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Abstract— Data mining is the process of extracting the concealed information and rules from large databases. But the real world datasets 

are sparse, dirt and also contain hundreds of items. Frequent Pattern Mining (FPM) is one of the most intensive problems in discovering 

frequent itemsets from such datasets. Apriori is one of the premier and classical data mining algorithms for finding frequent patterns but it is 

not an optimized one. So over last two decades a remarkable variations and improvements were made to overcome the inefficiencies of 

Apriori algorithm such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing and Pruning (DHP), RARM, ASPMS etc., In 

any case, a little enhancement in the algorithm improves the mining process considerably. Frequent itemset mining with vertical data format 

approach has been proposed as an improvement over the basic Apriori, which reduces the number of database scans and also uses array 

storage structure. This research paper has proposed a space efficient implementation of finding frequent itemsets with vertical data format 

using jagged array. It reduces the usage of memory by allocating exact memory. An experiment is done between the array implementation of 

vertical data format approach and jagged array implementation. From the experiment it is proved that the proposed jagged array 

implementation method utilizes the memory efficiently when compared with the traditional multidimensional array. 

 

Index Terms — Apriori, Array, Eclat, Frequent Pattern Mining, FPGrowth, Jagged Array, and Vertical Data Format. 

I.  INTRODUCTION  

 Now-a-days, volumes of data are exploding both in 

scientific and commercial domains. Data mining techniques 

are used to extract unknown information from the huge 

amount of data and became popular in many applications. 

Association Rule Mining (ARM) is one of an important core 

data mining techniques to discover patterns/rules among 

items in a large database of variable-length transactions. Its 

goal is to identify the groups of items that most often occurs 

together i.e., it focuses on finding frequent itemsets each 

occurring at more than a minimum support frequency 

(min_sup) among all transactions. It is widely used in market 

basket transaction data analysis, graph mining applications 

like  substructure  discovery  in chemical compounds, pattern 

finding in web browsing, word occurrence analysis in text 

documents, and so on [1].  

 The major risks associated with finding frequent 

itemsets are i) computational time and ii) memory needed for 

the task because even with a moderate sized dataset, the 

search space and memory utilization of FPM is enormous, 

which is exponential to the length of the transactions in the 

dataset. Therefore, it is essential to perform FPM analysis in 

a space-and-time efficient way. Many researchers in this area 

focused on reducing computational time to find frequent 

patterns and this work focuses on reducing the memory 

utilization using jagged array storage structure in the vertical 

data mining algorithms.  

 Rest of the paper is organized as follows. Section 2 

describes the review of literature. The proposed 

implementation method of Vertical Data Format (VDF) is 

illustrated in section 3. The comparison of existing and the 

proposed implementation methods are discussed in section 4 

and finally section 5 ends with conclusion.  

 

II. REVIEW OF LITERATURE  

 Improving the computational time and memory is 

always an issue in ARM and this section briefs the research 

contributions made by different researchers in this line which 

pawed way for the proposed implementation. 

 In [2], the authors have presented a VDSRP method 

to generate complete set of regular patterns over a data 

stream at a user given regularity threshold using sliding-

window and VDF. It has been proved that the proposed 

method outperforms both in execution and memory 

consumption. 

 Ravikiran, D., et. al, have proposed a new model 

called RCP to mine regular sort of crimes in crime database 

using VDF which requires only one database scan. From the 

experimental results they proved that RCP is more efficient 

than the existing RPtree[3]. In [4], the authors have focused 
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on the various FPM techniques, their challenges in static and 

stream data environment.  
 

 The authors in [6] have presented a new algorithm, 

which mine frequent itemsets with vertical format. They 

proved that the new algorithm needs a single database scan 

and finds new frequent item sets through 'and operation' 

between item sets. The new algorithm requires less storage 

space, and improves the efficiency of data mining. 
 

