
© 2018, IJCSE All Rights Reserved 622

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-11, Nov 2018 E-ISSN: 2347-2693

Model Transformation of Platform Specific Model to Vanilla Model – A

Proposed Platform Independent Model for Declarative User Interface

Smita Agarwal

1
, Alok Aggarwal

 2*
, S. Dixit

3,
, Adarsh Kumart

4

1
Department of Computer Science, Mewar University, Chittorgarh (Raj), India

2
School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India

3
Department of Computer Science, Mewar University, Chittorgarh (Raj), India

4
School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India

*Corresponding Author: alok289@yahoo.com, Tel.: 7906230838

Available online at: www.ijcseonline.org

Accepted: 18/Nov/2018, Published: 30/Nov/2018

Abstract— In classic software re-engineering, the user interface are considered to be Platform Specific. Hence were always

excluded from the process of software re-engineering. The user interface were re-written for the target platform and integrated

with business application in the end. In this paper we propose a Vanilla Model – A Platform Independent Model for

Declarative User Interface and algorithm for model transformation using Vanilla Model for Declarative User Interface. This

approach will preserve the source artifact user interface will make re-engineering user interface part of main process,. This

transformation is then applied to five of the popular libraries such as SWING, HTML5, and more recent libraries of Android

and Python- Tkinter.

Keywords— Model Transformation, Declarative User Interface , Platform Specific Model, Platform Independent Model

I. INTRODUCTION

The OMG (Object Management Group) has defined the

Model Driven Architecture(MDA) as part of its response to

the increasing complexity, heterogeneity and evolutionary

issues of information systems[1]. It solved these issues

through the rising the level of abstraction by adopting

models instead of objects as a first measure and

the separation of the business logic of an information system

from the implementation of that logic on a specific

technological platform as a second one. Thus, the simple

principle of MDA is the elaboration of platform independent

models (known as PIMs) and their transformation into

platform specific models for a given platform (known as

PSMs). The techniques used are essentially modeling

techniques and model transformation techniques

In classical software re-engineering, the reusability of user

interfaces across development platforms is not possible. In

addition, in software re-engineering based on MDA, they are

integrated only after making the transformation of the PIM

to the PSM since they belong to the target platform and

hence have the same problem. They are considered part of

the PSM, which deprives us from reusing them as we do for

the business logic.

In this research paper, in Section 2 , we discuss a thorough

literature study on Model Transformation, in Section 3, we

propose our Vanilla Model- Platform Independent Model to

build Declarative User Interface , its Element Library,

Model Hierarchy, algorithm for Model Transformation and

criteria for successful Model Transformation. In Section 4,

we map the Vanilla Model Element Library with the various

popular User Interface Library like, Swings, HTML5,

Android and Python. In the last section we conclude and

discuss the future scope.

II. STATE OF ART

Software Re-engineering that uses model based

representation of the existing systems giving a

comprehensive understanding is termed as Model Driven

Re- Engineering[2].

Figure 1: Software Re-engineering

mailto:alok289@yahoo.com

International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 623

They syntax and semantics of the modeling language is

expressed by the Meta-model. For Example – UML Meta-

model is expressed using class diagrams. And semantics is

described by well- formed rules and natural language.

Kleppe et al [3] defined model transformation. as an

automatic generation of a target model from a source model.

A transformation definition is a set of transformation rules

that together describe how model in the source language can

be transformed into a model in the target language. A

transformation rule is a description of how one or more

constructs in the source language can be transformed into

one or more constructs in the target language.

Declarative UI is a UI that's designed in a declarative way

i.e. one describes what UI should be like rather than an

imperative way i.e. one codes the steps to create it. For

example, in HTML one can describe that one wants an input

field, but how and where this field will be placed at the UI is

highly dependent on the browser. Declarative approach [4]

is appealing as navigation through source model and

management through traceability matrix are inherent

Declarative transformations tend to be simpler to write and

comprehend

III. PROPOSED MODEL

1. Vanilla Model – A Proposed Platform

Independent Declarative User Interface Model

Different User Interface Platforms differ in design and

richness, the underlying functionality of the basic input and

output element remain the same. Hence the elements like

labels , textboxes , checkboxes , buttons , radio buttons etc

exists with different formats and names in different user

interface frameworks but their concept remain the same.

