Extension of Binary Topology

R.Seethalakshmi ${ }^{\mathbf{*}}$, M.Kamaraj ${ }^{\mathbf{2}}$
${ }^{1}$ Deaprtmant of Mathematics, Jaya collage of arts and Science, Thiruninravuir - 602024, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Govt. Arts and Science Collage Sivakasi- 626124, Tamilnadu, India
*Corresponding Author: Seethamaths79@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7si5.194197 | Available online at: www.ijcseonline.org

Abstract

Nithyanantha Jothi and Thangavelu studied the properties of the product of two power sets and introduced the concept of binary topology. In this paper, properties of the product of arbitrarily n-power sets are discussed where $n>2$. Further an n-ary topology on the product of power sets similar to binary topology is introduced and studied.

Keywords: Binary topology, n-ary sets, n-ary topology, product topology.
MSC 2010: 54A05, 54A99.

I. INTRODUCTION

The concept of a binary topology was introduced and studied by Nithyanantha Jothi and Thangavelu [4-9] in 2011. Recently Lellish Thivagar et.al.[3] extended this notion to supra topology, Jamal Mustafa[2] to generalized topology and Benchalli et.al.[1] to soft topology. Nithyanantha Jothi and Thangavelu[9] extended the concepts of regular open and semiopen sets in point set topology to binary topology. The authors[10] studied the notion of nearly binary open sets in binary topological spaces. In this paper, the notion of n ary topology is introduced and its properties are discussed. Section 2 deals with basic properties of the product of power sets and section 3 deals with n-ary topology with sufficient examples and some basic results.

II. PRODUCT OF POWER SETS

Let $\mathrm{X}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{n}}$ be the non empty sets. Then $\mathrm{P}(\mathrm{X})$ denotes the collection of all subsets of X , called the power set of X . $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$ is the Cartesian product of the power sets $\mathrm{P}\left(\mathrm{X}_{1}\right), \mathrm{P}\left(\mathrm{X}_{2}\right), \ldots, \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$. Examples can be constructed to show that the two notions 'product of power sets' and 'power set of the products' are different. When $\left|\mathrm{X}_{1}\right|=\left|\mathrm{X}_{2}\right|=2$, it is noteworthy to see that $\left|\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2}\right)\right|=$ $\left|\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right)\right|=16$. But this is not always true as shown in the next proposition.

Proposition 2.1: Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are finite non empty sets satisfying one of the conditions.
(i). $\mathrm{n}>2,\left|\mathrm{X}_{\mathrm{i}}\right|>1$ for each $\mathrm{i} \in\{1,2, \ldots, \mathrm{n}\}$;
(ii). $\mathrm{n}=2,\left|\mathrm{X}_{1}\right|>2,\left|\mathrm{X}_{2}\right| \geq 2$;
(iii). $n=2,\left|X_{2}\right|>2,\left|X_{1}\right| \geq 2$. Then
$\left|\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}\right)\right|>\left|\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)\right|$.

Proof: Suppose X_{i} has m_{i} elements for each $i \in\{1,2,3, \ldots, n\}$.
Then each $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$ has $2^{\mathrm{m}_{\mathrm{i}}}$ members. Therefore $\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$ has $\mathrm{m}_{1} \times \mathrm{m}_{2} \times \ldots \times \mathrm{m}_{\mathrm{n}}$ elements that implies $\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}\right)$ has $2^{\mathrm{m}_{1} \times \mathrm{m}_{2} \times \ldots \times \mathrm{m}_{\mathrm{n}}}$ elements where as $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$ has $2^{\mathrm{m}_{1}} .2^{\mathrm{m}_{2}} \ldots 2^{\mathrm{m}_{\mathrm{n}}} \quad$ members. That is $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P} \quad\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$ has $2^{\mathrm{m}_{1}+\mathrm{m}_{2}+\ldots+\mathrm{m}_{\mathrm{n}}}$ members. Under the conditions on n and $\left|X_{i}\right|$ it follows that $2^{m_{1} \times m_{2} \times \ldots \times m_{n}}>2^{m_{1}+m_{2}+\ldots+m_{n}}$. This shows that $\left|\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}\right)\right|>\left|\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)\right|$.

