

 © 2018, IJCSE All Rights Reserved 152

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.6, Special Issue.11, Dec 2018 E-ISSN: 2347-2693

A Memory Efficient Implementation of Frequent Itemset Mining with

Vertical Data Format Approach

P. Sumathi
1*

, Dr. S. Murugan
2

1
Department of Computer Science, Nehru Memorial College (Autonomous), Tiruchirappalli, India

2
Department of Computer Science, Nehru Memorial College (Autonomous), Tiruchirappalli, India

*
Corresponding Author: sumiparasu@gmail.com

Available online at: www.ijcseonline.org

Abstract— Data mining is the process of extracting the concealed information and rules from large databases. But the real world datasets

are sparse, dirt and also contain hundreds of items. Frequent Pattern Mining (FPM) is one of the most intensive problems in discovering

frequent itemsets from such datasets. Apriori is one of the premier and classical data mining algorithms for finding frequent patterns but it is

not an optimized one. So over last two decades a remarkable variations and improvements were made to overcome the inefficiencies of

Apriori algorithm such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing and Pruning (DHP), RARM, ASPMS etc., In

any case, a little enhancement in the algorithm improves the mining process considerably. Frequent itemset mining with vertical data format

approach has been proposed as an improvement over the basic Apriori, which reduces the number of database scans and also uses array

storage structure. This research paper has proposed a space efficient implementation of finding frequent itemsets with vertical data format

using jagged array. It reduces the usage of memory by allocating exact memory. An experiment is done between the array implementation of

vertical data format approach and jagged array implementation. From the experiment it is proved that the proposed jagged array

implementation method utilizes the memory efficiently when compared with the traditional multidimensional array.

Index Terms — Apriori, Array, Eclat, Frequent Pattern Mining, FPGrowth, Jagged Array, and Vertical Data Format.

I. INTRODUCTION

 Now-a-days, volumes of data are exploding both in

scientific and commercial domains. Data mining techniques

are used to extract unknown information from the huge

amount of data and became popular in many applications.

Association Rule Mining (ARM) is one of an important core

data mining techniques to discover patterns/rules among

items in a large database of variable-length transactions. Its

goal is to identify the groups of items that most often occurs

together i.e., it focuses on finding frequent itemsets each

occurring at more than a minimum support frequency

(min_sup) among all transactions. It is widely used in market

basket transaction data analysis, graph mining applications

like substructure discovery in chemical compounds, pattern

finding in web browsing, word occurrence analysis in text

documents, and so on [1].

 The major risks associated with finding frequent

itemsets are i) computational time and ii) memory needed for

the task because even with a moderate sized dataset, the

search space and memory utilization of FPM is enormous,

which is exponential to the length of the transactions in the

dataset. Therefore, it is essential to perform FPM analysis in

a space-and-time efficient way. Many researchers in this area

focused on reducing computational time to find frequent

patterns and this work focuses on reducing the memory

utilization using jagged array storage structure in the vertical

data mining algorithms.

 Rest of the paper is organized as follows. Section 2

describes the review of literature. The proposed

implementation method of Vertical Data Format (VDF) is

illustrated in section 3. The comparison of existing and the

proposed implementation methods are discussed in section 4

and finally section 5 ends with conclusion.

II. REVIEW OF LITERATURE

 Improving the computational time and memory is

always an issue in ARM and this section briefs the research

contributions made by different researchers in this line which

pawed way for the proposed implementation.

 In [2], the authors have presented a VDSRP method

to generate complete set of regular patterns over a data

stream at a user given regularity threshold using sliding-

window and VDF. It has been proved that the proposed

method outperforms both in execution and memory

consumption.

 Ravikiran, D., et. al, have proposed a new model

called RCP to mine regular sort of crimes in crime database

using VDF which requires only one database scan. From the

experimental results they proved that RCP is more efficient

than the existing RPtree[3]. In [4], the authors have focused

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 153

on the various FPM techniques, their challenges in static and

stream data environment.

 The authors in [6] have presented a new algorithm,

which mine frequent itemsets with vertical format. They

proved that the new algorithm needs a single database scan

and finds new frequent item sets through 'and operation'

between item sets. The new algorithm requires less storage

space, and improves the efficiency of data mining.

 An enhanced Apriori and Eclat has been introduced

in [8], in which individual thresholds for each itemset has

been used and proved that that the enhanced-Apriori

algorithm outperforms Enhanced-Eclat Algorithm.

