

 © 2018, IJCSE All Rights Reserved 550

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Vol.-6, Issue-5, May 2018 E-ISSN: 2347-2693

Size and Cost Optimization of AutoCAD Oil and Gas Control Flow Designs

Using Constraint Satisfaction Problem and Machine Learning

H.A. Kore
1*

, S.B. Mane
2
, A. Madkaikar

3

1
Department of Computer Engineering and Information Technology, College of Engineering Pune(COEP), Pune, India

2
Department of Computer Engineering and Information Technology, College of Engineering Pune(COEP), Pune, India

3
Emerson Innovation Center Pune, (EICP), Pune, India

*Corresponding Author: koreha16.comp@coep.ac.in

Available online at: www.ijcseonline.org

Accepted: 20/May/2018, Published: 31/May/2018

Abstract— The aim of automating the task of generating flow control designs for oil and gas flow comes with the different

dimension constraints and cost factors. The resulted designs should satisfy given dimension boundaries and pre- specified

conditions. To make the module more efficient and automate we combine the machine learning and constraint satisfaction

module which resulted in reduction of time complexity and how the accuracy gets maintained. The result shows how the

separate module of machine learning and optimization module work and how the results get vary when we combine both

modules. The constraint we want to optimize are size and cost of the design. The main factors we considered for measuring

performance are time complexity and accuracy.

Keywords— Constraint Satisfaction Problem, Constraint Optimization, Optimization Engine, Machine Learning

I. INTRODUCTION

When we go for constrain satisfaction and optimization

problem the first thing comes to our mind is what are the

constraints, objective function and the boundary values we

are going to dealt with? [2] Initially we were just generating

single conventional design which was not so feasible and

optimized. We wanted to do size and cost optimization of

design. To overcome this problem, we proposed one

solution where we generate number of different designs by

doing variations in components positions. So, the size of

designs get varies and the cost needed for each design will

be different. As we no size and cost are directly related to

each other. If we are reducing the size indirectly we are

reducing the cost. We wanted the resulted design should be

optimized one and should satisfy all the conditions. As per

design the satisfying conditions for each design will get vary

and the bound values too. In our case some boundary values

are static. So rather than going for some heuristic algorithms

we implemented Rule Based algorithm by setting our own

rules. But the constraint satisfaction of each design and

finding optimized one among them is very time taking

process. Means every time we needed to go through all

condition checking process for each design repeatedly.

To make it more efficient and less time taking we combine

the concepts of constraint satisfaction and optimization with

machine learning. CS (Constraint Satisfaction) techniques

[1] can be used to (partly) solve tasks in Machine learning;

Alternatively, one can use machine learning techniques to

augment CS techniques. Yet, a proper approach in either

direction requires good knowledge of both research fields.

The results of both domains are contradictory [3]. If

Constraint satisfaction algorithm gives good accuracy in

finding optimized design, there might be possibility that this

accuracy will get decrease after combing with machine

learning algorithms. On the other hand, the time complexity

will get reduced compared to module of constraint

satisfaction.

The section I is the Introduction part of the whole project.

Section II related work in light the recent algorithms get

used for Constraint satisfaction. Followed by that Section

III, Optimization Engine gives detail information of the

optimization engine with the workflow and flowchart.

II. RELATED WORK

Following are some algorithms which has been used for

constraint satisfaction with their advantages and limitations.

A. Constraint Hierarchies

Constraint hierarchies (CHs) and namely hierarchical

constraint logic programming belong to traditional

frameworks for handling of over-constrained problems.

They allow to express hard constraints which has to be

satisfied and several preference levels of soft constraints

which isolations are minimized level by level subsequently.

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 551

CHs define the so-called comparators aimed to select

solutions via minimizing errors of violated constraints.

Global comparators aggregate errors of violated constraints

[1] at each level, basically we may compare weighted sum

of errors or error of worst satisfied constraint (weighted-

sum-better and worst-case-better comparators). Local

comparator considers each constraint individually, regional

comparator is able to select among assignments by

individual comparison of constraints at some lower level

even if they are incomparable at higher levels.

B. Using Heuristic Search Methods

Since the search space can be fairly large, the conventional

enumerative [3] search may simply give unsatisfactory

performance to find the globally optimal solution.

Therefore, we can go for conventional branch-&-bound

(B&B) search technique and two of heuristic search

strategies which sacrifice global optimality for efficiency to

tackle these real-life optimization problems.