For Example a checkbox which is used to fetch user choice

from multiple options is a JCheckBox in Java SWING

(javax.swing.JCheckBox), checkbox in HTML, Checkbutton

in Python Tkinter and CheckBox in Android View Widget.

The elements having similar functionality although they are

having different class name in different market libraries.

We propose Vanilla Model- A Platform independent Meta-

Model for Declarative User Interface. The 25 common

elements of User Interface are identified with their

characteristic structure. Each element then mapped to

elements / widgets of 4 open source market libraries of

Graphical User Interface – Java Swing Library, HTML

Widget Library, Android View Library and Python Tkinter

Library. The transformation of source model(PSM) from

one platform specific meta-model to Vanilla Model (PIM) is

part of reverse engineering process. And the transformation

from Vanilla Model (PIM) to target model(PSM) is part

forward engineering. It is represented schematically in

Figure2.

Figure 2 Proposed Transformations using Vanilla Model

2. The Vanilla Model Element Library

Figue 3. Vanilla Model Element Hierarchy

Table 1. Vanilla Model Element Library
S.

No

Element

Name

Parent

Class

Attributes Description

1 VanillaC

ompone

nt

None - id:int

- name:

String
- cox:int

- coy:int

- height:int
- width:int

Parent class of all the

components of

Vanillas Model

2 VanillaC

ontainer

VanillaComp

onent

None A special type of

component that has
capability to add

component to itself.

3 Vanilla

Widget

VanillaComp

onent

None A component that

helps user to interact
with UI.

4 VanillaF

rame

VanillaConta

iner

None It is a container

which has a
collection of related

widgets grouped

together

5 Vanilla

MenuCo

mponent

VanillaFram

e

- title:String Parent class for all

the menu controls.

6 Vanilla
MenuBa

r

VanillaMenu
Component

None It provides a Menu
Bar that is bound to a

Frame.

PSM Source

PSM Target -1

PSM Target -2

PSM Target -3

PIM Vanila

https://developer.android.com/reference/android/widget/CheckBox.html

International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 624

7 Vanilla

Menu

VanillaMenu

Component

- text:String It is the pulled down

menu component on

the menu bar.

8 Vanilla
MenuIte

m

VanillaMenu - label:String It is a simple labeled
option in the menu

9 VanillaL
abel

VanillaWidg
et

- text:String It is a widget to put
simple text on UI.

10 VanillaT

extComp
onent

VanillaWidg

et

-column:int

-text:String

Parent Class of any

component that
allows the editing of

some text.

11 VanillaT

extBox

VanillaText

Component

- text:String It is a text component

that allows editing of
single line of text.

12 VanillaC

heckBox

VanillaWidg

et

- text:String

-
status:Boolea

n

It is a widget that has

binary value true or
false.

13 VanillaR

adioButt
on

VanillaWidg

et

- text:String

-
status:Boolea

n

It is a widget that

allows the user to
select only one of a

predefined mutually

exclusive options.

14 VanillaB

utton

VanillaWidg

et

- text:String It is labeled widget

that generates an

event when pressed.

15 VanillaT
able

VanillaWidg
et

-rows:int
-column:int

-cell:String

It is two dimension
widget of cells

consisting of ows and

columns.

16 VanillaI

mage

VanillaWidg

et

-path:String

-

format:String

It is a widget

representing

graphical image.

17 VanillaL

istBox

VanillaWidg

et

-items:String It is a widget that

provides a list of

items from which

the user can select.

18 VanillaC

omboBo

x

VanillaWidg

et

-items:String It is a widget of drop

down list which lets

the user select from
pre-defined options.

