
 © 2018, IJCSE All Rights Reserved 188

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-6, Special Issue-3, April 2018 E-ISSN: 2347-2693

A Survey on Software Code Clone Detection to Improve the

Maintenance Effort and Maintenance Cost of the Software

V. Guna

1*
, M. Sunil Kumar

2

1*

Department of Computer Science and Engineering, Sree Vidyanikethan Engineering, Tirupati, India
2
 Department of Computer Science and Engineering, Sree Vidyanikethan Engineering, Tirupati, India

*Corresponding Author: sunilmalchi@gmail.com

Available online at: www.ijcseonline.org

Abstract— During the development of the software the developers have a chance to copy the code continuously. Due to

copying of the code there is a chance of having the identical or more similar code fragments in the software and it is called

as software clones or code clones. These clones can be detected from the existing code that is in c, c++, java etc

programming languages. By the Argo UML tool to the existing code to generate the class diagrams by using reverse

engineering process. In software development process, coping of existing code fragment and pasting them with or without

modification is a frequent process. Code clone means copy of an original form or duplicate. Software clone detection is

important to reduce the software maintenance cost and to recognize the software system in a better way. There are many

software code clone detection techniques such as text- based, token-based, Abstract Syntax tree based etc. and they are used

to spot and finding the existence of clones in software system. Mainly detection of clones is on the type-1, type-2 and type-

3 clones. These clones can be detected by using several novel algorithms are ARIMA, Back propagation, Multi objective

genetic algorithm, support vector machines and also with several hybrid techniques with respect to recall and precision.

Keywords— Code Clones, Software maintenance, Type-1, Type-II and Type-III clones, Recall and Precision

I. INTRODUCTION

Definition 1: Code Fragment. A code fragment (CF) is any

sequence of code lines (with or without comments). It is a

sequence of statements.

Definition 2: Software Clone. A code fragment is a clone

of another code if they are similar

In general, clones are set of identical segments of code in a

software system, which has a bad impact in the system. In

software development approach, duplicating previous code

segments in different programs with or without

modification is frequent process and that duplicated code is

extremely difficult to maintain. The imitation in code is

known as software clone and the phenomenon is known as

software cloning. Code Cloning considered as a bad smell

in software industry and has a bad impact on software

quality, software maintenance and also increases

maintenance cost. Roy and Cordy mentioned software

clone as software reuse. Although, it is a fast and instant

method of software reuse yet, it is a harmful design

procedure.

Code reuse is a standard practice in modern software

development. The downside of code reuse via replication

and copy-paste programming is that it leads to code bloat,

increasing the technical depth of software products and

making maintenance costly and time consuming

During the software development process, the software

engineer copy one piece of fragment and paste with or

without alteration like renaming, addition or deletion etc to

the fragment to reduce time and efforts. The process of

coping and pasting of code fragment is known as code

cloning and the copied pasted code is known as code clone.

The reusing code is common practice in modern software

developing, but it has some drawback It raises the

maintenance cost while decreasing quality like

changeability and updating of the software system. It also

increase the chances of the bugs in the software system,

because bug present in one fragment can be copied and

pasted various time may increase the bugs in the software

system

There are two types of similarities exist in the code clones

one is syntactic similarities and other is semantic

similarities. If the text of the clone code matches then it

syntactic similarity and if the function or implementation of

the code clone matches then it is semantic similarity. Code

clone are of four types described below.

Type 1 – These are identical clones with syntactic

similarities, in this type of clone only variation is allowed

in whitespaces and comments.

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 189

Type 2 – These are renaming clones with syntactic

similarities, in this type of clone only variation is allowed

in literal, identifier, type, whitespaces and comments.

Type 3 – These are modified clones with syntactic

similarities in this type of clone variation is allowed to

rename literal, identifier and addition or deletion of

statement to code.

Type 4 – These are semantic clone with semantic

similarities, these clones are semantically same but

syntactically different i.e. computation is same but

implement by different syntactic variants.