Proposition 2.2: Let N be the set of all natural numbers and $a, b, c, d, e \in N$.
(i). The equation $a b=a+b$ has exactly one solution in N.
(ii).The equation $a b c=a+b+c$ has at least exactly six solutions in N .

Proof: Solutions can be found by inspection method. If $a=1$ then $a b=a+b$ gives $b=1+b$ that implies $(a=1, b \geq 1)$ cannot be a solution for (i). Clearly $(a=2, b=1)$ is not a solution for (i). But $(a=2, b=2)$ is a solution for (i). Now suppose (a, b) is a solution for (i) in N . Then $\mathrm{ab}=\mathrm{a}+\mathrm{b}$ that implies a divides $a+b$. Since a divides itself it follows that a divides b. Similarly b divides a that implies $\mathrm{a}=\mathrm{b}$ from which it follows that $\mathrm{a}^{2}=2 \mathrm{a}$. This proves that $\mathrm{a}=\mathrm{b}=2$. Therefore $(2,2)$ is the only solution of (i) in N. This proves (i). Now for the equation (ii), suppose $a=1$, we get $b c=1+b+c$. ' $b=1$ ' is not possible. If $\mathrm{b}=2$ then $2 \mathrm{c}=1+1+\mathrm{c}=2+\mathrm{c}$ that implies $\mathrm{c}=2$. Therefore $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(1,2,3)$ is a solution for (ii). The other solutions are $(1,3,2),(2,3,1),(2,1,3),(3,1,2),(3,2,1)$. Hence the equation $a b c=a+b+c$ has at least six solutions in N. Now suppose ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is any solution in N for (ii). Then no two of a, b, c are equal to 1 . For suppose $a=b=1$. Then from
(ii), $c=2+c$ that is not possible. No two of a, b, c are equal. For if $\mathrm{a}=\mathrm{b}$ then $\mathrm{a}^{2} \mathrm{c}=2 \mathrm{a}+\mathrm{c}$ that implies c divides 2 a . Therefore $2 \mathrm{a}=\mathrm{kc}$ for some natural number k . Then using this in $\mathrm{a}^{2} \mathrm{c}=2 \mathrm{a}+\mathrm{c}$ we get $\mathrm{a}^{2}=\mathrm{k}+1$. Therefore $2 \mathrm{a}=\mathrm{kc}=\left(\mathrm{a}^{2}-\right.$ 1)c which implies
$c=2 a /\left(a^{2}-1\right)$. Since $a>1$ and since $a<\left(a^{2}-1\right.$ we see that $c<2$ that implies $\mathrm{c}=1$. Then using $\mathrm{c}=1$ and $\mathrm{a}=\mathrm{b}$ in (ii) we get $\mathrm{a}^{2}=$ $2 a+1$ which has no solution for a in N. Hence we conclude that a, b, c are all distinct. We assume that $a<b<c$. If $a=1$ then $b c=1+b+c$ that implies $b=2$ and $c=3$. If $a=k>1, b \geq k+1$ and $\mathrm{c} \geq \mathrm{k}+2$ then abc $\geq \mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)>(\mathrm{k}+1)(\mathrm{k}+2)>6$ and $a+b+c \geq 3 k+3>6$. Therefore any solution other than the permutations of $(1,2,3)$ must satisfy $a+b+c=a b c>6$. This shows that the equation (ii) has at least six solutions in N .

Proposition 2.3. For any integer $k>2$, the equation $a_{1}+a_{2}+\ldots+a_{k}=a_{1} \cdot a_{2} \ldots . a_{k}$ has at least $k(k-1)$ solutions in N.
Proof: Let $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a positive integral solution for the equation

$$
\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\mathrm{k}}=\mathrm{a}_{1} \cdot \mathrm{a}_{2} \ldots \ldots \mathrm{a}_{\mathrm{k}} .
$$