 The Branch-&-Bound Search Method

In handling many optimization problems, which are always

NP-complete [4], one of the frequently used heuristics is the

branch-and-bound (B&B) [2] heuristic in which the

exploration of any partial solution in a search tree will be

abandoned immediately whenever the search cost of that

partial solution, as represented by an arbitrary

objective/heuristic function h, already 6exceeds the minimal

cost Bound for the optimal solution found so far. The

heuristic function h always tends to be an under-estimation

of the cost for any partial solution in a minimization

problem. For instance, in the PC configuration problem [3],

we can assume h as the sum of costs for the assigned

components plus the minimal costs of the remaining

unassigned components. Whenever the value returned by h

for any partial configuration exceeds the current Bound, we

can readily prune off the subtree under that partial

configuration. On the other hand, when the total cost of the

newly found complete configuration is less than Bound, the

algorithm will update the Bound and the Optimal

configuration [1] accordingly. In general, the success of the

B&B method applied to any particular application depends

very much on a careful design of the heuristic function h and

the finding of a “reasonably good” Bound at an early stage

of the search process.

 Beam-Search Based Optimizer

The first proposal of a heuristic-based optimizer for solving

the PC configuration [4] problems simply limit the search to

focus on the best n possible values of every sorted domain to

construct the partial solutions in each search step. Since the

PC configuration problems are only sparsely constrained,

our proposed strategy should be able to return a solution

which is fairly close to the global optimal solution within a

reasonable period of time. The two main factors which we

used to control the search are Budget and Threshold as

predefined by the user of the search strategies. Similar to the

mechanism used in the B&B heuristic, the control parameter

Budget will be used to filter out any partial configuration

which already exceeds its allowed value. In addition, the

Threshold value n will help to ensure the search will always

return the best n.

C. Bucket Elimination

Bucket elimination is a generic technique suitable for many

automated reasoning and optimization problems and, in

particular for solving WCSP [5]. Probabilistic inference

algorithms for belief updating, finding the most probable

explanation, the maximum a posteriori hypothesis, and the

maximum expected utility are reformulated within the

bucket elimination framework. This emphasizes the

principles common to many of the algorithms appearing in

the probabilistic inference literature and carries the

relationship of such algorithms to nonserial dynamic

programming algorithms. A general method for combining

conditioning and bucket elimination is also presented. For

all the algorithms, bounds on complexity are given as a

function of the problem structure.

III. OPTIMIZATION MODULE

A. Constraint Satisfaction and Optimization Module

The control flow designs generation comes with different

components and dimensions values. We can go with the

assorted designs like we can place components in horizontal

way or vertical way and for each design the dimension values

will vary. All constraint to be consider are the dimension

values consist of length, height, width and the cost. The cost

of the module is nothing but the some of the components

used in the control flow design. The constraint optimization

module named as Optimization Engine.

B. Optimization Engine

Fig 1. Block diagram of Optimization Engine

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 552

The block diagram shows we are taking input from users

and generate different flow control designs. Then we

calculate dimensions and cost of each design which will be

input to the Optimization Engine which is nothing but the

rules-based algorithm for the constraint satisfaction and

optimization.

C. Flowchart

The flowchart shows how the Rule Based Algorithm works.

Dimensions will be the input to the Optimization

Engine. It will first check for the hard constraints if it is

getting satisfy then only it will go for soft constraint

checking. Suppose in count we have ‘n’ conditions which

each design should satisfy. Then we will keep count of how

many conditions each design satisfying. And will choose

two designs with two highest probabilities. And will check

for other component level conditions. And finally, will

select the optimized one design.

Fig 2. Flowchart of Rule Based Algorithm

So, the Rule Based Algorithm is the set of rules where the

bound values set by us. We wanted to set our own rules and

bounds that why we preferred to go for Rule Based

Algorithm.

D. Mathematical Formula

The objective function which should be satisfied by the

design to be optimized one is given as below:

 F(x) = f(n)/n (1)

The Equation (1) shows the objective function where f(n) is

the total count of conditions satisfied by the design and n

stand for total number of conditions. The design with

highest probability will be the optimized one.

IV. MACHINE LEARNING MODULE

A. Machine Learning Module

So, the machine learning module works like it will take
the dimension parameters of each design and pass it to the
algorithm to find out which design is optimized one. The
dataset contains 6 features like label, length, height, width,
cost, container, component number and the classes are
Optimized, Not Optimized and No Optimized Design
Found. We tried different algorithm and check the accuracy
of each algorithm. The result section contains the details
how the accuracy gets vary with algorithms and the size of
the dataset.