Today, the software industry is getting more complex since

the software systems are growing tremendously, so the

software companies need a huge amount of the

maintenance in terms of cost and efforts of existing

software systems Software maintenance in software

engineering is defined as the modification (corrective,

adaptive, perfective, or preventative) of a software product

after delivery to correct faults and improve the performance

or other attributes various research studies have shown that

maintenance of the software systems with code clones is

more difficult than a non-cloned code system.

code clone is a code portion in source files that is identical

or similar to another. Clones are introduced because of

various reasons such as reusing code by ªcopy and paste,º

mental macro (definitional computations frequently coded

by a programmer in a regular style, such as payroll tax,

queue insertion, data structure access, etc.), or intentionally

repeating a code portion for performance enhancement

Figure 1: Example for software code clones

From the above figure the software clone clones are

noticed that the marked part of the code is duplicated or

repeated more than once in the code and that can behave in

the same way or the different from each block of code.

II. LITERATURE SURVEY

In last decade many algorithm are proposed on software

clone detection technique and every algorithm has its own

advantage and disadvantage. This unit describes the

summary and overview of recent research in the area of

metric based software clone detection approach.

Y. Yuan et al. [1] proposed a count matrix based clone

detection (CMCD) method, which is produced while

counting the rate of frequencies of every variable in

conditions specified by pre-determined counting condition.

The projected technique is language-independent as it

depends only on variable count. That is, if we have to count

the rates of frequencies of variable in certain conditions

with special standards, these standards are called as

counting condition. Counting condition is used to select

when the count should begin. The count matrix (CM) is a

group of n count vectors (CV) and compares these

Counting vectors with the help of Euclidean space. The

variation between two vectors is calculated by the

Euclidian Distance among them in the space, i.e.

V2i)^2

The CMCD perform well in extracting count-based

information and it is language independent. It supports to

detect clone in large programs (> 1M LoC) also it has a

abilities to perform well in scenario-based evaluation.

Vidhya et al [1] proposed an emergent technique on java

directories by using a metric based approach. The proposed

system has been tested with two directories of JAVA files

as input and the outcomes are produced based on the

matching among files in directories. The percentage of the

comparison is calculated by implementing the line by line

comparison of the intermediate form of the files. This

proposed technique merges both the textual based approach

and metric based technique. Metric based approach is

straight forward hence it is a light weight method. The

textual based approach is the one which give high

exactness. This proposed technique also helps to notice the

directory level cloning that is not structurally correlated but

functionally similar.

JAYADEEP PATI, BABLOO KUMAR, DEVESH

MANJHI, AND K K SHUKLA [2] has proposed the

different algorithms for clone detection during the software

evolution. Most of the developers have the tendency to

copy the modules in the programs completely or partially

and modify them. It is about the evolution of clone

components by using advanced time series analysis; clones

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 190

are extracted from the repository of the software by using

abstract syntax tree approach. Then the analysis of

evolution components is done it uses three models i.e. auto

regressive integrated moving average, back propagation

and multi objective genetic algorithm based on neural

network, these techniques have been compared for the

detection of the cloned components during the evolution of

the software. The software evolution can be performed

based on the large open source software application and

Argo UML. This explains about the ability to predict the

clones with the help of the software developers to reduce

efforts during the software maintenance.

This involves in the identification of cloned components

and also the prediction of the clone evolution in the open

source software application. The identification of clones

helpful in the field of bug prediction, it also helpful in

reducing the corrective maintenance software clone

evolution and prediction is helpful in perfective

maintenance. MOGA-NN model is stated as the best model

for predicting both types of clone number series. ARIMA

model is for predicting the non-linear patterns in the data.