(Eqn.1)
Then it is not possible to have $a_{1}=a_{2}=\ldots=a_{k}=1$. For if $a_{1}=a_{2}=\ldots=a_{k}=1$ then $k=1$. Again if $a_{1}=a_{2}=\ldots=a_{k-1}=1$ and $a_{k}>1$ then $k-1+a_{k}=a_{k}$ that implies $k=1$.
Suppose $a_{1}=a_{2}=\ldots=a_{k-2}=1, a_{k-1}>1$ and $a_{k}>1$.Then $k-2+a_{k-1}$ $+\mathrm{a}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}-1} \cdot \mathrm{a}_{\mathrm{k}}$.
Let $\quad a_{k-1}=r>1$. Then $r . a_{k}=k+r-2+a_{k}$ that implies

$$
\mathrm{a}_{\mathrm{k}}=\frac{\mathrm{k}+\mathrm{r}-2}{\mathrm{r}-1}=1+\frac{\mathrm{k}-1}{\mathrm{r}-1}
$$

(Eqn.2)
If $r>k$ then $\frac{\mathrm{k}-1}{\mathrm{r}-1}$ is a proper fraction that implies a_{k} is not an integer. Therefore we have $2 \leq r \leq k$. If $r=2$ then $a_{k}=k$ and if $r=k$ then $a_{k}=k$. Therefore if
$\mathrm{a}_{1}=\mathrm{a}_{2}=\ldots=\mathrm{a}_{\mathrm{k}-2}=1, \mathrm{a}_{\mathrm{k}-1}=2$ and $\mathrm{a}_{\mathrm{k}}=\mathrm{k}$ then $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$ is a solution of
(Eqn.1)
This shows that $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}\right)=(1,1, \ldots 1,2, \mathrm{k})$ is a solution for (Eqn.1). Clearly any permutation of ($1,1, \ldots 1,2, \mathrm{k}$) is also a solution for (Eqn.1).
Therefore the number of such solutions is $\frac{k!}{(k-2)!}=$
$(\mathrm{k}-1) \mathrm{k}$. Depending upon the values of k , (Eqn.1) may have other solutions. For take $k=5$. Then
The equation abcde $=a+b+c+d+e$ has at least 20 solutions in N which may be got by taking $\mathrm{r}=2$ in (Eqn.2). If we put $\mathrm{r}=3$ in (Eqn.2) we get $\mathrm{e}=3$ that implies ($1,1,1,3,3$) is also a solution for $a b c d e=a+b+c+d+e$. Therefore for $k>2$, (Eqn.1) has at least $\mathrm{k}(\mathrm{k}-1)$ solutions in N .

The following proposition can be established by choosing r in Eqn. 2 such that $\frac{\mathrm{k}-1}{\mathrm{r}-1}$ is a positive integer.

Proposition 2.4.

(i).If $\mathrm{k}=5,10$ then (Eqn.1) has at least $3 \mathrm{k}(\mathrm{k}-1) / 2$ solutions in N.
(ii).If $\mathrm{k}=7,9,11$ then (Eqn.1) has at least $2 \mathrm{k}(\mathrm{k}-1)$ solutions in N .
(iii).If $\mathrm{k}=13$ then (Eqn.1) has at least $3 \mathrm{k}(\mathrm{k}-1)$ solutions in N .

From the above discussion, the following lemma can be easily established.
Proposition 2.5: For any integer $\mathrm{k}>1$, each of the strict in equations $a_{1}+a_{2}+\ldots+a_{k}<a_{1} \cdot a_{2} \ldots . a_{k}$ and $a_{1}+a_{2}+\ldots+a_{k}>$ $a_{1} \cdot a_{2} \ldots \ldots a_{k}$ has at least one solution in N.

The above discussions lead to the following proposition.
Proposition 2.6: Let $\left|X_{i}\right|=m_{i}$ for each $i \in\{1,2,3, \ldots, k\}$. Then
$\left|\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{k}}\right)\right|=\quad\left|\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P} \quad\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{k}}\right)\right|$, $\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{k}}\right)\left|>\left|\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P} \quad\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{k}}\right)\right| \quad\right.$ and $\left|\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{k}}\right)\right|<\left|\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{k}}\right)\right|$ according as $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ is a solution of $a_{1}+a_{2}+\ldots+a_{k}=a_{1} \cdot a_{2} \ldots . a_{k}$, $a_{1}+a_{2}+\ldots+a_{k}<a_{1} \cdot a_{2} \ldots . a_{k}$ and $a_{1}+a_{2}+\ldots+a_{k}>a_{1} \cdot a_{2} \ldots . a_{k}$ respectively.

