

 © 2021, IJCSE All Rights Reserved 45

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 9, Issue.6, June 2021 E-ISSN: 2347-2693

Test Automation Framework for Content Delivery Network

Jayesh Kumar Yadav
1*

, Nagaraja G.S.
2

1,2Computer Science and Engineering Department, R V College of Engineering, Bengaluru, India

*Corresponding Author: jayeshkumary.cs17@rvce.edu.in, Tel.: +91-8921083022

DOI: https://doi.org/10.26438/ijcse/v9i6.4548 | Available online at: www.ijcseonline.org

Received: 16/Jun/2021, Accepted: 20/Jun/2021, Published: 30/Jun/2021

Abstract— Content Delivery Network, or a CDN, is a globally distributed network of servers that helps provide good

availability, faster and reliable performance, and security to the content distributors. In order to maintain a secure and

reliable system any change proposed for the network needs to be thoroughly tested. But testing a full software release takes

a lot of time because of a very huge database and complex dependencies between them. This increases the total time taken

in the software development life cycle. In the existing system, a tester has to write test scripts for every Change Request

(CR), which is a documented request to modify the current software system. This effort can be substantially reduced by

developing a tool which can accurately test all the changes by dynamically generating test values for each metadata tag. (In

this paper, the term “metadata tag” refers to settings used to control the configuration of web servers). This reduces the

time to figure out all complex dependencies and test for each and every change made. The aim is to provide a simple, clean

interface which allows the user to select a Change Request he wants to test and then dynamically generate positive and

negative test values on which test will run on and provide a detailed result to the user whether the test passed or not.

Keywords—Content Delivery Network; Metadata Tag; Change Request

I. INTRODUCTION

Testing each and every feature takes a lot of manual effort

and hence increases the time taken in the software

development lifecycle. Also, figuring out all dependencies

of each type of tag and manually writing test cases for it is

a tedious task. It also has a higher chance of human error.

This makes the whole system inefficient and error prone.

Hence there was a requirement for an automated testing

tool which can accurately test all the changes by

dynamically generating test values for each tag. This tool

can solve the problem of human error as the whole system

will be automated. This will increase the efficiency, and as

a result the whole time taken in the software development

life cycle will be reduced. This project is aimed to test the

web-server software of Content Delivery Network (CDN).

The next section will give a brief introduction about CDN

and its working.

1.1 CONTENT DELIVERY NETWORK (CDN)

OVERVIEW

Content Delivery Network, or a CDN, is a globally

distributed network of servers that helps provide good

availability, faster and reliable performance, and security

to the content distributors. In a CDN, replica of content is

placed near to the user in order to reduce latency, increase

scalability and availability of the content providing a

streamlined experience to the end user. It helps content

distributors to deliver the content to the end-users on

behalf of the origin server. With the help of request

redirection algorithm, the best replica server is selected and

users requests are directed to that server. A CDN also

enhances the performance of the web during high traffic by

distributing the traffic over different servers in the

network. It is also used widely for delivering streaming

services such as video on demand and live streaming

economically and reliably.

1.2 CDN WORKFLOW

This section describes the workflow of content delivery

network. Figure 1 describes the flow of the whole process

of distributing content through content delivery network.

Figure 1: CDN Workflow

Origin server provides the content to the Distribution

System for replication. Content is then replicated to

surrogate servers by Distribution System and it also

maintains the consistency of data at the surrogate servers.

The Distribution system also provides the information

about replication to the request routing system to help in

surrogate server selection for redirecting end users

requests. The Request Routing System handles the request

for the content from the end user. Then the request is

 International Journal of Computer Sciences and Engineering Vol.9(6), Jun 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 46

redirected to the suitable surrogate server by the Request

Routing System. Then the end-user request is satisfied by

the selected surrogate on the behalf of the origin server.

Log of data transferred is sent to the Accounting System

by Surrogate server. This information is aggregated by the

Accounting System for use by the origin server and for

billing the content provider. Origin server uses this

aggregated information for decision about which contents

should be replicated and where in order to further improve

web performance as well to minimize the cost.

II. RELATED WORK

Reference [1] talks about Cloud based Content Delivery

Network, its architecture and working. It also discusses

challenges of design for CDN along with the evolved

architecture.

Reference [2] talks about how a content delivery network

is used to improve performance and how it helps in

improving the challenges of the web. It also talks about

pointing out the components, existing emerging paradigms

and review of literature on the existing strategies for

content distribution.