Stefan Bellon, Rainer Koschke [3] proposed the clone

detection technique on text, lexical and syntactic

information, software metrics and program dependency

graphs. In this the detection of clones is based on two

comparisons

1. Textual comparisons

2. Token comparisons

 It uses mapping algorithms

It uses Jens Krinke's tool it can able to analyze c systems

only. All the other tools except this will handle both c and

java. Krinke was not able to analyze the large programs in

c, namely postgre sql, malthias rieger was not able to

analyze postgre sql and the large java programs namely-

J2sdk-1.4.0-javaX=swing. Token based technique and text

based technique works damn similarly. The tools based on

tokens and text have higher recall

There are several important points to note when looking at

the results of the comparison:

1. The two token-based techniques and the text-based

technique (Baker, Kamiya, and Rieger) behave

astonishingly similarly. .

2. The tools based on tokens and text have higher recall.

3. Merlo’s tool and Baxter’s AST-based tool have higher

precision.

4. The PDG-based tool (Krinke) does not perform too well

(sensible only for type-3 clones). .

4. There is a large number of rejected candidates (between

24

 Percent for Baxter and 77 percent for Krinke).

5. Many injected secret clones were missed (only between

24 percent and 46 percent of the injected secrets were

found by the individual tools, ignoring Krinke who found

only 4 percent because he analyzed only three of the eight

programs).

The AST-based detection has a very high precision but

currently has considerably higher costs in terms of

execution time. The opposite is true for token-based

techniques. If ideas from the token-based techniques could

be made to work on ASTs, we would be able to find

syntactic clones. with less effort. In fact, the Bauhaus

project has developed a combined technique along these

lines since then. The combined technique uses suffix-tree

based recognition on serialized ASTs. The syntax-based

technique could be improved if they took more advantage

of their syntactic knowledge.

Elizabeth Burd, John Bailey [4] Proposed that the tools for

detecting the code clones and also he shows the results of a

process whereby the detection capacity of the 5 code

replication detection tools. The aim is to remove some of

the identical clones from the source code those tools are

CCFinder, CloneDr, Covet, JPlag, Moss .

The result has no single and outright winner for clone

detection for preventive maintenance. It can also identified

the strengths and weakness in each tool that may ultimately

lead to their improvement. Due to the plagiarism tools only

considering across file duplication these are of less use than

the duplicated clone detection tools and also it is possible

to make more effective selection of clone identification

tool.

Shruti Jadon [5] has stated that the clones can also increase

the size of the program and creates the problem of

redundancy. He is proposed to generate the feature sets

after parsing the given C program for code fragments and

then match their similarity on the basis of the feature sets

the classification of algorithm is performed by using SVM

as a machine learning tool. The output of this tool is

similarity ratio within two C programs is related to each

other and also the class in which they occur. Then by doing

this it can increase its accuracy with the increase in number

of instances. By having the code clones in the program

increases the maintenance and also creates the problem of

redundancy. The clone detection is in two stages in the first

stage parser is used to generate the feature sets for this the

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 191

input is C file and the tool using is SVM. It is a machine

learning tool to detect clones, this shows the accuracy

increases with the increase in the number of instances.

Then the final tool is used for the classification of input file

as sorting and non-sorting class but this is limited only to

the sorting class.

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo

Sant Anna and Lorraine Bier [6] proposed the abstract

syntax tree to the detection and removal of clones can

decrease the software maintenance costs. It is used for

detecting exact and near-miss clones over arbitrary

program fragments in program source code by using

abstract syntax trees. The tool using these techniques is

applied to a C programs, thee tools produces macro bodies

needed for clone removal, and macro innovations to

replace the clones. This method determines the exact tree

matches i.e a number of adjustments, commutative

operands and nearly exact matches.