Any typical element in $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$ is of the form $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ where $A_{i} \subseteq X_{i}$ for $i \in\{1,2,3, \ldots, n\}$. Suppose $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ and $\left(\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{n}}\right)$ are any two members in $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$. Throughout this chapter we use the following notations and terminologies.
$\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ is an n-ary absolute set and ($\varnothing, \varnothing, \varnothing, \ldots, \varnothing$) is an n-ary null set or void set or empty set in $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right)$ $\times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$.
$\left(A_{1}, A_{2}, \ldots, A_{n}\right) \subseteq\left(B_{1}, \quad B_{2}, \ldots, B_{n}\right) \quad$ if $\quad A_{i} \subseteq B_{i} \quad$ for every $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$ and
$\left(A_{1}, A_{2}, \ldots, A_{n}\right) \neq\left(B_{1}, \quad B_{2}, \ldots, B_{n}\right)$ if $A_{i} \neq B_{i}$ for some $i \in\{1,2,3, \ldots, n\}$. Equivalently $\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ if $A_{i}=B_{i}$ for every $i \in\{1,2,3, \ldots, n\}$. If $A_{i} \neq B_{i}$ for each $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$ then we say $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ is absolutely not equal to $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ which is denoted as $\left(A_{1}, A_{2}, \ldots, A_{n}\right)^{a} \neq$ $\left(B_{1}, \quad B_{2}, \ldots, B_{n}\right)$. Let $x_{i} \in X_{i}$ and $A_{i} \subseteq X_{i}$ for every $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$. Then $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ if $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}$ for every $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$.

Definition 2.7: Let X_{i} be an infinite set for every $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$.
$\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is finite if A_{i} is finite for every $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$ and is infinite if
A_{i} is infinite for some $i \in\{1,2,3, \ldots, n\}$.

Definition 2.8: Let X_{i} be an uncountable set for every $\mathrm{i} \in\{1$, $2,3, \ldots, n\}$,
$\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is countable if A_{i} is countable for every $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$ and is uncountable if A_{i} is uncountable for some $i \in\{1,2,3, \ldots, n\}$.

Proposition 2.9: $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ iff $\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right) \in A_{1} \times A_{2} \times \ldots \times A_{n}$.

The notions of n-ary union, n-ary intersection, n-ary complement and n-ary difference of n-ary sets are defined component wise. Two n-ary sets are said to be n-ary disjoint if the sets in the corresponding positions are disjoint and $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ is a somewhat empty n -ary set if $\mathrm{A}_{\mathrm{i}} \neq \varnothing$ for at least one $i \in\{1,2,3, \ldots, n\}$ and $A_{j}=\varnothing$ for at least one $\mathrm{j} \in\{1,2,3, \ldots, \mathrm{n}\}$.

Let S denote the collection of all somewhat empty n-ary sets in $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \quad \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$. Let $\mathrm{M}=\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right)$ $\times \ldots \times P\left(X_{n}\right) \backslash S$, the collection of all n-ary sets other than somewhat empty n-ary sets. The next proposition shows that M can be considered as a proper subset of $\mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}\right)$.

Proposition 2.10: Let $\varphi: M \rightarrow P\left(X_{1} \times X_{2} \times \ldots \times X_{n}\right)$ be defined by $\varphi\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}\right)=\mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{n}$ for each element $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ in $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$. Then φ is injective but not surjective.
Proof: Suppose $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ are any two distinct members of M. Then $A_{i} \neq B_{i}$ for some $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$ that implies $\mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{\mathrm{n}} \neq \mathrm{B}_{1} \times \mathrm{B}_{2} \times \ldots \times \mathrm{B}_{\mathrm{n}}$. Therefore
$\varphi\left(A_{1}, A_{2}, \ldots, A_{n}\right) \neq \varphi\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ that implies φ is injective. Further φ is not surjective as shown below.
$X_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{X}_{2}=\{1,2\}, \mathrm{A}_{1} \subseteq \mathrm{X}_{1}$ and $\mathrm{A}_{2} \subseteq \mathrm{X}_{2}$. Let $\mathrm{S}=\{(\mathrm{a}$, 1), $(\mathrm{b}, 2)\} \subseteq \mathrm{X}_{1} \times \mathrm{X}_{2}$. It can be seen that there is no $\left(\mathrm{A}_{1}\right.$, $\left.\mathrm{A}_{2}\right) \in \mathrm{P}\left(\mathrm{X}_{1} \times \mathrm{X}_{2}\right)$ such that $\mathrm{A}_{1} \times \mathrm{A}_{2}=\mathrm{S}$.

Remark 2.11:The function φ, defined above is not injective if we replace M by $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$.

Let $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$ be a single valued function. Then it induces a function
$\mathrm{f}^{-1}: \mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right) \rightarrow \mathrm{P}(\mathrm{Y})$ that is an n -ary set to set valued function defined by $f^{-1}\left(\left(A_{1}\right.\right.$, $\left.\left.\mathrm{A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)\right)=\left\{\mathrm{y}: \mathrm{f}(\mathrm{y}) \in\left(\mathrm{A}_{1}, \quad \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)\right\}=\left\{\mathrm{y}: \quad \mathrm{p}_{\mathrm{i}}(\mathrm{f}(\mathrm{y})) \in \mathrm{A}_{\mathrm{i}}\right.$ for each $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}\}$ where each p_{i} is a projection of $\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$ onto X_{i}.

Proposition 2.12: Let $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$ be a single valued function. Then
$f^{-1}\left(\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)=f^{-1}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)$ for every $\left(A_{1}\right.$, $\left.A_{2}, \ldots, A_{n}\right) \in M$.
Proof: $\mathrm{f}^{-1}\left(\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)\right)=\left\{\mathrm{y}: \mathrm{f}(\mathrm{y}) \in\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)\right\}$

$$
\begin{aligned}
& \quad=\left\{y: p_{i}(f(y)) \in A_{i} \text { for each } \mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}\right\}=\{\mathrm{y}: \\
&\left.\mathrm{f}(\mathrm{y}) \in \mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{\mathrm{n}}\right\} \\
&=\mathrm{f}^{-1}\left(\mathrm{~A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{\mathrm{n}}\right) .
\end{aligned}
$$

Proposition 2.13: Let $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$ be a single valued function. Then f^{-1} preserves n-ary union and n-ary intersection.

Proposition 2.14: $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$ is a complete distributive lattice under n-ary set inclusion relation.

III. n-ary topology

Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be the non empty sets. Let $T \subseteq$ $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$.
Definition 3.1: T is an n-ary topology on $\left(X_{1}, X_{2}, X_{3}, \ldots\right.$, X_{n}) if the following axioms are satisfied.
(i). $(\varnothing, \varnothing, \varnothing, \ldots, \varnothing) \in \mathrm{T}$
(ii). $\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right) \in T$
(iii) If $\left(A_{1}, A_{2}, \ldots, A_{n}\right),\left(B_{1}, B_{2}, \ldots, B_{n}\right) \in T$ then $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \cap\left(B_{1}, B_{2}, \ldots, B_{n}\right) \in T$
(iv) If $\left(A_{1 \alpha}, A_{2 \alpha}, \ldots, A_{n \alpha}\right) \in T$ for each $\alpha \in \Omega$ then $\bigcup\left(\mathrm{A}_{1 \alpha}, \mathrm{~A}_{2 \alpha}, \ldots, \mathrm{~A}_{\mathrm{n} \alpha}\right) \in \mathrm{T}$.
$\alpha \in \Omega$