 An enhanced Apriori and Eclat has been introduced 

in [8], in which individual thresholds for each itemset has 

been used and proved that that the enhanced-Apriori 

algorithm outperforms Enhanced-Eclat Algorithm.  
 

  In [9], the authors have presented an improved 

version of Eclat called Eclat-growth algorithm based on 

increased search strategy. For reducing the runtime in 

generating an intersection of two itemsets and support degree 

calculation, a BSRI (Boolean array Setting and Retrieval by 

Indexes of transactions) method has been introduced. It has 

been proved by them that the Eclat-growth outperforms 

Eclat, Eclat-diffsets, Eclat-opt and hEclat in mining 

association rules.  
 

 In [10], a VFFM algorithm has been developed 

which represents the transaction database in vertical format 

in the form of binary, where the attribute presence and 

absence is represented by 1 and 0 respectively. After one 

scan of transaction database for transformation it generates 

candidate sets and subsets similar to Apriori algorithm. The 

support value of each candidate itemsets is counted by 

intersection of every pair of frequent single items instead of 

database scan and proved that the VFFM outperforms 

Apriori. 
 

 Compressed bit vectors of frequent itemsets based 

on Boolean algebra named Vertical Boolean Mining (VBM) 

has been presented in [11] and it performs the intersection of 

two compressed bit vectors without making any costly 

decompression operation. They proved from the experiments 

that the VBM is better than Apriori and the classical vertical 

association rule mining algorithms in terms of mining time 

and memory usage. 
 

 A novel VDF representation called Diffset has been 

developed by the authors in [12], which keep track of the 

differences in the tid's of a candidate pattern and from which 

it generates frequent patterns. The method cut down the size 

of memory required to store intermediate results and also 

increased performance significantly.  
 

      From the existing literatures, it is noted that no 

authors have proposed a jagged array implementation of 

VDF approach for enhancing the memory requirement of 

VDF. Thus, this work implements VDF using the jagged 

array for efficient utilization of memory. 

III. JAGGED ARRAY IMPLEMENTATION OF 

VERTICAL DATA FORMAT APPROACH 
 

 Frequent patterns are itemsets [set of items, such as 

milk and bread, that appear frequently together in a 

transaction data set], subsequences [buying first a PC, then a 

digital camera, and then a memory card, if it occurs 

frequently in a shopping history database], or substructures 

[subgraphs, subtrees or sublattices] that appear in a dataset 

with frequency no less than a user-specified threshold 

(min_sup)[7]. Finding frequent patterns plays an essential 

role in mining associations, correlations and many other 

interesting relationships among data. ARM is one of the data 

mining techniques to discover the hidden patterns/rules 

among items in a large database of variable-length 

transactions that help in making decision and predictions [4].  

 Apriori Algorithm, FP-Growth and Eclat [4] are the 

popularly available static data mining techniques for finding 

frequent patterns. Apriori is the basic algorithm for mining 

frequent patterns which suffers from space complexity due to 

large number of candidate generation and also requires 

multiple scans of database. FP-growth uses a tree structure 

for mining frequent itemsets. Due to limited number of 

database scans and zero candidates, it is efficient as 

compared to Apriori. Both the Apriori and FP-growth 

algorithms mine frequent patterns in Horizontal Data Format 

(HDF) (i.e., {TID: itemset}), where TID is a transaction-id 

and itemset is the set of items in TID and it is shown in    

Table I. 

TABLE I. TRANSACTION DATABASE D IN HDF 

TID List of item IDS 

T1 A,B,E 

T2 B,D 

T3 B,C 

T4 A,B,D 

T5 A,C 

T6 B,C 

T7 A,C 

T8 A,B,C 

T9 A,B,C,E 

 

But the data can also be presented in {item: TID-

set} format where item is an item name and TID-set is the set 

of transactions containing the item called VDF. The VDF is 

used in Eclat algorithm that minimizes the database scan and 

uses set intersection of Tid’s for finding the support count for 

k-itemsets where k=2,3,...,n. The VDF of the transaction 

database D is shown in Table II. The comparisons between 
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the Apriori, FP-Growth and Eclat with different parameters 

are shown in Table III. From Table III and in [4] it is 

observed that the FP mining algorithms which use VDF are 

very fast and requires less memory space when compared 

with HDF approaches. But, the VDF approaches use array 

storage structure for storing the database in memory. 
 

 

TABLE II. VDF OF D 

itemset TID_set 

A T1,T4,T5,T7,T8,T9 

B T1, T2, T3, T4, T6, T8,T9 

C T3, T5, T6, T7, T8,T9 

D T2,T4 

E T1,T9 

 

 To reduce memory space further, this research work 

implements the VDF using jagged array. It is a special case 

of 2-D array and it is an array of array in which the length of 

each array can differ. This concept is available in JAVA, 

VB.NET and C#.NET. This implementation helps to reduce 

the memory needed considerably because in the real life 

grocery datasets the customers will not purchase all the items 

in the shop. Thus, this implementation utilizes the memory 

effectively. 

A. An Example 

 The first part of this section shows the memory 

requirement for the array implementation of VDM. Let the 

grocery shop sells n (5) items viz., A, B, C, D and E and 

consider the transaction database D shown in Table I. It 

contains t (9) transactions and it is scanned first to generate 

VDF. The VDF of Table I is shown in Table II. 
 

TABLE III. COMPARISON BETWEEN STATIC DATA MINING TECHNIQUES FOR FINDING FREQUENT PATTERNS [5] 

 

Comparison 

Parameters 
Apriori FP-Growth ECLAT 

Technique 
Breadth first search and Apriori 

property (for pruning) 
Divide and conquer 

Depth first search & 

intersection of T-id’s 

Database Scan 
scanned for each time a candidate 

item set is generated 
Two times Few times 

Drawback(s) 
1. Requires large memory space. 

2. Too many candidate item set. 

FP-tree is expensive to build 

and consumes more memory 

It requires the virtual 

memory to perform the 

transaction. 

Advantage(s) 
1. Easy to implement. 

2. Use large item set property 

Database is scanned two 

times 

1. No need to scan the 

database each time 

2. fast 

Data format Horizontal Horizontal Vertical 

Storage structure Array Tree (FP-tree) Array 

Time More execution time 
Execution time is less than 

Apriori 

Execution time is less than 

Apriori 

 

        The support count (SC) for each item is the number of 

transaction-id's that it contains i.e. the SC of A, 

SCA=count(A)=6. Similarly, SCB=7, SCC=6, SCD=2 and 

SCE=2. Let the min_sup be 2. The frequent 1-itemset 

contains {A, B, C, D, E}. The VDF is actually stored in the 

memory as 2-D array, where number of rows (r) = items in 

the grocery shop and number of columns(c) = t. Here r=5 

and c=9. The memory required for storing 1-itemset in VDF 

format is  

 

1 11
( ( )) ( ( ) )TM r c sizeof tid sizeof item r= × × + ×                (1) 

  

 Where item11 is the first item in the frequent                          

1-itemset, tid is the transaction-id and sizeof is a built-in 

function which says the number of bytes required for the 

argument.  

 

Here each tid requires 2 bytes and item11 requires 1 byte of 

memory respectively. All items say A, B, C, D and E sold in 

the grocery shop are frequent 1-itemsets. Therefore the VDF 

requires (5×9×2)+(5×1) = 95 bytes of memory i.e., TM1 = 95 

bytes. Suppose if there are some in-frequent items in                      

1-itemsets, they can be removed which saves memory 

considerably. The number of bytes of memory removed from 

1-itemset is computed as  
 

( ( )) ( ( ))
1 1 1 11

rbytes rr c sizeof tid rr sizeof item= × × + ×               (2) 

 