Chanchal K. Roy [7] proposed that clones are very harmful

in the software maintenance and evolution. He develop

Hybrid clone detection method and vagueness in clone

detection by proposing a meta model of clone types then

conducted a scenario based comparison and evolution of all

currently available clone detection techniques and tools, in

order to compare the available tools in a realistic setting,

and also develop a mutation based framework that

automatically and efficiently measures both recall and

precision of the clone detection tool. Conducting a large

scale empirical study of cloning in open source systems,

and providing a scenario based comparison of the clone

detection techniques and tools, to build a mutation based

framework for automatically evaluating clone detection

tools. NICAD cannot detect type-4 semantic clones

Chanchal K. Roy and James R. Cordy [8] examines the

effectiveness of a new language. This method accurately

finds near-miss clones using an efficient text line

comparison technique. Using Agile parsing it provides user

specified flexible pretty-printing to remove noise,

standardize formatting and break program statements into

parts such that potential changes can be detected as simple

line text differences, it provides extraction of potential

clones, using transformation rules it provides flexible code

normalization. It is to about the finding functional clones in

C code.

 III. PROBLEM FORMULATION

The objective is to find the duplicated components in the

software. Due to the detection of the clones in the software

may reduce the software metrics such as to reduce the

maintenance cost and also to reduce the number of lines of

code, Cyclomatic complexity and coupling in the software

programs or software code.

The work involves identification of cloned components and

also the prediction of clone evolution content in an open

source software applications. The identification of

duplicated and nearly duplicated code is also immensely

helpful in the field of bug prediction. It is also useful for

reducing the Corrective Maintenance and Preventive

Maintenance which involves modification of code content

to solve and prevent problems in the software respectively.

Because if we can identify and detect the cloned areas, the

defect in all the similar code fragments can be resolved at

once.

The software clone evolution prediction is immensely

helpful in Perfective Maintenance and Adaptive

Maintenance because the effort required to evolve a

software is also dependent on the amounts of cloned

contents in the software. Clone evolution prediction is also

helpful in the validation of many software evolution

hypotheses. The customer also can evaluate the evolution

of clone content for taking decisions on purchasing new

versions of software applications.

IV. FUTURE SCOPE AND CONCLUSION

The detailed analysis of the relationship of software metrics

and software clones. It can give a clearer picture of clones

in software. And can also model the increasing and

decreasing temporal patterns of the software clone

evolution using advanced modelling techniques. This can

also predict whether code-refactoring is required in case the

code fragments smell bad i.e. the error-prone code

fragments in the software. In future this approach can be

integrated with other approaches like abstract syntax tree

based approach and the program dependence graph

approach to make this a hybrid approach to efficiently

detect semantic clones.

The technique that detects clones (type-1 and type-2) by

metrics based approach for filtering code and after that it

uses token based comparisons to detect code clone. The

technique detects clones by other algorithm to detect

whether two clones really are clones of each other and it is

also able to detect the type 3 clone near miss clone by using

hash algorithm. The technique can also detect code

plagiarism in student's computer lab programs.

REFERENCES

[1] Deepali, Ankur Gupta, Chirag Batra "Hybrid approach for

Detecting Code Clone by Metric and Token based comparison,"

Volume 7, No. 6(Special Issue), November 2016, 978-93-

85670-72-5 © 2016 (RTCSIT) pp. 297-302,2016.

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 192

[2] JAYADEEP PATI, BABLOO KUMAR, DEVESH MANJHI,

AND K K SHUKLA "A Comparison Among ARIMA, BP-NN,

and MOGA-NN for Software Clone Evolution Prediction,"

