
International Conference on Computer Science and Technology Allies in Research-March 2016, || 192

Organized by: City Engineering College, Bangalore, Karnataka - India

 International Journal of Computer Sciences and Engineering Open Access

 Technical Paper Volume-4, Special Issue-3, May 2016 E-ISSN: 2347-2693

Intelligent Headlight Control by Light Blob Detection

Amarjit Salam1, Ashutosh Kumar2, Mohammed Idris3, Naman Narain4
and Sangappa S B

5

1
Department of Electronics and Communication, K. S. Institute of Technology, India

2
Department of Electronics and Communication, K. S. Institute of Technology, India

3
Department of Electronics and Communication, K. S. Institute of Technology, India

4
Department of Electronics and Communication, K. S. Institute of Technology, India

5
 Professor,PRO, Department of ECE,Visvesvaraya Technological University, India

Available online at: www.ijcseonline.org

Abstract— in this paper, we propose an enhanced method for detecting light blobs (LBs) for Intelligent Headlight Control

(IHC) using Digital Image Processing Techniques. The main function of the IHC system is to automatically convert high-beam

headlights to low beam when vehicles are found in the vicinity. Thus, to implement the IHC, it is necessary to detect preceding

or oncoming vehicles. This process of detecting vehicles is done by detecting LBs in the images. Here the algorithm is

developed to analyze a frame and the same will be applied to all frames in a video. The area of interest is enhanced by

converting the image to binary and thus detecting the LBs. To detect tail lights, red component of the image is extracted.

Threshold value can be set depending on the object to be detected. Morphological operations will be performed on the binary

image to remove all unwanted objects that are present in the image. Area of the light blob is calculated in the binary image and

based on the value of this area, high beam is converted to low beam.

Keywords— Light Blobs (LBs), Intelligent Headlight Control (IHC), Digital Image Processing, headlight, tail light,

threshold value, morphological operations, binary image.

I. INTRODUCTION

To drive safely at night, high-beam headlights must be
kept turned on unless other vehicles are found within a
certain distance from the ego-vehicle. However, if high
beams are not converted to low beams at the appropriate
moment, glare from these lights can temporarily blind the
oncoming or preceding drivers, which could lead to serious
traffic accidents. Glare is a serious problem for drivers
during the night. This is caused due to sudden exposure of
driver’s eye to high intensity headlight. The high intensity
headlight of vehicle in this case causes temporary blindness.
This is called the Troxler Effect. [1] Eventually, this
becomes the major reason for night accidents. The drivers
are found rather negligent in actively switching between
high-beam and low-beam. Hence, we developed a project
titled “Intelligent Headlight Control by Light Blob
Detection”. Intelligent Headlight Control (IHC) allows the
driver to use high beam headlight when required, and it
automatically switches the high beam headlight to low beam,
when it senses a vehicle approaching from the opposite side.

Our project not only avoids accidents, but also aims at

societal concerns by providing safe and comfortable driving.

II. ALGORITHM FOLLOWED

 In this project, two distinct algorithms have been

proposed. The first algorithm detects the headlight of the

oncoming vehicle. The second algorithm detects the

taillight of the preceding vehicle.

A. There are 7 steps in the Headlight Detection Algorithm.

They are:

1. Image Acquisition
2. Image Grayscaling

3. Noise Filtering

4. Image Binarization
5. Morphological operations to the image

6. Light Blob area calculation
7. Conversion of High Beam to Low Beam

The above steps have been discussed in detail as follows.

1. Image Acquisition

The video is taken at a fixed point without changing the

position of the camera. The video can be taken at a lower

resolution for reducing the processing time. The video

sequence is acquired from a web camera (VGA Camera)

since it has low resolution. It can be mounted on the rear

view mirror of the ego-vehicle. This results in coverage of a

large field of view and minimizes the occlusions of the

vehicles. A video sequence needs to be sampled into

multiple frames before applying the image processing

techniques and those set of frames are the inputs to the

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 193

Organized by: City Engineering College, Bangalore, Karnataka - India

subsequent stages of the system. Hence the built-in function

VideoReader () in Matlab was used to extract the frames.

The built-in function imread () in Matlab was used to read

and convert the extracted frames into readable form. [2]

2. Image Grayscaling

Converting color images into grayscale images is the

first step of the pre-processing. Grayscaling removes the

color values of an image and simplifies computational time

significantly compared to a color RGB image. There are

several algorithms to convert a color RGB image to a

grayscale image. The function called rgb2gray (), which is

a built-in function in Matlab is one such method. [3]

3. Noise Filtering

After grayscaling the image, it had to go through the

filtering process to filter out any noise in the image. A wide

variety of filtering algorithms are available to detect and

remove noise, leaving us the required information. The filter

used in this work is a median filter, which has a nonlinear

operation and is often used to reduce the "salt and pepper"

noise. Median filter is more effective than convolution when

the goal is to simultaneously reduce noise as well as

preserve the edges. The function medfilt2 () is a built-in

function in Matlab, which performs the median filtering

operation. The output image from the previous operation is

passed through the filter to obtain a noise free image. [2],

[3]

4. Thresholding

After the filtering process, we have to determine the

threshold to convert the grayscale image to binary image.

The threshold is found by running the program for different

distant images, our program has a range of 350m for

detecting headlights. This maximum distance is the distance

at which street lights and reflectors are removed by

thresholding. For our captured video the threshold value is

found to be 0.9 for a maximum distance of 350m; i.e., all

the pixel values below 0.9 will be assigned to the value 0

(black), and all the pixel values above 0.9 will be assigned

to the value 1 (white). The function im2bw (Th) is a built-in

function in Matlab, which performs the thresholding

operation and converts the image from grayscale to binary,

where Th is the threshold value. [3]

5. Morphological Operations to the Image

To enhance the binary image, we apply different

morphological operations which include:

1. Filling the holes: In the binary image, some areas

of the headlight have black pixels which need to be filled to
get more accurate results. The function imfill () is a built-in

function in Matlab, which performs the filling operation on

the binary image.

2. Dilate the image: We then dilate the image twice

the amount to make it clear. The function bwmorph () is a
built-in function in Matlab, which performs the dilation

operation on the filled binary image.

3. Cropping the image: The upper portion of the
image is cropped out to remove the glare from street lights.

The function imcrop (XData, YData) is a built-in function

in Matlab, which performs the cropping operation on the
dilated binary image. [3]

6. Light Blob Area Calculation

After the morphological operations, we then calculate

the number of white pixels present in the binary image. The

function bwarea () is a built-in function in Matlab, which

returns the number of white pixels in the binary image. [3],

[8]

7. