
 © 2014, IJCSE All Rights Reserved 190

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
Research Paper Volume-2, Issue-4 E-ISSN: 2347-2693

Design and Implementation of Web Crawler

Prashant Dahiwale
1
, Ankita Dangre

2*
, Puja Kolpyakwar

3
,Vishakha Wankhede

4
 and Priyanka Akre5

1,2*,3,4,5
Dept.of Computer Science and Engineering,,RTMNU,India

www.ijcaonline.org

Received: 11/03/2014 Revised: 23/03/2014 Accepted: 20/04/201x4 Published: 30/04/2014

Abstract – As the number of Internet users and the number of accessible Web pages grows, it is becoming increasingly difficult

for users to find documents that are relevant to their particular needs. The key factors for the success of the World Wide Web are

its large size and the lack of a centralized control over its contents. Users must either browse through a large hierarchy of

concepts to find the information for which they are looking or submit a query to a publicly available search engine and wade

through hundreds of results, most of them irrelevant[5]. Web crawling is the process used by search engines to collect pages

from the Web. Web crawlers are one of the most crucial components in search engines and their optimization would have a great

effect on improving the searching efficiency. This paper, introduces web crawler that uses a concept of irrelevant pages for

improving its crawling performance. [5] Despite their conceptual simplicity, implementing high-performance web crawlers

poses major engineering challenges due to the scale of the web. This crawler computes the weights for the pages we come across

during the crawling process and hence decide how much a particular page is important to us. Both issues are also the most

important source of problems for locating information. The Web is a context in which traditional Information Retrieval methods

are challenged, and given the volume of the Web and its speed of change, the coverage of modern search engines is relatively

small. Moreover, the distribution of quality is very skewed, and interesting pages are scarce in comparison with the rest of the

content.

Index Term— Web Crawler , Seed , Frontier, Page Weight, Threshold Value

I. INTRODUCTION :

Internet is the shared global computing network.

The Internet is a global systemof interconnected computer

networks that use the standard Internet protocol

suite (TCP/IP) to serve several billion users worldwide. It

enables global communications between all connected

computing devices.[2] It is a network of networks that

consists of millions of private, public, academic, business,

and government networks, of local to global scope, that are

linked by a broad array of electronic, wireless, and optical

networking technologies. It provides the platform for web

services and the World Wide Web. Web is the totality of

web pages stored on web servers. There is a spectacular

growth in web-based information sources and services. The

Internet carries

an extensive range of information resources and services,

such as the inter-linked hypertext documents of the World

Wide Web (WWW), the infrastructure to support email,

and peer-to-peer networks. It is estimated that, there is

approximately doubling of web pages each year. As the Web

grows grander and more diverse, search engines also have

assumed a central role in the World Wide Web’s

infrastructure as its scale and impact have escalated. In

Internet data are highly unstructured which makes it

extremely difficult to search and retrieve valuable

information. Search engines define content by keywords.

A Web crawler starts with a list of URLs to visit, called

the seeds. As the crawler visits these URLs, it identifies all

the hyperlinks in the page and adds them to the list of URLs

to visit, called the crawl frontier. URLs from the frontier

are recursively visited according to a set of policies.

The large volume implies that the crawler can only

download a limited number of the Web pages within a given

time, so it needs to prioritize its downloads.[4] The high rate

of change implies that the pages might have already been

updated or even deleted.

The number of possible URLs crawled being generated by

server-side software has also made it difficult for web

crawlers to avoid retrieving duplicate content. Endless

combinations of HTTP GET(URL-based) parameters exist,

of which only a small selection will actually return unique

content.[4] For example, a simple online photo gallery may

offer three options to users, as specified through HTTP GET

parameters in the URL. If there exist four ways to sort

images, three choices of thumbnail size, two file formats,

and an option to disable user-provided content, then the same

set of content can be accessed with 48 different URLs, all of

which may be linked on the site. [2]

As Edwards et al. noted, "Given that the bandwidth for

conducting crawls is neither infinite nor free, it is becoming

essential to crawl the Web in not only a scalable, but

efficient way, if some reasonable measure of quality or Corresponding Author: Ankita Dangre

Dept.of Computer Science and Engineering,,RTMNU,India

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (190-193) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 191

freshness is to be maintained. A crawler must carefully

choose at each step which pages to visit next.[3]

A. Crawling policy

The behaviour of a web crawler is the outcome of

combination of policies:

� a selection policy that states which pages to download,

� a re-visit policy that states when to check for changes to

the pages,

� a politeness policy that states how to avoid

overloading Web sites, and

� a parallelization policy that states how to

coordinate distributed web crawlers.