        Where, rr1 is the number of rows to be removed as in-

frequent. Therefore the total bytes of memory for frequent                

1-itemset is  
 

1 1 1M TM rbytes= −                                                                (3) 
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 Here M1 = 95 - 0 = 95 bytes. Similarly, in iteration 

2, the possible 2-itemsets combinations are generated from 

frequent 1-itemsets and it is {AB, AC, AD, AE, BC, BD, BE, 

CD, CE, DE}. Suppose if there are n items in 1-itemset, the 

possible two item combinations are (n×n-1)/2 say tc2. Among 

them, the numbers of itemset combinations say x may be in-

frequent which need not be placed in VDF. Therefore, the 

memory required for frequent 2-itemset shown in Table IV is  
 

21
(( ) ( )) ( ( ) ( ))2 2 2TM tc x c sizeof tid sizeof item tc x= − × × + × −       (4) 

 

 Where, item21 is the first item in the frequent                     

2-itemset. In this example, the combinations viz., AD,CD,CE 

and DE are in-frequent and based on equation (4), the VDF 

requires ((10 - 4) × 9 × 2) + (2 × (10 - 4)) = 108 + 12 = 120 

bytes. Similarly from Table IV, the 3-itemset combinations 

are {ABC, ABD, ABE, ACE, BCD, BCE, BDE} and the 

combinations ABD, ACE, BCD, BCE and BDE are in-

frequent, therefore the frequent 3-itemset requires                        

((7-5)×9×2)+(7-5)×3)=42 bytes of memory and the VDF of 

3-frequent itemsets is shown in Table V. The process is 

repeated until no frequent itemsets are found.  

 
TABLE IV. VDF OF 2-ITEMSETS 

Itemset TID_set 

AB T1,T4,T8,T9 

AC T5,T7,T8,T9 

AE T1,T9 

BC T3,T6,T8,T9 

BD T2,T4 

BE T1,T9 

 

Therefore, the total memory required for VDF using 2-D 

array is  
 

1 2

itemseti
TM M TMi

i

≠∅

∑= +
=

                                                     (5) 

 

 Where M1 is calculated using (3) and TMi are 

calculated using the equation (6) shown below. 

 

)(( ( )) ( ( ) ( ))
1

x xTM tc c sizeof tid sizeof item tci i ii
− −= × × + ×       (6) 

   

 Where, tci and x are the number of items and in-

frequent items in the candidate i-frequent itemset. For the 

above example TM = 95+120+42 =257 bytes of memory. If 

the same is implemented using jagged array, the memory 

requirement is reduced considerably. The format of jagged 

array representation for candidate 1-itemset is shown in 

Table VI and all items in it are frequent which forms 

frequent 1-itemset.  

 
TABLE V. VDF OF 3-ITEMSETS 

itemset TID_set 

ABC T8,T9 

ABE T1,T9 

 

        TABLE VI. JAGGED ARRAY REPRESENTATION OF 1-ITEMSET 

itemset TID_set 

A T1 T4 T5 T7 T8 T9 

B T1 T2 T3 T4 T6 T8 T9 

C T3 T5 T6 T7 T8 T9 

D T2 T4 

E T1 T9 

 

         The memory required for candidate 1-itemset TM1 

is calculated as   

 

( ) ( )
1

{ }1

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

            (7) 

 

 As in two-D representation, there may be x in-

frequent items in candidate 1-itemset say {in-frequent} = 

{item1, item2, …,itemx} then the memory for {in-frequent} 

be saved by removing it and the amount of memory removed 

is computed as shown in equation (8).  

 

( )1
{ }

( )rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

×      (8) 

  

 Therefore the total memory required for frequent                

1-itemset in jagged representation is computed using (3) with 

the values computed using (7) and (8) respectively. 

Similarly, the jagged array representation of frequent                      

2-itemset shown in Table VII requires TM2 - rbytes2 memory 

space where TM2 and rbytes2 are calculated by using (9) and 

(10) respectively.  