 In [9], the authors have presented an improved

version of Eclat called Eclat-growth algorithm based on

increased search strategy. For reducing the runtime in

generating an intersection of two itemsets and support degree

calculation, a BSRI (Boolean array Setting and Retrieval by

Indexes of transactions) method has been introduced. It has

been proved by them that the Eclat-growth outperforms

Eclat, Eclat-diffsets, Eclat-opt and hEclat in mining

association rules.

 In [10], a VFFM algorithm has been developed

which represents the transaction database in vertical format

in the form of binary, where the attribute presence and

absence is represented by 1 and 0 respectively. After one

scan of transaction database for transformation it generates

candidate sets and subsets similar to Apriori algorithm. The

support value of each candidate itemsets is counted by

intersection of every pair of frequent single items instead of

database scan and proved that the VFFM outperforms

Apriori.

 Compressed bit vectors of frequent itemsets based

on Boolean algebra named Vertical Boolean Mining (VBM)

has been presented in [11] and it performs the intersection of

two compressed bit vectors without making any costly

decompression operation. They proved from the experiments

that the VBM is better than Apriori and the classical vertical

association rule mining algorithms in terms of mining time

and memory usage.

 A novel VDF representation called Diffset has been

developed by the authors in [12], which keep track of the

differences in the tid's of a candidate pattern and from which

it generates frequent patterns. The method cut down the size

of memory required to store intermediate results and also

increased performance significantly.

 From the existing literatures, it is noted that no

authors have proposed a jagged array implementation of

VDF approach for enhancing the memory requirement of

VDF. Thus, this work implements VDF using the jagged

array for efficient utilization of memory.

III. JAGGED ARRAY IMPLEMENTATION OF

VERTICAL DATA FORMAT APPROACH

 Frequent patterns are itemsets [set of items, such as

milk and bread, that appear frequently together in a

transaction data set], subsequences [buying first a PC, then a

digital camera, and then a memory card, if it occurs

frequently in a shopping history database], or substructures

[subgraphs, subtrees or sublattices] that appear in a dataset

with frequency no less than a user-specified threshold

(min_sup)[7]. Finding frequent patterns plays an essential

role in mining associations, correlations and many other

interesting relationships among data. ARM is one of the data

mining techniques to discover the hidden patterns/rules

among items in a large database of variable-length

transactions that help in making decision and predictions [4].

 Apriori Algorithm, FP-Growth and Eclat [4] are the

popularly available static data mining techniques for finding

frequent patterns. Apriori is the basic algorithm for mining

frequent patterns which suffers from space complexity due to

large number of candidate generation and also requires

multiple scans of database. FP-growth uses a tree structure

for mining frequent itemsets. Due to limited number of

database scans and zero candidates, it is efficient as

compared to Apriori. Both the Apriori and FP-growth

algorithms mine frequent patterns in Horizontal Data Format

(HDF) (i.e., {TID: itemset}), where TID is a transaction-id

and itemset is the set of items in TID and it is shown in

Table I.

TABLE I. TRANSACTION DATABASE D IN HDF

TID List of item IDS

T1 A,B,E

T2 B,D

T3 B,C

T4 A,B,D

T5 A,C

T6 B,C

T7 A,C

T8 A,B,C

T9 A,B,C,E

But the data can also be presented in {item: TID-

set} format where item is an item name and TID-set is the set

of transactions containing the item called VDF. The VDF is

used in Eclat algorithm that minimizes the database scan and

uses set intersection of Tid’s for finding the support count for

k-itemsets where k=2,3,...,n. The VDF of the transaction

database D is shown in Table II. The comparisons between

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 154

the Apriori, FP-Growth and Eclat with different parameters

are shown in Table III. From Table III and in [4] it is

observed that the FP mining algorithms which use VDF are

very fast and requires less memory space when compared

with HDF approaches. But, the VDF approaches use array

storage structure for storing the database in memory.

TABLE II. VDF OF D

itemset TID_set

A T1,T4,T5,T7,T8,T9

B T1, T2, T3, T4, T6, T8,T9

C T3, T5, T6, T7, T8,T9

D T2,T4

E T1,T9

 To reduce memory space further, this research work

implements the VDF using jagged array. It is a special case

of 2-D array and it is an array of array in which the length of

each array can differ. This concept is available in JAVA,

VB.NET and C#.NET. This implementation helps to reduce

the memory needed considerably because in the real life

grocery datasets the customers will not purchase all the items

in the shop. Thus, this implementation utilizes the memory

effectively.