19 VanillaT

extArea

VanillaText

Component

-rows:int It is widget for

editing multi-line
text.

20 VanillaD

atePicke

r

VanillaWidg

et

-day:int

-month:int

-year:int

It is widget for

choosing date in a

simple manner.

21 VanillaT

imePick

er

VanillaWidg

et

-hours:int

-min:nt

-sec:int

It is widget for

choosing time in a

simple manner.

22 VanillaA
udio

VanillaWidg
et

-path:String
-

format:String

It is widget for
playing sound in UI.

23 VanillaV

ideo

VanillaWidg

et

-path:String

-

format:String

It is widget for

playing video in UI.

24 VanillaD
ialogBox

VanillaConta
iner

-
parentComp

onent :

Component
-

message:Stri

ng

It is window for
taking input from

user.

IV. PROPOSED MODEL TRANSFORMATION

The transformation will be a two Step process 1. Model

transformation from source model to Vanilla Model will be

reverse engineering and 2. Model transformation from

Vanilla Model to target model.

for forward engineering, thus completing re-engineering of

User Interface. The process for Model transformation is as

follows:

1. Identify the source and target artifacts for Model

transformation.

2. Identify the direction of transformation i.e. from

concrete to abstract (in case of reverse

Engineering) or from abstract to concrete (in case

of forward engineering).

3. Extraction of Platform Specific Model from current

source artifact.

4. Transform the extracted software model to the

Vanilla Model platform independent meta-model.

5. During the transformation from PSM to PIM, for

each element that exist in PSM Model.

a. Check if the element can be mapped directly to

the Vanilla Model, if yes then perform

transformation.

b. Identify the elements that cannot be mapped to

vanilla model. Either identify the nearest

elements which can replace that elements or

add them to unmapped element list.

6. Add any new elements to mapped vanilla model to

add any new features required

7. Modify the existing elements as per new

specification, if required.

8. Drop the existing components which are no longer

required in the target artifact.

9. Finalize the Vanilla Meta Model.

10. Generate the new target Platform Specific meta-

model from Vanilla model.

11. During the transformation from PIM (Vanilla) to

target Platform Specific Model

a. Check if the element can be mapped directly

from the Vanilla Model to Platform Specific

Model , if yes then perform transformation.

b. Identify the elements that cannot be mapped

from Vanilla model. Either identify the nearest

elements which can replace that elements or

add them to unmapped element list.

12. Manually modify the model to add elements from

un-mapped element list

13. Finalise the new Platform Specific Meta Model.

14. Repeat Steps Vii and X to for multiple Platform

Specific target Model.
15. Generate code for each of the target Platform

specific model

International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 625

FLOWCHART

3. Criteria for Successful Model Transformation

For any transformation tool to be a success, it should fulfill

following functional requirements -

1. The tool should be able to create, modify retrieve and

drop transformations.

2. One can reutilize the transformation model defined for

one transformation from source platform to target

platform to other set of source and target platform.

3. The transformation model must clearly define the

termination condition and the output obtained from the

transformation should be unique.

4. The transformation must be complete for each element

in the source model; there should be a corresponding

element in the target model that is created by a model

transformation. A Traceability Matrix can be

maintained to trace each and every element from source

to target.

5. The tool should be relevant which means that it should

be able to serve the practical purpose for which it is

designed.

V. MODEL TRANSFORMATION USING

VANILLA MODEL

1. Java Swing

Java Swing is part of Oracle JFC(Java Foundation Classes)