2169-3536, 2017 IEEE, VOLUME 5, 2017, pp.11841-

11851,2017

[3] Stefan Bellon, Rainer Koschke," Comparison and Evaluation of

Clone Detection Tools," IEEE Transactions on Software

Engineering, Vol. 33, No. 9, SEPTEMBER 2007,pp.577-

591,2007

[4] Elizabeth Burd, John Bailey," Evaluating Clone Detection Tools

for Use during Preventative Maintenance," Proceedings of the

Second IEEE International Workshop on Source Code Analysis

and Manipulation (SCAM’02) 0-7695-1793-5/02 $17.00 © 2002

IEEE

[5] Shruti Jadon," Code Clones Detection Using Machine Learning

Technique: Support Vector Machine," ISBN: 978-1-5090-1666-

2/16/$31.00 ©2016 IEEE, pp.299-303

[6] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo

Sant’Anna, Lorraine Bier," Clone Detection Using Abstract

Syntax Trees," Copyright 1998 IEEE. Published in the

Proceedings of ICSM’98, November 16-19, 1998, pp.1-10, 1998

[7] Chanchal K. Roy ," Detection and Analysis of Near-Miss

Software Clones," 978-1-4244-4828-9/09/$25.00 2009 IEEE

Proc. ICSM 2009, Edmonton, Canada ,pp.447-450

[8] Chanchal K. Roy and James R. Cordy," NICAD: Accurate

Detection of Near-Miss Intentional Clones Using Flexible

Pretty-Printing and Code Normalization," The 16th IEEE

International Conference on Program Comprehension, 978-0-

7695-3176-2/08 $25.00 © 2008 IEEE DOI

10.1109/ICPC.2008.41

[9] Jeffrey Svajlenko Chanchal K. Roy," Evaluating Clone Detection

Tools with Big Clone Bench." 978-1-4673-7532-0/15/$31.00,

2015 IEEE, ICSME 2015, Bremen, Germany, pp.131-140

[10] Jaweria Kanwal, Katsuro Inoue , Onaiza Maqbool," Refactoring

Patterns Study in Code Clones during Software Evolution," 978-

1-5090-6595-0/17/$31.00 ,2017 IEEE, pp.45,46

[11] Ripon K. Saha, Chanchal K. Roy, Kevin A. Schneider, Dewayne

E. Perry," Understanding the Evolution of Type-3 Clones: An

Exploratory Study," 978-1-4673-2936-1/13, 2013 IEEE, pp.139-

148

[12] Richard Wettel Radu Marinescu," Archeology of Code

Duplication: Recovering Duplication Chains From Small

Duplication Fragments," 0-7695-2453-2/05 $20.00 © 2005

IEEE

[13] Toshihiro Kamiya," CCFinder: A Multilinguistic Token-Based

Code Clone Detection System for Large Scale Source Code,"

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 28, NO. 7, JULY 2002, pp.654-670

[14] Yang Yuan, Yao Guo, "CMCD: Count Matrix Based Code Clone

Detection," apsec, pp.250-257, 2011 18th Asia-Pacific Software

Engineering Conference, 2011.

[15] Gehan M. K. Selim, King Chun Foo, Yung Zou," Enhancing

Source-Based Clone Detection Using Intermediate

Representation," 2010 17th Working Conference on Reverse

Engineering, 1095-1350/10 $26.00 © 2010 IEEE DOI

10.1109/WCRE.2010.33,pp.227-236

[16] Brenda S. Baker," On Finding Duplication and Near-Duplicate

ion in Large Software Systems," 0-8186-7111-4/95 $4.00 0 1995

IEEE,pp.86-95

[17] Flavius-Mihai Lazar, Ovidiu Banias," Clone detection algorithm

based on the Abstract Syntax Tree approach," 978-1-4799-4694-

5/14/$31.00 ©2014 IEEE, pp.73-78

Authors Profile

Ms. V. Guna pursed her Bachelor Degree in

Computer Science And Engineering from

Jawaharlal Nehru Technologiucal

University, Ananthapurumu in 2015 and

doing masters Degree in Computer Science

from Sree Vidyanikethan Engineering

College, Tirupathi, Affiliated to Jawaharlal

Nehru Technological University Ananthapuramu in 2016-2018

Project Trainee in Sree Vidyanikethan Engineering College,

Tirupathi.

Dr. M Sunil Kumar has completed B.Tech in

Computer Science & Information Technology

from JNT University, M.Tech in Computer

Science from JNT University.and Ph.D in

Computer science and Engineering from SV

University Tirupati. Presently he is currently

working as Professor & head in the

Department of CSE, Sree Vidyanikethan Engineering College,

A.Rangampet, Tirupati, A.P. His main research interest includes

Software Engineering, Software Architecture, Information

Retrieval,Database Management Systems and optimization

techniques.