A. An Example

 The first part of this section shows the memory

requirement for the array implementation of VDM. Let the

grocery shop sells n (5) items viz., A, B, C, D and E and

consider the transaction database D shown in Table I. It

contains t (9) transactions and it is scanned first to generate

VDF. The VDF of Table I is shown in Table II.

TABLE III. COMPARISON BETWEEN STATIC DATA MINING TECHNIQUES FOR FINDING FREQUENT PATTERNS [5]

Comparison

Parameters
Apriori FP-Growth ECLAT

Technique
Breadth first search and Apriori

property (for pruning)
Divide and conquer

Depth first search &

intersection of T-id’s

Database Scan
scanned for each time a candidate

item set is generated
Two times Few times

Drawback(s)
1. Requires large memory space.

2. Too many candidate item set.

FP-tree is expensive to build

and consumes more memory

It requires the virtual

memory to perform the

transaction.

Advantage(s)
1. Easy to implement.

2. Use large item set property

Database is scanned two

times

1. No need to scan the

database each time

2. fast

Data format Horizontal Horizontal Vertical

Storage structure Array Tree (FP-tree) Array

Time More execution time
Execution time is less than

Apriori

Execution time is less than

Apriori

 The support count (SC) for each item is the number of

transaction-id's that it contains i.e. the SC of A,

SCA=count(A)=6. Similarly, SCB=7, SCC=6, SCD=2 and

SCE=2. Let the min_sup be 2. The frequent 1-itemset

contains {A, B, C, D, E}. The VDF is actually stored in the

memory as 2-D array, where number of rows (r) = items in

the grocery shop and number of columns(c) = t. Here r=5

and c=9. The memory required for storing 1-itemset in VDF

format is

1 11
(()) (())TM r c sizeof tid sizeof item r= × × + × (1)

 Where item11 is the first item in the frequent

1-itemset, tid is the transaction-id and sizeof is a built-in

function which says the number of bytes required for the

argument.

Here each tid requires 2 bytes and item11 requires 1 byte of

memory respectively. All items say A, B, C, D and E sold in

the grocery shop are frequent 1-itemsets. Therefore the VDF

requires (5×9×2)+(5×1) = 95 bytes of memory i.e., TM1 = 95

bytes. Suppose if there are some in-frequent items in

1-itemsets, they can be removed which saves memory

considerably. The number of bytes of memory removed from

1-itemset is computed as

(()) (())
1 1 1 11

rbytes rr c sizeof tid rr sizeof item= × × + × (2)

 Where, rr1 is the number of rows to be removed as in-

frequent. Therefore the total bytes of memory for frequent

1-itemset is

1 1 1M TM rbytes= − (3)

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 155

 Here M1 = 95 - 0 = 95 bytes. Similarly, in iteration

2, the possible 2-itemsets combinations are generated from

frequent 1-itemsets and it is {AB, AC, AD, AE, BC, BD, BE,

CD, CE, DE}. Suppose if there are n items in 1-itemset, the

possible two item combinations are (n×n-1)/2 say tc2. Among

them, the numbers of itemset combinations say x may be in-

frequent which need not be placed in VDF. Therefore, the

memory required for frequent 2-itemset shown in Table IV is

21
(() ()) (() ())2 2 2TM tc x c sizeof tid sizeof item tc x= − × × + × − (4)

 Where, item21 is the first item in the frequent

2-itemset. In this example, the combinations viz., AD,CD,CE

and DE are in-frequent and based on equation (4), the VDF

requires ((10 - 4) × 9 × 2) + (2 × (10 - 4)) = 108 + 12 = 120

bytes. Similarly from Table IV, the 3-itemset combinations

are {ABC, ABD, ABE, ACE, BCD, BCE, BDE} and the

combinations ABD, ACE, BCD, BCE and BDE are in-

frequent, therefore the frequent 3-itemset requires

((7-5)×9×2)+(7-5)×3)=42 bytes of memory and the VDF of

3-frequent itemsets is shown in Table V. The process is

repeated until no frequent itemsets are found.

TABLE IV. VDF OF 2-ITEMSETS

Itemset TID_set

AB T1,T4,T8,T9

AC T5,T7,T8,T9

AE T1,T9

BC T3,T6,T8,T9

BD T2,T4

BE T1,T9

Therefore, the total memory required for VDF using 2-D

array is

1 2

itemseti
TM M TMi

i

≠∅

∑= +
=

 (5)

 Where M1 is calculated using (3) and TMi are

calculated using the equation (6) shown below.