 

( ) ( )
2

{ }2

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

          (9) 

 

2 ( )

{ }

( )rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

× (10) 

 

 The jagged representation of frequent 3-itemset is 

shown in Table VIII which requires TM3 - rbytes3 memory. 

This process continues until no more frequent itemsets are 
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found. For this case the candidate 4-itemset is null and the 

algorithm terminates. Therefore, the total memory required 

for the jagged implementation is calculated using equation 

(11).  

 

1

itemseti
TM TM rbytesi ii

≠∅

∑= −
=

                                      (11) 

 

 Where, TMi and rbytesi are calculated using (12) and 

(13) respectively. 

 

 ( ) ( )
{ }

TM SC sizeof tid sizeof itemitemi
item itemseti

∑= × +

∀ ∈

           (12) 

 

( )

{ }

( )
i

rbytes SC sizeof itemitem
item in frequent

sizeof tid

i

∑= +

∀ ∈ −

×   (13) 

 
TABLE VII. JAGGED ARRAY REPRESENTATION OF 2-ITEMSET 

itemset TID_set 

AB T1 T4 T8 T9 

AC T5 T7 T8 T9 

AE T1 T9 

BC T3 T6 T8 T9 

BD T2 T4 

BE T1 T9 

 
TABLE VIII. JAGGED ARRAY REPRESENTATION OF 3-ITEMSET 

itemset TID_set 

ABC T8 T9 

ABE T1 T9 

 

For this example, the jagged representation requires 

TM1            = (6×2 +1)+(7×2+1)+(6×2+1)+(2×2+1)+(6×2+1) 

               = 13+15+13+5+5=51 bytes 

 rbytes1   = 0 

 Therefore M1=51- 0 = bytes 

 TM2         = (4×2+2) +(4×2+2)+(1×2+2)+ (2×2+2) +(4×2+2) 

+(2×2+2) +(2×2+2) +(0×2+2) +(1×2+2)+ (0×2+2)  

                =10+10+4+6+10+6+6+2+4+2=60 bytes 

rbytes2     = (1×2+2)+(0×2+2)+(1×2+2)+(0×2+2)=12 bytes 

Therefore M2 requires = 60 - 12 = 48 bytes of memory. 

Similarly, M3 requires 14 bytes and therefore, the jagged 

representation for this example requires 

TM=M1+M2+M3 =51+48+14=113 bytes of memory which is 

less than 50% in the original array representation. 

IV. RESULTS AND DISCUSSION 

From the example discussed in section 3.1, the jagged 

implementation has several advantages. They are  

1. No memory space is wasted as in 2-D array because 

jagged array allocates space only to the transactions in 

which the items occurs. 

2. Minimizes the memory space required than the 

original array implementation because for the above 

example the array implementation requires 257 bytes 

of memory, where as it is 113 bytes when using 

jagged implementation i.e., it requires less than 50% 

of memory when compared with the array 

representation. 

 Thus, it is finalized that the jagged implementation 

saves memory significantly and also fast when compared 

with the horizontal data format approaches. 

V. CONCLUSION 

        From the literatures, it is observed that there is always a 

trade-off between the computational time and memory in 

generating frequent itemsets. It is also found that the vertical 

data format approaches reduces the database scans and finds 

the support counts by intersection. Though it is best, the array 

storage structure implementation used by VDF requires more 

memory because it takes the assumption that each item may 

fall almost in all transactions. But in real world grocery 

datasets, each transaction will not contain all items and each 

item may not present in all transactions. So to reduce the 

memory consumption, this research work used the jagged 

array representation for efficient usage of memory and from 

the experiments it is proved that the proposed implementation 

approach reduces more than 50% of memory when compared 

with original 2-D array implementation. In future, this work 

can be extended to the test real world grocery datasets of 

more dimensions. 
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