection, we set the parameters 

that are used for evaluation like branch coverage, statement 

coverage etc.  

 
Figure 1. The diagram of proposed method (ESBA) 
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The program may have multiple paths in this method we 

select a single path at a time. Test data for the selected path 

will be generated. Then we select the next path and repeat the 

same process until we cover all the paths. 

 

In the test data generation process, tester selects a path 

through the program, and then produces a straight-line 

version of it, containing only that path. Then we replace 

branching statements with a “path constraint” of the form ci 

= 0; ci > 0; or ci ≥ 0; where ci is an estimate of how close the 

constraint is to being satisfied. For example, a branch 

predicate of the form a == b gets rearranged as a path 

constraint abs(a − b) = 0. Using these constraints, a function f 

is constructed. The value of f provides a real-valued estimate 

of how close all of the constraints are to being satisfied, 

being negative when one or more of the constraints remain 

unsatisfied, and positive when all of the constraints are 

satisfied. Initially, input values are randomly selected or 

these values may be specified by a tester, then these values 

are readjusted using search techniques to satisfy the 

constraints. When violation at any branch for selected path 

occurs then search function is called. It takes the branch 

distance as a measure and adjusts the input values in a way 

that the distance becomes zero or negative in order to execute 

the branch. Values are updated in such a way that it evaluates 

the current branch to true and traverse the already traversed 

path again.  

 

B. Branch Predicate 

Table 1. shows the branch predicates to be replaced  by 

branch function of form F rel 0 in order to generate the test 

data. 

 

Table 1. Branch predicate and Equivalence Predicate of 

Form  F rel 0 

Branch 

Predicate 

Branch Function rel 

E1 > E2 E2 - E1 < 

E1 ≥ E2 E2 - E1 ≤ 

E1 < E2 E1 – E2 < 

E1 ≤ E2 E1 – E2 ≤ 

E1 = E2 abs (E1 – E2) = 

E1 ≠ E2 abs (E1 – E2) ≤ 

 

After the path selection, straight line version of the path is 

generated. It is done using the branch function of form F rel 

0 given in Table 1. All the branch predicates are replaced 

with the function of type F rel 0. The value of function 

provides the estimate of how close the constraint to being 

satisfied. According to the function the input values are 

changed using the search technique. 

IV. RESULTS AND DISCUSSION 

A. Benchmark Programs 

We used commonly used three benchmark programs here, 

triangle Type Program, calDay Program and calnDays to 

generate the test data. We applied Genetic Algorithm, MOSA 

[18] and our algorithm on each of these programs for 

generation of test data. 

 

First program triangle Type states the type of Triangle. It 

takes three real numbers as an input for different triangle 

edges and states whether given Triangle is an equilateral 

triangle, an isosceles triangle or a scalene triangle.  

 

Table 2. Benchmark Programs for Automated Test Data 

Generation 

The second program calDay states the day of the week on the 

input of a specific date. The date is entered as the three 

integer values stating a day, a month and a year. Third 

program takes six integer parameters as input, the first three 

parameters comprising of a start date and next three 

parameters comprising of an end date, to return back the 

number of days between the specified dates as an output. 

Line of code for each program is also given in the above 

Table 2. 

 

B. Evaluation Parameters 

In order to decide the effectiveness of the testing technique, 

we need to evaluate the applied technique with the help of 

certain parameters such as code coverage, number of 

iterations etc. 

 

    1. Statement Coverage 

Every statement of the source code /program is executed at 

least once then we can say that we achieved the 100% 

statement coverage. Statement coverage helps us to identify 

the typographical errors, logical errors etc. Though statement 

coverage is not an effective measure for deciding the 

effectiveness of the testing method, it can be definitely used 

for analysis purpose. Statement coverage is also useful in 

deciding the unreachable code of the module/program. In our 

method Effective Search Based (ESB) algorithm, we nearly 

achieved 100% statement coverage for three benchmark 

programs. 

 

    2. Branch Coverage 

Branch coverage criteria require enough test cases such that 

each point of entry to a program or subroutine is invoked at 

Program #Args #Arg Type LOC Description

triangleType 3 Integer 45 Type classification for for a triangle

calDay 3 Integer 45 Calculate the day of week

calnDays 6 Integer 255 Compute the days between two dates
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least once.  That is, every branch (decision) taken each way, 

true and false. It helps to validate all the branches in the code 

making sure that no branch leads to abnormal behavior of the 

application. Using ESB it is shown that the more branch 

coverage is achieved for all three benchmark programs than 

the GA and MOSA. 

 

    3. Number of Evaluations 

The Number of Evaluations is nothing but the number of runs 

used by an algorithm/method in order to find the test data. 

This measure is helpful in order to compare the methods to 

decide which method takes large number of evaluations. As 

number of evaluations are directly proportional to the time 

required to generate the data. 

 

OTHER PARAMETERS: 

Following are the other parameters; these can also be used for 

comparison purpose. 