If T is an n-ary topology then the $n+1$ tuple $\left(X_{1}, X_{2}\right.$, $X_{3}, \ldots, X_{n} ; T$) is called an n-ary topological space. The elements $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$ are called the n -ary points of $\left(X_{1}, \quad X_{2}, \quad X_{3}, \ldots, X_{n} ; T\right)$ and the members $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ of $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$. are called the $\mathrm{n}-$ ary sets of $\left(X_{1}, X_{2}, \ldots, X_{n} ; T\right)$. The members of T are called the n-ary open sets in
$\left(X_{1}, X_{2}, \ldots, X_{n} ; T\right)$. If $X_{1}=X_{2}=X_{3}=\ldots=X_{n}=X$ then T is an n-ary topology on X and (X, T) is an n-ary topological space. It is noteworthy to see that product topology on $X_{1} \times X_{2} \times \ldots \times X_{n}$ and n-ary topology on ($\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{n}}$) are independent concepts as any open set in product topology is a subset of $X_{1} \times X_{2} \times X_{3} \times \ldots \times X_{n}$ and an open set in an n-ary topology is a member of $\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$.

Examples 3.2:

(i). $I=\left\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing),\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)\right\}$ is an n-ary topology, called indiscrete n-ary topology.
(ii). $\mathrm{D}=\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$ is an n -ary topology, called discrete n -ary topology .
(iii). $\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing)\} \cup\left\{\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right):\left(a_{1}, a_{2}, a_{3}\right.\right.$, $\left.\left.\ldots, a_{n}\right) \in\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)\right\}$ is an n-ary topology, called n ary point inclusion n -ary topology.
(iv). $\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing)\} \cup\left\{\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right):\left(B_{1}, B_{2}, B_{3}\right.\right.$, $\left.\left.\ldots, \mathrm{B}_{\mathrm{n}}\right) \subseteq\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)\right\}$ is an n -ary topology, called n -ary set inclusion n -ary topology.
(v). $\left\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing),\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{n}}\right),\left(\mathrm{X} \mathrm{A}_{1}, \mathrm{X} \backslash \mathrm{A}_{2}\right.\right.$, $\left.\left.\mathrm{X} \backslash \mathrm{A}_{3}, \ldots, \mathrm{X} \backslash \mathrm{A}_{\mathrm{n}}\right),\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right\}$ is an n -ary topology
(vi). If $\left(B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right) \subseteq\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)$ then
$\left\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing),\left(B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right),\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)\right.$, $\left.\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)\right\}$ is an n-ary topology.
(vii). If $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ then $\left\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing),\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right.\right.$, $\left.\left.\ldots, A_{n}\right),\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)\right\}$ is an n-ary topology.
(viii). $\operatorname{Diag}(X)=\left\{\left\{\left(\mathrm{A}_{1}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{1}\right): \mathrm{A}_{1} \subseteq \mathrm{X}\right\}\right.$ is an n-ary topology .
(ix). $\mathrm{F}=\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing)\} \cup\left\{\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right):\left(\mathrm{X} \backslash \mathrm{A}_{1}, \mathrm{X} \backslash \mathrm{A}_{2}\right.\right.$, $X \backslash A_{3}, \ldots, X \backslash A_{n}$), is finite $\}$ is an n-ary topology called cofinite n -ary topology.
(x). $C=\{(\varnothing, \varnothing, \varnothing, \ldots, \varnothing)\} \cup\left\{\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right):\left(\mathrm{X} \backslash \mathrm{A}_{1}, \mathrm{X} \backslash \mathrm{A}_{2}\right.\right.$, $X \backslash A_{3}, \ldots, X \backslash A_{n}$), is countable $\}$ is an n-ary topology called co-countable n -ary topology.
(xi). $\{(X, X, X, \ldots, X)\} \cup\left\{\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right):\left(a_{1}, a_{2}, a_{3}\right.\right.$, $\left.\left.\ldots, a_{n}\right) \notin\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)\right\}$ is an n-ary topology, called n ary point exclusion n-ary topology.
(xii). Let $R=$ the set of all real numbers and $R^{n}=$ the Cartesian product of n-copies of R. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ (R, R, \ldots, R). Then for each $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)>0$. Let $S(a, r)=($ $\left.S\left(a_{i}, r_{i}\right), \ldots, S\left(a_{n}, r_{n}\right)\right)$ where $S\left(a_{i}, r_{i}\right)=\left\{x_{i}:\left|x_{i}-a_{i}\right|<r_{i}\right\}$ for $\mathrm{i} \in\{1,2,3, \ldots, n\}$. Let $\mathrm{E}=$ the set of all n -ary sets $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots\right.$, $\left.A_{n}\right) \in P(R) \times P(R) \times \ldots \times P(R) \quad$ such that for every $\left(a_{1}\right.$, $\left.a_{2}, \ldots, a_{n}\right) \in\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ there exists $\left(r_{1}, r_{2}, \ldots, r_{n}\right)>0$ such that
$S\left(a_{i}, r_{i}\right) \subseteq A_{i}$ for $\mathrm{i} \in\{1,2,3, . ., n\}$. Then E is an n-ary topology, called n-ary Euclidean topology over R.
The next proposition is easy to establish.
Proposition 3.3: Let $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$ be a single valued function. Let T be an n-ary topology on (X_{1}, $\left.X_{2}, \ldots, X_{n}\right)$. Then $f^{-1}(T)=\left\{f^{-1}\left(\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)\right):\left(A_{1}, A_{2}\right.\right.$, $\left.\left.A_{3}, \ldots, A_{n}\right) \in T\right\}$ is a topology on Y.