)((()) (() ())
1

x xTM tc c sizeof tid sizeof item tci i ii
− −= × × + × (6)

 Where, tci and x are the number of items and in-

frequent items in the candidate i-frequent itemset. For the

above example TM = 95+120+42 =257 bytes of memory. If

the same is implemented using jagged array, the memory

requirement is reduced considerably. The format of jagged

array representation for candidate 1-itemset is shown in

Table VI and all items in it are frequent which forms

frequent 1-itemset.

TABLE V. VDF OF 3-ITEMSETS

itemset TID_set

ABC T8,T9

ABE T1,T9

 TABLE VI. JAGGED ARRAY REPRESENTATION OF 1-ITEMSET

itemset TID_set

A T1 T4 T5 T7 T8 T9

B T1 T2 T3 T4 T6 T8 T9

C T3 T5 T6 T7 T8 T9

D T2 T4

E T1 T9

 The memory required for candidate 1-itemset TM1

is calculated as

() ()
1

{ }1

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

 (7)

 As in two-D representation, there may be x in-

frequent items in candidate 1-itemset say {in-frequent} =

{item1, item2, …,itemx} then the memory for {in-frequent}

be saved by removing it and the amount of memory removed

is computed as shown in equation (8).

()1
{ }

()rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

× (8)

 Therefore the total memory required for frequent

1-itemset in jagged representation is computed using (3) with

the values computed using (7) and (8) respectively.

Similarly, the jagged array representation of frequent

2-itemset shown in Table VII requires TM2 - rbytes2 memory

space where TM2 and rbytes2 are calculated by using (9) and

(10) respectively.

() ()
2

{ }2

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

 (9)

2 ()

{ }

()rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

× (10)

 The jagged representation of frequent 3-itemset is

shown in Table VIII which requires TM3 - rbytes3 memory.

This process continues until no more frequent itemsets are

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 156

found. For this case the candidate 4-itemset is null and the

algorithm terminates. Therefore, the total memory required

for the jagged implementation is calculated using equation

(11).

1

itemseti
TM TM rbytesi ii

≠∅

∑= −
=

 (11)

 Where, TMi and rbytesi are calculated using (12) and

(13) respectively.

 () ()
{ }

TM SC sizeof tid sizeof itemitemi
item itemseti

∑= × +

∀ ∈

 (12)

()

{ }

()
i

rbytes SC sizeof itemitem
item in frequent

sizeof tid

i

∑= +

∀ ∈ −

× (13)

TABLE VII. JAGGED ARRAY REPRESENTATION OF 2-ITEMSET

itemset TID_set

AB T1 T4 T8 T9

AC T5 T7 T8 T9

AE T1 T9

BC T3 T6 T8 T9

BD T2 T4

BE T1 T9

TABLE VIII. JAGGED ARRAY REPRESENTATION OF 3-ITEMSET

itemset TID_set

ABC T8 T9

ABE T1 T9

For this example, the jagged representation requires

TM1 = (6×2 +1)+(7×2+1)+(6×2+1)+(2×2+1)+(6×2+1)

 = 13+15+13+5+5=51 bytes

 rbytes1 = 0

 Therefore M1=51- 0 = bytes

 TM2 = (4×2+2) +(4×2+2)+(1×2+2)+ (2×2+2) +(4×2+2)

+(2×2+2) +(2×2+2) +(0×2+2) +(1×2+2)+ (0×2+2)

 =10+10+4+6+10+6+6+2+4+2=60 bytes

rbytes2 = (1×2+2)+(0×2+2)+(1×2+2)+(0×2+2)=12 bytes

Therefore M2 requires = 60 - 12 = 48 bytes of memory.

Similarly, M3 requires 14 bytes and therefore, the jagged

representation for this example requires

TM=M1+M2+M3 =51+48+14=113 bytes of memory which is

less than 50% in the original array representation.

IV. RESULTS AND DISCUSSION

From the example discussed in section 3.1, the jagged

implementation has several advantages. They are

1. No memory space is wasted as in 2-D array because

jagged array allocates space only to the transactions in

which the items occurs.

2. Minimizes the memory space required than the

original array implementation because for the above

example the array implementation requires 257 bytes

of memory, where as it is 113 bytes when using

jagged implementation i.e., it requires less than 50%

of memory when compared with the array

representation.

 Thus, it is finalized that the jagged implementation

saves memory significantly and also fast when compared

with the horizontal data format approaches.