and is a lightweight widget toolkit for Graphical User

Interface.
Table 3. Vanilla to Swing mapping

S.No Vanilla GUI –

PIM

JAVA-Swing-

PSM

Swing Class

1 VanillaComponent SwingComponen

t

javax.swing.JComp

onent

2 VanillaContainer SwingContainer javax.swing.Contai

ner

3 VanillaWidget NA NA

4 VanillaFrame SwingFrame javax.swing.JFrame

5 VanillaMenuComp

onent

NA NA

6 VanillaMenuBar SwingMenuBar javax.swing.JMenu

Bar

7 VanillaMenu SwingMenu javax.swing.JMenu

8 VanillaMenuItem SwingMenuItem javax.swing.JMenuI

tem

9 VanillaLabel SwingLabel javax.swing.JLabel

10 VanillaTextCompo

nent

SwingTextComp

onent

javax.swing.text.JT

extComponent

11 VanillaTextBox SwingTextBox javax.swing.JTextFi

eld

12 VanillaCheckBox SwingCheckBox javax.swing.JCheck

Box

13 VanillaRadioButto

n

SwingRadioButt

on

javax.swing.JRadio

Button

14 VanillaButton SwingButton javax.swing.JButton

15 VanillaTable SwingTable javax.swing.Jtable

Identify the direction of transformation.

Extract Platform Specific Model from

current source artifact.

Transform the extracted software

model to the Vanilla Model

If the element can

be mapped directly

to the element

Vanilla Model

Perform transformation.

If the element

can be mapped

to the nearest

element Vanilla

Model

Add to

unmapped

elements list

Add any new element, if

required

Modify any existing element, if

required

Drop any existing element, if

required

Identify the Source Artifact

Identify the Target Artifact

Artifact

Generate the new target PSM

If the element can

be mapped directly

from the element

Vanilla Model

If the element

can be mapped

from the nearest

element Vanilla

Model

Perform transformation.

https://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/JLabel.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html

International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 626

16 VanillaImage SwingImage java.awt.Image

17 VanillaListBox SwingListBox javax.swing.JList<E

>

18 VanillaComboBox SwingComboBo

x

javax.swing.JComb

oBox<E>

19 VanillaTextArea SwingTextArea javax.swing.JTextA

rea

20 VanillaDatePicker SwingDatePicker javax.swing.JSpinn

er and

javax.swing.Spinner

DateModel

21 VanillaTimePicker SwingTimePicke

r

javax.swing.JSpinn

er and

javax.swing.Spinner

DateModel

22 VanillaAudio SwingAudio can be played using

library

javax.sound.*

23 VanillaVideo SwingVideo can be Java Media

APIs

24 VanillaDialogBox SwingDialogBox javax.swing.JDialog

*NA – No such component available in the Library

2. HTML-5

HTML5 (Hypertext Markup Language) [5] is the core

Markup Language of the World Wide Web. The building

blocks of HTML are HTML elements. The constructs of

HTML include text box, button, check box, radio button,

images , audio , video and many more.

Table 4. Vanilla to HTML mapping

S.N

o

Vanilla GUI –

PIM

HTML- PSM HTML Elements

1 VanillaComponent HTMLComponent DOM - Document

<html>

2 VanillaContainer HTMLContainer <Form>

3 VanillaWidget NA NA

4 VanillaFrame HTMLFrame <frame>

5 VanillaMenuComp

onent

NA NA

6 VanillaMenuBar HTMLMenuBar <div
class="navbar">

7 VanillaMenu HTMLMenu <menu>

8 VanillaMenuItem HTMLMenuItem <menuitem>

9 VanillaLabel HTMLLabel Label text is
directly added

between body tags

10 VanillaTextCompo

nent

NA NA

11 VanillaTextBox HTMLTextBox <input type="text"

>

12 VanillaCheckBox HTMLCheckBox <input

type="checkbox"

13 VanillaRadioButto

n

HTMLRadioButto

n

<input

type="radio">

14 VanillaButton HTMLButton <button
type="button">

15 VanillaTable HTMLTable <table>

16 VanillaImage HTMLImage

17 VanillaListBox HTMLListBox , , <dl>

18 VanillaComboBox HTMLComboBox <select>

19 VanillaTextArea HTMLTextArea <textarea>

20 VanillaDatePicker HTMLDatePicker <input

type="date"

21 VanillaTimePicker HTMLTimePicker <input type="time"

>

22 VanillaAudio HTMLAudio <audio>

23 VanillaVideo HTMLVideo <video>

24 VanillaDialogBox HTMLDialogBox <dialog>

3. Android –View Class

Android has very rich pre-defined built-in UI components

library including layout objects and widgets to design and

develop GUI for a mobile application. The View Class of

the Android library is the parent class of entire widget

toolkit to build an interactive application.

