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Abstract— The aim of automating the task of generating flow control designs for oil and gas flow comes with the different 

dimension constraints and cost factors. The resulted designs should satisfy given dimension boundaries and pre- specified 

conditions. To make the module more efficient and automate we combine the machine learning and constraint satisfaction 

module which resulted in reduction of time complexity and how the accuracy gets maintained. The result shows how the 

separate module of machine learning and optimization module work and how the results get vary when we combine both 

modules. The constraint we want to optimize are size and cost of the design. The main factors we considered for measuring 

performance are time complexity and accuracy. 
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I.  INTRODUCTION  

When we go for constrain satisfaction and optimization 

problem the first thing comes to our mind is what are the 

constraints, objective function and the boundary values we 

are going to dealt with? [2] Initially we were just generating 

single conventional design which was not so feasible and 

optimized. We wanted to do size and cost optimization of 

design. To overcome this problem, we proposed one 

solution where we generate number of different designs by 

doing variations in components positions. So, the size of 

designs get varies and the cost needed for each design will 

be different. As we no size and cost are directly related to 

each other. If we are reducing the size indirectly we are 

reducing the cost. We wanted the resulted design should be 

optimized one and should satisfy all the conditions. As per 

design the satisfying conditions for each design will get vary 

and the bound values too. In our case some boundary values 

are static. So rather than going for some heuristic algorithms 

we implemented Rule Based algorithm by setting our own 

rules. But the constraint satisfaction of each design and 

finding optimized one among them is very time taking 

process. Means every time we needed to go through all 

condition checking process for each design repeatedly. 

To make it more efficient and less time taking we combine 

the concepts of constraint satisfaction and optimization with 

machine learning. CS (Constraint Satisfaction) techniques 

[1] can be used to (partly) solve tasks in Machine learning; 

Alternatively, one can use machine learning techniques to 

augment CS techniques. Yet, a proper approach in either 

direction requires good knowledge of both research fields. 

The results of both domains are contradictory [3]. If 

Constraint satisfaction algorithm gives good accuracy in 

finding optimized design, there might be possibility that this 

accuracy will get decrease after combing with machine 

learning algorithms. On the other hand, the time complexity 

will get reduced compared to module of constraint 

satisfaction. 

The section I is the Introduction part of the whole project. 

Section II related work in light the recent algorithms get 

used for Constraint satisfaction. Followed by that Section 

III, Optimization Engine gives detail information of the 

optimization engine with the workflow and flowchart.  

 

II. RELATED WORK  

Following are some algorithms which has been used for 

constraint satisfaction with their advantages and limitations. 

A. Constraint Hierarchies 

Constraint hierarchies (CHs) and namely hierarchical 

constraint logic programming belong to traditional 

frameworks for handling of over-constrained problems. 

They allow to express hard constraints which has to be 

satisfied and several preference levels of soft constraints 

which isolations are minimized level by level subsequently. 
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CHs define the so-called comparators aimed to select 

solutions via minimizing errors of violated constraints. 

Global comparators aggregate errors of violated constraints 

[1] at each level, basically we may compare weighted sum 

of errors or error of worst satisfied constraint (weighted-

sum-better and worst-case-better comparators). Local 

comparator considers each constraint individually, regional 

comparator is able to select among assignments by 

individual comparison of constraints at some lower level 

even if they are incomparable at higher levels. 

 

B. Using Heuristic Search Methods 

Since the search space can be fairly large, the conventional 

enumerative [3] search may simply give unsatisfactory 

performance to find the globally optimal solution. 

Therefore, we can go for conventional branch-&-bound 

(B&B) search technique and two of heuristic search 

strategies which sacrifice global optimality for efficiency to 

tackle these real-life optimization problems. 

 

 The Branch-&-Bound Search Method  

 

In handling many optimization problems, which are always 

NP-complete [4], one of the frequently used heuristics is the 

branch-and-bound (B&B) [2] heuristic in which the 

exploration of any partial solution in a search tree will be 

abandoned immediately whenever the search cost of that 

partial solution, as represented by an arbitrary 

objective/heuristic function h, already 6exceeds the minimal 

cost Bound for the optimal solution found so far. The 

heuristic function h always tends to be an under-estimation 

of the cost for any partial solution in a minimization 

problem. For instance, in the PC configuration problem [3], 

we can assume h as the sum of costs for the assigned 

components plus the minimal costs of the remaining 

unassigned components. Whenever the value returned by h 

for any partial configuration exceeds the current Bound, we 

can readily prune off the subtree under that partial 

configuration. On the other hand, when the total cost of the 

newly found complete configuration is less than Bound, the 

algorithm will update the Bound and the Optimal 

configuration [1] accordingly. In general, the success of the 

B&B method applied to any particular application depends 

very much on a careful design of the heuristic function h and 

the finding of a “reasonably good” Bound at an early stage 

of the search process.  