1) Selection policy

Given the current size of the Web, even large search engines

cover only a portion of the publicly available part. A 2005

study showed that large-scale search engines index no more

than 40-70% of the indexable Web a previous study by Steve

Lawrence and Lee Giles showed that no search engine

indexed more than 16% of the Web in 1999. As a crawler

always downloads just a fraction of the Web pages, it is

highly desirable that the downloaded fraction contains the

most relevant pages and not just a random sample of the

Web.

Designing a good selection policy has an added difficulty: it

must work with partial information, as the complete set of

Web pages is not known during crawling.

a) Restricting followed links

b) URL normalization

c) Path-ascending crawling

d) Focused crawling

2) Re-visit policy

The Web has a very dynamic nature, and crawling a fraction

of the Web can take weeks or months. By the time a Web

crawler has finished its crawl, many events could have

happened, including creations, updates and deletions.

From the search engine's point of view, there is a cost

associated with not detecting an event, and thus having an

outdated copy of a resource. The most-used cost functions

are freshness and age

Freshness: This is a binary measure that indicates whether

the local copy is accurate or not.

The objective of the crawler is to keep the average freshness

of pages in its collection as high as possible, or to keep the

average age of pages as low as possible. These objectives are

not equivalent: in the first case, the crawler is just concerned

with how many pages are out-dated, while in the second

case, the crawler is concerned with how old the local copies

of pages are.

Two simple re-visiting policies were studied by Cho and

Garcia-Molina:

Uniform policy: This involves re-visiting all pages in the

collection with the same frequency, regardless of their rates

of change.

Proportional policy: This involves re-visiting more often

the pages that change more frequently. The visiting

frequency is directly proportional to the (estimated) change

frequency.

3) Politeness policy:

Crawlers can retrieve data much quicker and in greater depth

than human searchers, so they can have a crippling impact

on the performance of a site. Needless to say, if a single

crawler is performing multiple requests per second and/or

downloading large files, a server would have a hard time

keeping up with requests from multiple crawlers.

4) Parallelisation policy:

A parallel crawler is a crawler that runs multiple

processes in parallel. The goal is to maximize the download

rate while minimizing the overhead from parallelization and

to avoid repeated downloads of the same page. To avoid

downloading the same page more than once, the crawling

system requires a policy for assigning the new URLs

discovered during the crawling process, as the same URL

can be found by two different crawling processes.[3]

Earlier work was based on how the web crawler works, the

process of web crawler and how the sequence of accepting

the URL, fetching the page, parsing the page, extracting all

the hyperlinks is performed. While performing the following

sequence, we are downloading the page we need to verify for

the evaluation. Hence, while downloading the page we

anyways use up the bandwidth. It will be even more

beneficial if we utilize the used bandwidth and get more out

of it. than once, the crawling system requires a policy for

assigning the new URLs discovered during the crawling

process, as the same URL can be found by two different

crawling processes.[3]

Earlier work was based on how the web crawler works, the

process of web crawler and how the sequence of accepting

the URL, fetching the page, parsing the page, extracting all

the hyperlinks is performed. While performing the following

sequence, we are downloading the page we need to verify for

the evaluation. Hence, while downloading the page we

anyways use up the bandwidth. It will be even more

beneficial if we utilize the used bandwidth and get more out

of it.

Thus implementing the following method, we use the

downloaded pages’ bandwidth and get the same bandwidth

to get the title, body and the number of outgoing links on

that particular page.

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (190-193) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 192

II. METHODOLOGY

Architectures[3]

High-level architecture of a standard Web crawler

A crawler must not only have a good crawling strategy, as

noted in the previous sections, but it should also have a

highly optimized architecture.[2] While it is fairly easy to

build a slow crawler that downloads a few pages per second

for a short period of time, building a high-performance

system that can download hundreds of millions of pages over

several weeks presents a number of challenges in system

design, I/O and network efficiency, and robustness and

manageability. Web crawlers are a central part of search

engines, and details on their algorithms and architecture are

kept as business secrets. When crawler designs are

published, there is often an important lack of detail that

prevents others from reproducing the work. There are also

emerging concerns about "search engine spamming", which

prevent major search engines from publishing their ranking

algorithms.

We define the factors for which we specify the page

importance:

weight(page) = weight(URL) + weight(outlinks) +

weight(title) + weight(body)

where,

1) if (search string present in URL)

 {

 weight(URL) returns a predefined weight

 }

Else

{

 Return 0

}

This will return the weight assigned for the URL

occurrence. If the search string is found in the URL, the page

acquires certain importance.