Table 5. Vanilla to Android mapping

S.No Vanilla GUI – PIM Android -

PSM

Android Class

1 VanillaComponent NA NA

2 VanillaContainer NA NA

3 VanillaWidget AndroidWidget android.view.View

4 VanillaFrame NA NA

5 VanillaMenuCompo

nent NA NA

6 VanillaMenuBar NA NA

7 VanillaMenu AndroidMenu android.view.Menu

8 VanillaMenuItem AndroidMenuIt
em

android.view.Menu
Item

9 VanillaLabel

AndroidLabel

android.widget.Tex

tView

10 VanillaTextCompone

nt NA NA

11 VanillaTextBox AndroidTextBo

x

android.widget.Edi

tText

12 VanillaCheckBox AndroidCheck

Box

android.widget.Ch

eckBox

13 VanillaRadioButton AndroidRadioB

utton

android.widget.Ra

dioButton

14 VanillaButton

AndroidButton

android.widget.But

ton

15 VanillaTable AndroidTable TableLayout

16 VanillaImage
AndroidImage

android.widget.Ima
geView

17 VanillaListBox AndroidListBo

x

android.widget.List

View

18 VanillaComboBox AndroidCombo
Box

android.widget.Spi
nner

19 VanillaTextArea AndroidTextAr

ea

android.widget.Edi

tText

20 VanillaDatePicker AndroidDatePic
ker

android.widget.Dat
ePicker

21 VanillaTimePicker AndroidTimePi

cker

android.widget.Ti

mePicker

22 VanillaAudio
AndroidAudio

android.media.Med
iaPlayer

23 VanillaVideo

AndroidVideo

android.media.Med

iaPlayer

24 VanillaDialogBox AndroidDialog
Box

android.app.AlertD
ialog

4. Python- Tkinter

Python has many GUI libraries for web development[6].

Tkinter is the most popular and de-facto GUI library

for Python. It provides a powerful interface based on object-

International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 627

oriented concept to the Tcl/Tk widget set. It’s portable

across platforms line Windows, UNIX and Mac –OS.