V. CONCLUSION

 From the literatures, it is observed that there is always a

trade-off between the computational time and memory in

generating frequent itemsets. It is also found that the vertical

data format approaches reduces the database scans and finds

the support counts by intersection. Though it is best, the array

storage structure implementation used by VDF requires more

memory because it takes the assumption that each item may

fall almost in all transactions. But in real world grocery

datasets, each transaction will not contain all items and each

item may not present in all transactions. So to reduce the

memory consumption, this research work used the jagged

array representation for efficient usage of memory and from

the experiments it is proved that the proposed implementation

approach reduces more than 50% of memory when compared

with original 2-D array implementation. In future, this work

can be extended to the test real world grocery datasets of

more dimensions.

REFERENCES

[1]. Liu, Y., Liao, W. K., Choudhary, A. N., & Li, J. (2008). Parallel

Data Mining Algorithms for Association Rules and Clustering, In

Intl. Conf. on Management of Data, pp.1-25.

[2]. Kumar, G. V., Sreedevi, M., & Kumar, N. P. (2012). Mining

Regular Patterns in Data Streams Using Vertical Format.

International Journal of Computer Science and Security (IJCSS),

6(2), pp.142-149.

[3]. Ravikiran, D., & Srinivasu, S. V. N. (2016). Regular Pattern

Mining on Crime Data Set using Vertical Data Format.

International Journal of Computer Applications, 143(13).

[4]. Singla, V. (2016). A Review: Frequent Pattern Mining

Techniques in Static and Stream Data Environment. Indian

Journal of Science and Technology, 9(45), pp.1-7.

[5]. Ishita, R., & Rathod, A. (2016). Frequent Itemset Mining in Data

Mining: A Survey. International Journal of Computer

Applications, 139(9).

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 157

[6]. Guo, Y. M., & Wang, Z. J. (2010, March). A vertical format

algorithm for mining frequent item sets. In Advanced Computer

Control (ICACC), 2010 2nd International Conference on (Vol. 4,

pp. 11-13). IEEE.

[7]. Han, J., Kamber, M. Data Mining Concepts and Techniques,

Morgan Kaufmann Publishers, 2006.

[8]. S.Sharmila, Dr. S.Vijayarani. (2017). Frequent Itemset Mining

and Association Rule Generation using Enhanced Apriori and

Enhanced Eclat Algorithms, International Journal of Innovative

Research in Computer and Communication Engineering, 5(4),

pp. 679- 6804.

[9]. Zhiyong Ma, Juncheng Yang, Taixia Zhang and Fan Liu. (2016).

An Improved Eclat Algorithm for Mining Association Rules

Based on Increased Search Strategy, International Journal of

Database Theory and Application, 9(5), pp.251-266.

[10]. C.Ganesh, B.Sathiyabhama and T.Geetha. (2016). Fast Frequent

Pattern Mining Using Vertical Data Format for Knowledge

Discovery, International Journal of Emerging Research in

Management &Technology, 5(5), pp.141-149.

[11]. Hosny M. Ibrahim, M.H. Marghny and Noha M.A. Abdelaziz.

(2015). Fast Vertical Mining Using Boolean Algebra,

International Journal of Advanced Computer Science and

Applications, 6(1), pp.89-96.

[12]. Mohammed J. Zaki amd Karam Gouda. (2003), Fast Vertical

Mining Using Diffsets SIGKDD ’03, ACM.

Authors Profile

P.Sumathi received her B.Sc and M.Sc degrees in
Computer Science from Seethalakshmi Ramaswami

College, affiliated to Bharathidasan University,

Tiruchirappalli, India in 2001 and 2003 respectively. She
received her M.Phil degree in Computer Science in 2008

from Bharathidasan University. She is presently working as

an Assistant Professor in the Department of Computer
Science, Vysya College, Salem, India. She is currently pursuing Ph.D.,

degree in Computer Science in Bharathidasan University. Her research

interests include Data structures, Database and Data Mining techniques.

S.Murugan received his M.Sc degree in Applied

Mathematics from Anna University in 1984 and M.Phil
degree in Computer Science from Regional Engineering

College, Trichirappalli in 1994. He is an Associate

Professor in the department of Computer Science, Nehru
Memorial College (Autonomous), affiliated to
Bharathidasan University since 1986. He has 32 years of

teaching experience in the field of Computer Science. He
has completed his Ph.D., degree in Computer Science with the specialization

in Data Mining from Bharathiyar University in 2015. His research interest

includes Data and Web Mining. He has published many research articles in
the National and International journals.