2) if (search string present in title)

 {

 weight(title) returns a predefined weight

 }

Else

{

 Return 0

}

This will return the weight assigned for the title occurrence.

If the search string is found in the title, the page acquires

certain importance.

3) Occurrence of search string in the body

 {

 weight(body)=occurrence*weight for each

occurence

 }

This will return the weight assigned for the body occurrence.

If the search string is found in the body, the page acquires

certain importance. When the search string occurs certain

number of times in the body, the occurrence is noted and the

page importance is calculated using the occurrence count.

4) Number of hyperlinks on the page

 {

 weight(outlinks)=occurrence*weight for each

occurence

 }

 This will return the weight assigned for the out-

links occurrence. The number of links linking to the other

page has also been assigned some importance.

Giving importance to each component of the parsed page, we

have assigned weight to each component and hence acquired

the page importance in totality. As we get the page weight,

we will compare it with the threshold frequency implicitly

provided to the algorithm. Depending on the result of

comparison, the links are either added to the output or they

may be discarded.

Thus, we get the search more focused to the search string

eliminating the least important topic.

Proposed Algorithm (Pseudo Copde):

1. Start

2. Initialize frontier with seed URL.

3. While (frontier is not empty)

{

Pick URL from frontier

Fetch page

Parse page

calculate weight(page).

}

4. if(weight(page) > (threshold_value))

{

 Add to output.

}

5. Stop

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (190-193) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 193

III. RESULT & DISCUSSION

� As the number of URL to crawl increases,the links

count also increases.

� When the total links increases, the relevant links don’t

increase with same speed.

� As we go far away from the seed URL,the frequency

of finding relevant links decreases.

� As the number of URLs to crawl increases,the

elapsed time also increases.

� As we go far away from seed, the time for finding

relevant links also increases respectively.

.

IV. CONCLUSION

Hence by using the concept of Page Weight, we scan web

pages as well as compute the weight of page and hence we

can increase efficiency of web crawler as output set of URL

generated by this way will always be of better importance

than what traditional web crawler is generating.

V. SCOPE FOR FURTHER RESEARCH

As we parse the page, we have only extracted the hyperlinks

on the page. We can proceed the work by extracting the

images, videos and other non textual content and hence carry

out the further process.

VI .ACKNOWLEDGMENT

We would like to express my special thanks of gratitude to

our Guide Prof. Rahul Sathawane as well as our Co-guide

Prof. Prashant Dahiwale who gave us the golden opportunity

to do this wonderful project on the topic “Design and

Implementation of Web Crawler”, which also helped us in

doing a lot of Research and we came to know about so many

new things we are really thankful to them.

VII REFERENCES

[1] Prashant Dahiwale, Anil Mokhade, M.M. Raghuwanshi,

Intelligent Web Crawlers, ICWET, ACM New York, NY,

USA, pp. 613-617, 2010.

[2] Brian Pinkerton, Finding what people want: Experiences with

the Web Crawler, Proceedings of first World Wide Web

conference, Geneva, Switzerland, 1994

[3] Gautam Pant, Padmini Srinivasan, Filippo Menczer, Crawling

the Web, pp. 153-178, Mark Levene, Alexandra Poulovassilis

(Ed.), Web Dynamics: Adapting to Change in Content, Size,

Topology and Use, Springer-Verlag, Berlin, Germany,

November 2004.

[4] Christopher Olston, Marc Najork, Web Crawler Architecture,

Journal Foundations and Trends in Information Retrieval

archive, Volume 4 Issue 3, pp. 175-246, March 2010.

[5] B. Pinkerton, “Finding what people want: Experiences with the

WebCrawler,” in Proceedings of the 2nd International

World Wide Web Conference ,1994.

[6] en.wikipedia.org/wiki/

AUTHORS PROFILE

Name: Prof. Prashant Dahiwale

E-Mail:prashant.dahiwale@gmail.com

Institute:RGCER,Nagpur

Name: Ankita Dangre

E-Mail:ankitavd92@gmail.com

Institute:RGCER,Nagpur

Name: Puja Kolpyakwar

E-Mail:puja.kolpyakwar@gmail.com

Institute:RGCER,Nagpur

Name: Vishakha Wankhede

E-Mail:wankhede.vishakha@gmail.com

Institute:RGCER,Nagpur

Name: Priyanka Akre

E-Mail:priyankaakre779@gmail.com

Institute:RGCER,Nagpur