 

1. Success Rate (SR) 

It refers to the probability of coverage of all the available 

branches in the program via the generated test data. In this 

criterion, the output with higher values stands for better 

performance.  

 

2. Average Time (AT) 

Average time, refers to the time at which all branches are 

covered. Time is measured in milliseconds (ms). Here, the 

output with lower values indicates a better performance. 

 

C. Experimental Results and Discussion 

Table 3. shows the comparative experimental results for three 

benchmark programs. We used the statement coverage, 

branch coverage and number of evaluations, these three 

evaluation parameters for comparing GA, MOSA and 

proposed ESB algorithm. We also plotted the same results 

using bar chart and pie charts for comparison purpose. 
 

Table 3. Comparison chart for MOSA, GA and Proposed ESB 

 

 

Figure 10. Statement Coverage and Branch Coverage for Triangle Program 

 
Figure 11. Statement Coverage and Branch Coverage for calDays Program 

 

 
Figure 12. Statement Coverage and Branch Coverage for calnDays Program 

MOSA GA ESB

Test Object #Branches Coverage Coverage Coverage

Statement Branch #Evaluations Statement Branch #Evaluations Statement Branch #Evaluations

triangleType 22 0.900 0.808 29,451 0.976 0.892 35,444 1.000 0.917 33,021

calDays 38 0.748 0.634 9,763 0.750 0.636 11,777 0.755 0.644 9,972

calnDays 145 0.750 0.608 19,356 0.972 0.968 28,428 0.981 0.978 28,481
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Figure 13. Number of Evaluations for Triangle Program  

 

Figure 10 shows the statement and branch coverage for 

triangle program. Figure 11 shows the statement and branch 

coverage for a calDay program, while Figure 12 shows the 

statement and branch coverage for a calnDays program. 

From Figure 10, 11 and 12 we can see that the proposed 

effective search-based method gives the better statement and 

branch coverage for all programs. Next parameter used for 

comparison is the number of evaluations it takes for finding 

the test data. The number of evaluations for used benchmark 

programs is shown in Figure 13, 14 and 15.   

 

 
Figure 14. Number of Evaluations for calDay Program. 

 

From the pie charts we can observe that the number of 

evaluations taken in order to find the test data is lesser than 

the other methods, GA and MOSA for triangle program and 

calDay program. For calnDays program, though the number 

of evaluations taken to find test data is higher than MOSA, it 

is clear from Figure 15. that it is due the fact that in many 

runs MOSA was unable to find the test data and terminated 

the runs earlier without covering all the statements from the 

source program. 

Figure 15. Number of Evaluations for calnDays Program. 

 

Statement coverage, branch coverage and the Number of 

Evaluations are the parameters used for comparing the 

different methods. We have compared these methods for 

three benchmark programs stated in Table 3. ranging LOC 

from 45 to 255 and branches ranging from 22 to 145.  

Statement coverage gives you the idea regarding how many 

statements (% percentage) from the given program are 

covered by the generated test data. Though the statement 

coverage is not considered as the effective measure for test 

data generation, but is important for comparison purpose 

when we are evaluating the different methods. Most 

commonly used evaluation parameter is branch coverage, 

along with branch coverage we may have the condition 

coverage but it increases the complexity level and may turn 

into higher number of evaluations. The Number of 

evaluations is the third parameter used for comparison. From 

above data we can clearly state that the proposed ESB 

algorithm gives the better statement and branch coverage for 

all three benchmark programs with less number of 

evaluations. 

 

V. CONCLUSION AND FUTURE SCOPE  
 

Software testing is time-consuming process which may costs 

up to 50 % of the overall software development cost. Careful 

selection of test data will help to reduce the efforts required in 

testing. Selection of test data basically depends upon the 

testers’ experience, knowledge regarding the input domain of 

similar kind of projects. So at large it is an art and depends 

upon the testers’ skill. Automation of this process helps to the 

dependence and gives a systematic way to automatically 

generate the test data which will help to reduce the efforts 

required for testing. Currently there hardly any single 

concrete technique that can be used to generate the test data 

for industrial applications. Many of the techniques available 

to generate the test data for the structural test are applied on 

the test examples, and may not be applicable for industrial 

applications. Here we used search-based method proposed 

(ESB) in order to generate the test data that is used to traverse 
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the internal structure. The results are analyzed and evaluated 

based upon following three criteria; statement coverage, 

branch coverage, and the number of evaluations. The 

proposed method is compared with MOSA and GA. The 

experimental results indicate that our method outperforms 

genetic algorithm and many objective sorting method based 

on following criterion: average statement coverage 0.91, 

average branch coverage 0.84 and number of evaluations 

23824.  

 

Further other parameters like success rate (SR) and average 

time (AT) can also be used for comparing proposed ESB with 

MOSA and GA. Moreover, we can also compare proposed 

ESB with random search as it is a simple but effective test 

technique and used by many researchers for comparison 

purpose.  
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