Reference [3] explains how to improve the efficiency of

the content distribution and optimize the overall

performance by making full use of the network

characteristics and the effective information provided by

the network operators.

Reference [4] highlights the role of location, the growing

complexity of the CDN ecosystem, and their relationship

to, and implications for interconnection markets.

Reference [5] gives a comparative study of the content

delivery network and named data networking and the

advantages of named data networking over content

delivery networks.

Reference [6] explains how to reduce load on the origin

server and the traffic on the Internet, and hence improve

response time to users. It also talks about optimal

placement of CDN servers.

III. METHODOLOGY

The step-by-step procedure proposed to develop the tool is

as follows.

3.1 Getting the list of Tags depending on the chosen

version and the Change Request number
Whenever a code change is done by someone, a

corresponding Change request (CR) is generated. This

Change Request is then forwarded for testing phase. The

list of the CRs with the description has to be populated and

the user can select one of the CRs from the dropdown. The

next step is getting the list of all metadata tags in a

particular CR. (A metadata tag is basically a configuration

setting, and determines how a particular request or

response will be handled). Then we find out which tags are

being changed and populate them and the user can select

the tags.

3.2 Getting the data-type and scope of the chosen tag

Different tags accept different data-types as per their

functionality. Hence, to generate positive and negative test

cases it is necessary to get the type of data that these tags

accept. Next step is finding the scope of the tag and

deciding which channels are mapped to this tag . A channel

is a path through which the particular tag can be

pushed/applied to the web-server. So we need to find what

all channels this tag is part of.

3.3 Generating combinations to run for each tag and

add custom cases
Depending on the type of value the particular tag accepts,

various combinations are dynamically generated. For a tag

that accepts integer, float or any numerical value, there is

no exact defined range as it varies from one tag to another.

Hence an option to enter range is given to the user. For

example, if a tag is of type “flag”, then the accepted values

could be “on” and “off”, and negative test cases could be

an integer or float value. All the test combinations are

populated in tabular form where users can also add positive

or negative custom tests of their own.

3.4 Generate a test script for all the test cases

A test script is generated automatically which will be used

to send all the requests to the test server and record the

responses and the requests in log files. Generation of test

scripts depends on the channel on which we are testing on.

All the individual test cases for each channel having tag

and value pair are generated and stored in separate files.

3.5 Running test on user’s machine and parsing the

result from log file

The test file generated in the previous step is copied to the

user's machine. Then the tests are executed on the user's

machine. The detailed information about each and every

step gets stored in the log file corresponding to that file.

These log files have all the information about the request

and the response, like size, header, body, status, caching,

etc. These parameters are analysed and it is determined

whether changes were accepted or not. Then, all the results

in a human readable form are displayed to the user.

Figure 2 is the flow chart of the whole process.

Figure 2:Flow Chart

 International Journal of Computer Sciences and Engineering Vol.9(6), Jun 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 47

IV. OBSERVATIONS AND RESULTS

The tool has to test every tag on positive and negative test

cases based on what data-type values are accepted by it.

The final results should match with the expected results

completely for a successful test run. Any mismatch

between the expected and the final results means that there

is a bug in the Change Request and that Change Request is

forwarded for review. Hence, in this way it detects errors

in earlier phases of testing.

Below is an example result for four tags accepting values

of type double, integer, flag and string respectively. For a

test to pass, the test value should be of the same type as the

type accepted by the particular tag; otherwise it should fail.

In the table, we can observe that the expected result is the

same as the final result. Hence the test is marked as

„PASSED‟ and no anomaly found in the working of the

tag.