Table 5. Vanilla to Android mapping

S.No Vanilla PIM Python - PSM Python- Tkinter

1 VanillaCompone

nt

NA NA

2 VanillaContainer PythonContainer tkinter.Notebook

3 VanillaWidget PythonWidget tkinter.Widget

4 VanillaFrame PythonFrame tkinter.Frame

5 VanillaMenuCo

mponent

NA NA

6 VanillaMenuBar NA NA

7 VanillaMenu PythonMenu tkinter.Menu

8 VanillaMenuItem PythonMenuItem tkinter.Menubutto

n

9 VanillaLabel PythonLabel tkinter.Label

10 VanillaTextCom

ponent

NA NA

11 VanillaTextBox PythonTextBox tkinter.Entry

12 VanillaCheckBox PythonCheckBox tkinter.Checkbutto

n

13 VanillaRadioButt
on

PythonRadioButton tkinter.Radiobutto
n

14 VanillaButton PythonButton tkinter.Button

15 VanillaTable NA NA

16 VanillaImage PythonImage PIL.Imagetk

17 VanillaListBox PythonListBox tkinter.Listbox

18 VanillaComboBo

x

PythonComboBox tkinter.OptionMen

u

19 VanillaTextArea PythonTextArea Tkinter.Text

20 VanillaDatePicke
r

PythonDatePicker Tkinter.ttk.calenda
r

21 VanillaTimePick

er

NA NA

22 VanillaAudio PythonAudio simpleaudio.Wave
Object

23 VanillaVideo PythonVideo cv2.VideoCapture

24 VanillaDialogBo

x

PythonDialogBox Tkinter.tkMessage

Box

VI. CONCLUSION AND FUTURE SCOPE

In this research paper, we proposed Vanilla Model – a

Platform Independent Declarative Model for User

Interface. In this approach, the user interface of web

application is preserved and re-engineered with the help of

Model Driven Architecture approach. We also proposed

the steps to achieve complete re-engineering by first

generating source Platform specific Model from source

code. This source model is then transformed into the

Vanilla Model. We can use Vanilla Model to generate any

number of Platform specific Model and generating code

from it.

REFERENCES

[1] A.R. Da Silva, "Model-driven engineering: A survey supported by

the unified conceptual model." Computer Languages, Systems &

Structures, 43, 139-155. (2015).

[2] R. Pérez-Castillo, I. G. R., de Guzmán, & M. Piattini. "Model-

driven reengineering". In Emerging Technologies for the Evolution

and Maintenance of Software Models (pp. 200-229). IGI

Global.s(2012).

[3] A. Kleppe, J. Warmer,W. Bast. " MDA Explained , The Model -

Driven Archietecture : Practise and Promise". Addison Welsey,

2003.

[4] of Lecture Notes in Computer Science. Springer- D. Akehurst, S.

Kent. "A relational approach to defining transformations in a

metamodel." 5th Int’l Conf. UML. Volume 2460 Verlag, 243–

258.2002.

[5] Prince Singha, Aditya, Kunal Dubey, JagadeeswararaoPalli,

“Toolkit for Web Development Based on Web Based Information

System,” Isroset-Journal (IJSRCSE), 6, no. 5, pp.1-5. 2018..

[6] Shubham, Deepak Chahal, LatikaKharb, “Security for Digital

Payments: An Update,” Journal (IJSRNSC), 6, no. 5 , pp. 51-54.

2018.

Authors Profile

Smita Agarwal has earned Bachelor’s degree of Electronics & and

Master’s degree of Information Technology in 1998 &2001

respectively from University of Delhi. She is currently pursuing

Ph.D. in Computer Science & Engineering.She has seven years of

industry experience.

Alok Aggarwal received his bachelors’ and

masters’ degrees in Computer Science&

Engineering in 1995 and 2001 respectively and

his PhD degree in Engineering from IITRoorkee,

Roorkee, India in 2010. He has academic

experience of 18 years, industry experience of 4 years and research

experience of 5 years. He has contributed more than 150 research

contributions in different journals and conference proceedings.

Currently he is working with University of Petroleum & Energy

Studies, Dehradun, India as Professor in CSE department.

 Sarvottam Dixit did his Ph.D. in Physics

(Material Science) from Dr. B.R. Ambedkar

University Agra in 1990 and completed Post-

Doctorate work from Tata institute of

fundamental research (TIFR) Mumbai funded

by DST in 1996 and M.E. in CSE. Current he is working as advisor

to Chancellor and Professor in Faculty of Engineering in Mewar

University. Earlier he was Pro-VC and acting Vice Chancellor

Shri Venkateshwara University Gajurala (UP) and Venkateshwara

Open University Arunachal Pradesh.

Dr. Adarsh Kumar received his Master degree

(M. Tech) in Software Engineering from Thapar

University, Patiala, Punjab, India, in 2005 and

earned his PhD degree from Jaypee Institute of

Information Technology University, Noida, India

in 2016 followed by Post-Doc from Software

Research Institute, Athlone Institute of

Technology, Ireland during 2016-2018. Currently, he is working

with University of Petroleum & Energy Studies, Dehradun, India

as Associate Professor in School of Computer Science.

http://www.ijsrnsc.org/pdf_paper_view.php?paper_id=349&6-IJSRNSC-0390.pdf
http://www.ijsrnsc.org/pdf_paper_view.php?paper_id=349&6-IJSRNSC-0390.pdf