B. Combining Constraint Satisfaction with Machine

Learning

There is also an increasing interest in using machine

learning to improve the solving of constraint problems, as

well as improving the modelling and the embedding of

learned constraints and objectives into the model [4]. As the

independent module were working well, the constraint

satisfaction module takes more time compare to machine

learning module, but it gives 100% accuracy where machine

learning modules accuracy is not so good compared to rule-

based algorithm. As for making the module more efficient

and accurate we needed to combine both the modules.

Fig 3. Combined Module

First, the calculated dimensions will be given to the machine

learning module where it will classify which design is

optimize design and which is not-optimized design. So once

the module will predict the optimized design names which

will pass to the rule-based algorithm for checking that the

optimized design suggested by machine learning module is

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 553

optimized or not. Like this way, we will get accuracy and

will reduce the time complexity also. But there are some

possibilities which can happen:

 What if we get more than one optimized designs?
We will check for those designs and find the high probability

design and select that as an optimized design otherwise go

for the conventional design.

 What if the optimized design found by machine

learning module is not satisfying rule-based

conditions?

That time we will go for the conventional design.

 What if it doesn’t find any optimized

image?

Go for the conventional design.

V. EXPERIMENTAL RESULT

First, we will see results of the both modules. How the both

modules works independently and then combinedly.

A. Rule Based Algorithm

Table 1. Time and Accuracy of Rule Based Algorithm

This table shows the results of optimized engine.

Design count is the number of distinctive designs we used to

find optimized among them. We can see the time taken by

this module is very high.

B. Machine Learning Module

We used Weka tool to check how different algorithms

perform on our dataset.
Table 2. Accuracy of Different Algorithm With 150

 No of Correctly
Algorithm Dataset Count classified

 instances in %

OneR 150 73.22

Random Tree 150 71.43

Random Forest 150 82.50

J48 150 75

Kstar 150 50

ZeroR 150 35.71

Naïve Bayes 150 65

Logistic Regression 150 39.29

Multilayer Perceptron 150 48.22

Table 2 shows the accuracy of different machine learning

algorithm with dataset of count 150.

Table 3. Accuracy of Different Algorithm With 5000 Records

Table shows the accuracy of algorithms with data set of

count 5000.We eliminate some algorithms based on

accuracy performance of those algorithms.

Table 4. Accuracy of Different Algorithm With 25000

So, after training and testing with different algorithms we

come to conclusion that Random Forest is performing well

with our dataset.

C. Result in different Dataset Ratios

We tried the training and testing to with different data ratios

to find out in which ratio it will perform well and give more

accuracy. All the results are shown below:

Design Count

Time Taken

Accuracy

2 1-3 sec 89-93%

5 5-8 sec 86-91%

7 10-13 sec 85-89%

 No of Correctly

Algorithm Dataset Count
classified instances in

%

OneR 5000 69.20

Random Tree 5000 62.42

Random Forest 5000 71.23

J48 5000 61.27

Naïve Bayes 5000 59.32

SVM 5000 70.02

 No of Correctly

Algorithm Records Size
classified

instances
 in %

Random Forest 25000 70.01

SVM 25000 68.045

OneR 25000 60.123

Random Tree 25000 59.56

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 554

54

56

58

60

62

64

66

68

70

72

Random Forest Naïve Bayes SVM Random Tree

A
c
c
u

r
a

c
y
 i

n
 %

Algorithm

70.5%

59.8%

68.5%

60.20%

Fig 3. Accuracy in Split Ratio 60:40

0

10

20

30

40

50

60

70

80

Random ForestNaïve Bayes SVM Random Tree

A
cc

u
r
a

c
y

 i
n

 %

Algorithm

71.10%

45.2%

68.20%

61.45%

Fig 4. Accuracy in Split Ratio 80:20

0

10

20

30

40

50

60

70

Random ForestNaïve bayes SVM Random Tree

A
c
c
u

r
a

c
y

 i
n

 %

Algorithm

62.36%

45.2%

59.31% 58.10

%

 Fig 5. Accuracy in Split Ratio 30:70

0

10

20

30

40

50

60

70

80

Random Forest Naïve Bayes SVM Random Tree

A
c
c
u

r
a

c
y

 i
n

 %

Algorithm

71.5%

45.2%

68.20%

54.53%

 Fig.5. Accuracy in Split Ratio 50:50

D. Results After Combining Both Modules

Table 5. Time and Accuracy of Optimization Module with Random Forest

Algorithm

Design Count Total Time Taken
Accuracy

2
0.828 sec-1.989 sec 81-90%

5
2.124 sec -3.458 sec 82-90%

7
3.968 sec to 5.236 sec 83-88%

The result shows that the time complexity is get reduced as

compared to initial time taken. And we tried to maintain

accuracy by passing the result of machine learning module

to the Rule Based algorithm. It will give accuracy that the

result of machine learning module is right or wrong and the

final output will always be right one. If our module failed to

predict any optimized design that time we will go for

conventional design.