Proposition 3.4: Let $\mathrm{f}_{\mathrm{i}}: \mathrm{Y} \rightarrow \mathrm{X}_{\mathrm{i}}$ be a single valued function for every $i \in\{1,2,3, \ldots, n\}$. Let $f=\left(f_{1}\right.$, $\left.f_{2}, \ldots, f_{n}\right): Y \rightarrow X_{1} \times X_{2} \times \ldots \times X_{n}$ be defined by $f(y)=\left(f_{1}(y)\right.$, $\left.f_{2}(y), \ldots, f_{n}(y)\right)$ for every $y \in Y$ where $f_{i}(y)=p_{i}(f(y))$ for every $\mathrm{y} \in \mathrm{Y}$. Let τ be a topology on Y. Then if f is a bijection then $\{f(A): A \in \tau\}$ is an n-ary topology on ($\left.X_{1}, X_{2}, \ldots, X_{n}\right)$.
Proof: Let A be a subset of Y and $y \in A$ with $f(y) \in f(A)$. Then
$f(y) \quad=\left(f_{1}(y), \quad f_{2}(y), \ldots, f_{n}(y)\right) \in\left(f_{1}(A), \quad f_{2}(A), \ldots, f_{n}(A)\right)$. Conversely let
$\left(x_{1}, \quad x_{2}, \ldots, x_{n}\right) \in\left(f_{1}(A), \quad f_{2}(A), \ldots, f_{n}(A)\right)$ that implies $x_{i}=f_{i}(y)=p_{i}(f(y))$ for some $y \in A, i \in\{1,2,3, \ldots, n\}$. That is $\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right) \in f(A)$. Therefore $f(A)=\left(f_{1}(A)\right.$, $\left.f_{2}(A), \ldots, f_{n}(A)\right) \in P\left(X_{1}\right) \times P\left(X_{2}\right) \times \ldots \times P\left(X_{n}\right)$. Since f is a bijection, each f_{i} is also a bijection. Therefore it is easy to verify that $\{f(A): A \in \tau\}$ is an n-ary topology on $\left(X_{1}\right.$, X_{2}, \ldots, X_{n}).
Proposition 3.5: Let p be a permutation of $(1,2, \ldots, n)$ defined by $p(i)=p_{i}, i \in\{1,2,3, \ldots, n\}$. Let T be an n-ary topology on $\left(X_{1}, X_{2}, \ldots, X_{n}\right) . p(T)=\left\{\left(A_{p(1)}, A_{p(2)}, \ldots, A_{p(n)}\right)\right.$: $\left.\left(A_{1}, A_{2}, \ldots, A_{2}\right) \in T\right\}$ is an n-ary topology on $\left(X_{p(1)}, X_{p(2), \ldots, X}\right.$ $\mathrm{p}(\mathrm{n})$.