Table 1. Test Results

Tag Type

accepted

Test value Expected

Result

Final

result

Tag1 double 10.45 Pass Pass

Tag1 double Test1 Fail Fail

Tag1 double 12/4/20 Fail Fail

Tag2 Integer 64 Pass Pass

Tag2 Integer 57.873 Fail Fail

Tag2 Integer Test1 Fail Fail

Tag2 Integer 24%4 Fail Fail

Tag3 Flag on Pass Pass

Tag3 Flag off Pass Pass

Tag3 Flag 100 Fail Fail

Tag3 Flag 15.89 Fail Fail

Tag4 String Server-up Pass Pass

Tag4 String 245 Fail Fail

Tag4 String 3.145 Fail Fail

V.CONCLUSION AND FUTURE SCOPE

This tool automates the process of testing a Change

Request, thereby saving time. It makes the whole process

more fluid, which can be tedious if done manually. It helps

in increasing the efficiency of the testing phase by

reducing the chances of human errors. In the final results

of this tool, I found out that it was able to test every feature

with required accuracy and was able to detect any anomaly

in the feature if present in the initial phase of testing. It was

observed that time taken to test around 10 test cases was

151 seconds and time taken to test 20 test cases was 280

seconds which is very less compared to time taken if done

manually and hence total time taken in software

development life cycle. Some of the improvements that can

be made to the existing system are Providing user interface

to debug in case of test fails, adding option to send the full

test result to users email and expanding tool to include

more complex white box testing.

ACKNOWLEDGMENT

I would like to express our deep gratitude towards my

Guide Dr. Nagaraja G. S and Prof. & Head Dr. Ramakanth

Kumar P, for providing their guidance, enthusiastic

encouragement, valuable and constructive suggestions

during planning and development of this case study paper.

Also we whole-heartedly thank our beloved Principal Dr.

K. N. Subramanya for their continuous support to carry

out this project.

REFERENCES

[1] Q. Jia, R. Xie, T. Huang, J. Liu, and Y. Liu, "The Collaboration

for Content Delivery and Network Infrastructures: A Survey,"

IEEE Access, vol. 5, pp. 18088-18106, 2017.

[2] K. Hosanagar, R. Krishnan, M. Smith and J. Chuang, "Optimal

pricing of content delivery network (CDN) services," 37th

Annual Hawaii International Conference on System Sciences,

2004. Proceedings of the, 2004, pp. 10 pp

[3] Pathan M, Buyya R. “A taxonomy of CDNs: In Content

delivery networks,” 2008 (pp. 33-77), Springer, Berlin,

Heidelberg.

[4] Stocker, Volker, Georgios Smaragdakis, William Lehr, and

Steven Bauer. "The growing complexity of content delivery

networks: Challenges and implications for the Internet

ecosystem." Telecommunications Policy 41, no. 10 (2017):

1003-1016.

[5] G. Ma, Z. Chen, J. Cao, Z. Guo, Y. Jiang and X. Guo, "A

tentative comparison on CDN and NDN," 2014 IEEE

International Conference on Systems, Man, and Cybernetics

(SMC), San Diego, CA, 2014, pp. 2893- 2898.

[6] Pallis, George, and Athena Vakali. "Insight and perspectives for

content delivery networks." Communications of the ACM49,

no. 1 (2006): 101- 106.

[7] Garmehi, Mehran, Morteza Analoui, Mukaddim Pathan, and

Rajkumar Buyya. "An economic replica placement mechanism

for streaming content distribution in Hybrid CDN-P2P

networks." Computer Communications 52 (2014): 60-70.

[8] Buyya, Rajkumar, Al-Mukaddim Khan Pathan, James Broberg,

and Zahir Tari. "A case for peering of content delivery

networks." arXiv preprint cs/0609027 (2006).

[9] Wang, Limin, Vivek Pai, and Larry Peterson. "The effectiveness

of request redirection on CDN robustness." ACM SIGOPS

Operating Systems Review 36, no. SI (2002): 345-360.

[10] Hu, Han, Yonggang Wen, Tat-Seng Chua, Zhi Wang, Jian

Huang, Wenwu Zhu, and Di Wu. "Community based effective

social video contents placement in cloud centric CDN network."

In Multimedia and Expo (ICME), 2014 IEEE International

Conference on, pp. 1-6. IEEE, 2014.

[11] Raciborski, Nathan F., and Bradley B. Harvell. "Write-cost

optimization of CDN storage architecture." U.S. Patent

8,321,521 issued November 27, 2012.

 International Journal of Computer Sciences and Engineering Vol.9(6), Jun 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 48

AUTHORS PROFILE

Jayesh Kumar Yadav is an

undergraduate student studying

Computer Science of Engineering in

R.V. College of Engineering, Bangalore,

India. His areas of interest include Web

Development and Cloud Computing

Nagaraja G. S is Professor and

Associate Dean of Dept. of Computer

Science of Engineering in R.V. College

of Engineering, Bangalore, India. His

areas of interest include computer

Networks & Management, Multimedia

Communications, Computer

Architecture, Protocol Design