VI. CONCLUSION

So, the result shows how initially the optimization engine
module was time taking and how it gets decrease after
combining it with machine learning module. The machine
learning module reduces the unnecessary task of checking
for each design to find optimized design among them. So,
our approach works properly, and it helps in maintaining
accuracy and time complexity both.

There are different number of constraint satisfaction
algorithms which we can us with machine learning
algorithms to make it more automotive.

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 555

VII. ACKNOWLEDGMENT

I would like to express my sincere gratitude to my guide Dr.

Sunil B. Mane and Mr. A. Madkaikar for the continuous
support for my MTech study and research, for their patience,
motivation, enthusiasm, and immense knowledge. His
guidance helped me in all the time of research and writing of
this thesis.

Also, I thank my friends in College of Engineering Pune for
constantly directing me to the right thing and suggesting me
the way of doing research.

VIII. REFERENCES

[1] Vincent Tam and K.T. Ma, “Optimizing Personal Computer

Configurations with Heuristic-Based Search Methods,” 129–140,

2012.

[2] Igor Rivin and Ramin Zabih “An Algebraic Approach to

Constraint Satisfaction Problems,” 2011.

[3] Guido Tack, Tias Gunsand, “Introduction to the special issue on

Combining Constraint Solving with Mining and Learning,” March

2017 Artificial Intelligence 244:1-5.

[4] P.C. Fourie,A.A. Groenwold, “The particle swarm optimization

algorithm in size and shape optimization,”2001.

[5] A. Javier Larrosa and B. Rina Dechter, “Boosting Search with

Variable Elimination in Constraint Optimization and Constraint

Satisfaction Problems,” MIT Press, 2007.

[6] Luc De Raedt1, Siegfried Nijssen2, Barry O’Sullivan3 , and Pascal

Van Hentenryck4, “Constraint Programming meets Machine

Learning and Data Mining,” Report from Dagstuhl Seminar

11201.

[7] Hana Rudová “Constraint Satisfaction with Preferences,” IEEE,

2014.

[8] L. De Raedt, T. Guns, and S. Nijssen ,“Constraint Programming

for Itemset Mining In ACM SIGKDD”, Int. Conf. KDD’08, Las

Vegas, Nevada, USA, 2008.

[9] L. De Raedt, T. Guns, and S. Nijssen, “Constraint programming

for data mining and machine learning,” In Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI10), pages 1671–1675,

2010.

[10] M. Khiari, P. Boizumault, and B. Crémilleux, “Local constraint-

based mining and set constraint programming for pattern

discovery”, ECML/PKDD-09 Workshop, pages 61–76, Bled,

Slovenia, 2009.

[11] M. Khiari, P. Boizumault, and B. Crémilleux “Constraint

programming for mining n-ary patterns,” In 16th Int. Conf. on

Principles and Practice of Constraint Programming (CP’10),

volume 6308 of LNCS, pages 552–567. Springer, 2010.

[12] A. Javier Larrosa, B. Rina Dechter, “Boosting Search with

Variable Elimination in Constraint Optimization and Constraint

Satisfaction Problems,” 2002 Kluwer Academic Publishers.

[13] Frost, D. and R. Dechter: 1994, “In Search of the Best Constraint

Satisfaction Search,” In: Proceedings of the 12th AAAI. pp. 301–

306.

[14] Larrosa, J.: 2000, “Boosting Search with Variable Elimination,”

In: Proc. of the 6th CP,Singapore, pp. 291–305.

[15] Dechter, R., K. Kask, and J. Larrosa: 2001, “A General Scheme for

Multiple Lower Bound Computation in Constraint Optimization,”

In: Proc. of the 7th CP. pp. 346–360.

[16] Meseguer, P., J. Larrosa, and M. Sanchez: 2001, “Lower Bounds

for Non-Binary Constraint Optimization Problems,” In: Proc. of

the 7th CP.pp.3