 

 Beam-Search Based Optimizer 

 

The first proposal of a heuristic-based optimizer for solving 

the PC configuration [4] problems simply limit the search to 

focus on the best n possible values of every sorted domain to 

construct the partial solutions in each search step. Since the 

PC configuration problems are only sparsely constrained, 

our proposed strategy should be able to return a solution 

which is fairly close to the global optimal solution within a 

reasonable period of time. The two main factors which we 

used to control the search are Budget and Threshold as 

predefined by the user of the search strategies. Similar to the 

mechanism used in the B&B heuristic, the control parameter 

Budget will be used to filter out any partial configuration 

which already exceeds its allowed value. In addition, the 

Threshold value n will help to ensure the search will always 

return the best n. 

 

C. Bucket Elimination 

Bucket elimination is a generic technique suitable for many 

automated reasoning and optimization problems and, in 

particular for solving WCSP [5]. Probabilistic inference 

algorithms for belief updating, finding the most probable 

explanation, the maximum a posteriori hypothesis, and the 

maximum expected utility are reformulated within the 

bucket elimination framework. This emphasizes the 

principles common to many of the algorithms appearing in 

the probabilistic inference literature and carries the 

relationship of such algorithms to nonserial dynamic 

programming algorithms. A general method for combining 

conditioning and bucket elimination is also presented. For 

all the algorithms, bounds on complexity are given as a 

function of the problem structure. 

 

III. OPTIMIZATION MODULE 

A. Constraint Satisfaction and Optimization Module 

The control flow designs generation comes with different 

components and dimensions values. We can go with the 

assorted designs like we can place components in horizontal 

way or vertical way and for each design the dimension values 

will vary. All constraint to be consider are the dimension 

values consist of length, height, width and the cost. The cost 

of the module is nothing but the some of the components 

used in the control flow design. The constraint optimization 

module named as Optimization Engine. 

B. Optimization Engine 

 

Fig 1. Block diagram of Optimization Engine 
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The block diagram shows we are taking input from users 

and generate different flow control designs. Then we 

calculate dimensions and cost of each design which will be 

input to the Optimization Engine which is nothing but the 

rules-based algorithm for the constraint satisfaction and 

optimization. 

C. Flowchart 

The flowchart shows how the Rule Based Algorithm works. 

Dimensions will be the input to the Optimization 

Engine. It will first check for the hard constraints if it is 

getting satisfy then only it will go for soft constraint 

checking. Suppose in count we have ‘n’ conditions which 

each design should satisfy. Then we will keep count of how 

many conditions each design satisfying. And will choose 

two designs with two highest probabilities. And will check 

for other component level conditions. And finally, will 

select the optimized one design. 

 

 
Fig 2. Flowchart of Rule Based Algorithm 

 

So, the Rule Based Algorithm is the set of rules where the 

bound values set by us. We wanted to set our own rules and 

bounds that why we preferred to go for Rule Based 

Algorithm. 

 

D. Mathematical Formula 

The objective function which should be satisfied by the 

design to be optimized one is given as below: 

     

       F(x) = f(n)/n                             (1) 

 

The Equation (1) shows the objective function where f(n) is 

the total count of conditions satisfied by the design and n 

stand for total number of conditions. The design with 

highest probability will be the optimized one. 

IV. MACHINE LEARNING MODULE 

A. Machine Learning Module 

So, the machine learning module works like it will take 
the dimension parameters of each design and pass it to the 
algorithm to find out which design is optimized one. The 
dataset contains 6 features like label, length, height, width, 
cost, container, component number and the classes are 
Optimized, Not Optimized and No Optimized Design 
Found. We tried different algorithm and check the accuracy 
of each algorithm. The result section contains the details 
how the accuracy gets vary with algorithms and the size of 
the dataset. 

 

B. Combining Constraint Satisfaction with Machine 

Learning 

There is also an increasing interest in using machine 

learning to improve the solving of constraint problems, as 

well as improving the modelling and the embedding of 

learned constraints and objectives into the model [4]. As the 

independent module were working well, the constraint 

satisfaction module takes more time compare to machine 

learning module, but it gives 100% accuracy where machine 

learning modules accuracy is not so good compared to rule-

based algorithm. As for making the module more efficient 

and accurate we needed to combine both the modules. 