Proof: Follows from the fact that $\left(\mathrm{A}_{\mathrm{p}(1)}, \mathrm{A}_{\mathrm{p}(2), \ldots,}, \mathrm{A}_{\mathrm{p}(\mathrm{n})}\right) \in \mathrm{P}(\mathrm{X}$ $p(1)) \times \mathrm{P}(\mathrm{X} \quad \mathrm{p}(2)) \quad \times \ldots \times \mathrm{P}\left(\mathrm{X} \quad \mathrm{p}(\mathrm{n}) \quad\right.$ iff $\quad\left(\mathrm{A}_{1}\right.$, $\left.\mathrm{A}_{2}, \ldots, \mathrm{~A}_{2}\right) \in \mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2}\right) \times \ldots \times \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}\right)$.
The next two propositions can be proved easily.
Proposition 3.6: Let T be an n-ary topology on (X_{1}, $\left.X_{2}, \ldots, X_{n}\right) . T_{1}=\left\{A_{1}:\left(A_{1}, A_{2}, \ldots, A_{2}\right) \in T\right\}$ and $T_{2}, T_{3}, \ldots, T_{n}$ can be similarly defined. Then $T_{1}, T_{2}, \ldots, T_{n}$ are topologies on $X_{1}, X_{2}, \ldots, X_{n}$ respectively.

Proposition 3.7: Let $\tau_{1}, \tau_{2}, \ldots, \tau_{\mathrm{n}}$ be the topologies on X_{1}, $\mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ respectively. Let $\mathrm{T}=\tau_{1} \times \tau_{2} \times \ldots \times \tau_{\mathrm{n}}=\left\{\left(\mathrm{A}_{1}\right.\right.$, A_{2}, \ldots, A_{2}): $\left.A_{i} \in \tau_{i}\right\}$. Then T is an n-ary topology on (X_{1}, $\mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$). Moreover $\mathrm{T}_{\mathrm{i}}=\tau_{\mathrm{i}}$ for every $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$.

IV. CONCLUSION

The concept of binary topology has been extended to n-ary topology for $n>1$ sets. The basic properties have been discussed. In particular it is observed that the notions of product topology and n-ary topology are different. More over the connection between the product topology and an nary topology is studied.

REFERENCES

[1] S.S.Benchalli , P.G.Patil, S.Abeda Dodamani and J.Pradeepkumar, "On Binary Soft Separation Axioms in Binary Soft Topological Spaces", Global Journal of Pure and Applied Mathematics, vol.13, no.9, pp. 5393-5412, 2017.
[2] M.Jamal Mustafa, "On Binary Generalized Topological Spaces", General Letters in Mathematics, vol.2, no.3, pp.111-116, 2017
[3] M.Lellish Thivagar, J. Kavitha, "On Binary Structure of Supra topological spaces", Bol.Soc. Paran. Mat., vol.35, no.3, pp.25-37, 2017.
[4] S.Nithyanantha Jothi, "Binary semicontinuous functions", International Journal of Mathematics Trends and Technology, vol.49, no.2, pp.152-155, 2017.
[5] S.Nithyanantha Jothi , P.Thangavelu, "Topology Between Two Sets", Journal of Mathematical Sciences and Computer Applications, vol.1, no.3, pp.95-107, 2011.
[6] S.Nithyanantha Jothi , P.Thangavelu, "On Binary Topological Spaces", Pacific-Asian Journal Mathematics, vol.5, no.2, pp.133138, 2011.
[7] S.Nithyanantha Jothi, P.Thangavelu, "Generalized Binary Regular Closed Sets", IRA International Journal of Applied Sciences, vol.4, no.2, pp.259-263, 2011.
[8] S.Nithyanantha Jothi, P.Thangavelu , "On Binary Continuity and Binary Separation Axioms", Ultra Scientists vol.24, no.1A, pp.121-126, 2012.
[9] S.Nithyanantha Jothi, P.Thangavelu, "Binary semiopen sets in Binary Topological Spaces", International Journal of Mathematical Archiv, vol.7, no.9, pp.73-76, 2016.
[10] R.Seethalakshmi, K.Kamaraj, "Nearly Binary Open Sets in Binary Topologica; Spaces", International Conference On Applied and Computational Mathematics(ICACM- 2018),
Erode Arts and Science College(Autonomous) Rangampalaym, Erode638009, Tamilnadu, India, 2018.