 

 
 

Fig 3. Combined Module 
 

First, the calculated dimensions will be given to the machine 

learning module where it will classify which design is 

optimize design and which is not-optimized design. So once 

the module will predict the optimized design names which 

will pass to the rule-based algorithm for checking that the 

optimized design suggested by machine learning module is 
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optimized or not. Like this way, we will get accuracy and 

will reduce the time complexity also. But there are some 

possibilities which can happen: 

 

 What if we get more than one optimized designs?   
We will check for those designs and find the high probability 

design and select that as an optimized design otherwise go 

for the conventional design. 

 What if the optimized design found by machine 

learning module is not satisfying rule-based 

conditions? 

That time we will go for the conventional design. 

 What if it doesn’t find any optimized 

image?  

Go for the conventional design. 

V.  EXPERIMENTAL RESULT 

 
First, we will see results of the both modules. How the both 

modules works independently and then combinedly. 

A. Rule Based Algorithm 

 
Table 1. Time and Accuracy of Rule Based Algorithm 

 

This table shows the results of optimized engine. 

Design count is the number of distinctive designs we used to 

find optimized among them. We can see the time taken by 

this module is very high. 

 

B. Machine Learning Module 

We used Weka tool to check how different algorithms 

perform on our dataset. 
Table 2. Accuracy of Different Algorithm With 150 

 

  No of Correctly 
Algorithm Dataset Count classified 

  instances in % 
   

OneR 150 73.22 
   

Random Tree 150 71.43 
   

Random Forest 150 82.50 
   

J48 150 75 
   

Kstar 150 50 
   

ZeroR 150 35.71 
   

Naïve Bayes 150 65 
   

Logistic Regression 150 39.29 
   

Multilayer Perceptron 150 48.22 
   

 

Table 2 shows the accuracy of different machine learning     

algorithm with dataset of count 150. 

 
Table 3. Accuracy of Different Algorithm With 5000 Records 

 

Table shows the accuracy of algorithms with data set of 

count 5000.We eliminate some algorithms based on 

accuracy performance of those algorithms. 
 

Table 4. Accuracy of Different Algorithm With 25000 

 

So, after training and testing with different algorithms we 

come to conclusion that Random Forest is performing well 

with our dataset. 

 

C.  Result in different Dataset Ratios 

 

We tried the training and testing to with different data ratios 

to find out in which ratio it will perform well and give more 

accuracy. All the results are shown below: 

 

 

 

 

Design Count 

 

Time Taken 

 

Accuracy 

2 1-3 sec 89-93% 

5 5-8 sec 86-91% 

7 10-13 sec 85-89% 

  No of Correctly 

Algorithm Dataset Count 
classified instances in 

% 
   

OneR 5000 69.20 
   

Random Tree 5000 62.42 
   

Random Forest 5000 71.23 
   

J48 5000 61.27 
   

Naïve Bayes 5000 59.32 
   

SVM 5000 70.02 
   

  No of Correctly 

Algorithm Records Size 
classified 

instances 
  in % 
   

Random Forest        25000 70.01 
   

SVM        25000 68.045 
   

OneR        25000 60.123 
   

Random Tree        25000 59.56 
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Fig 3. Accuracy in Split Ratio 60:40 

 

0

10

20

30

40

50

60

70

80

Random ForestNaïve Bayes SVM Random Tree

A
cc

u
r
a

c
y

 i
n

 %

Algorithm 

71.10%

45.2%

68.20%

61.45%

Fig 4. Accuracy in Split Ratio 80:20 
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 Fig 5. Accuracy in Split Ratio 30:70 
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  Fig.5. Accuracy in Split Ratio 50:50 

 

D. Results After Combining Both Modules 

 
Table 5. Time and Accuracy of Optimization Module with Random Forest 

Algorithm 

Design Count Total Time Taken 
Accuracy 

2 
0.828 sec-1.989 sec 81-90% 

5 
2.124 sec -3.458 sec 82-90% 

7 
3.968 sec to 5.236 sec 83-88% 

 

The result shows that the time complexity is get reduced as 

compared to initial time taken. And we tried to maintain 

accuracy by passing the result of machine learning module 

to the Rule Based algorithm. It will give accuracy that the 

result of machine learning module is right or wrong and the 

final output will always be right one. If our module failed to 

predict any optimized design that time we will go for 

conventional design. 

VI. CONCLUSION 

So, the result shows how initially the optimization engine 
module was time taking and how it gets decrease after 
combining it with machine learning module. The machine 
learning module reduces the unnecessary task of checking 
for each design to find optimized design among them. So, 
our approach works properly, and it helps in maintaining 
accuracy and time complexity both. 

There are different number of constraint satisfaction 
algorithms which we can us with machine learning 
algorithms to make it more automotive. 
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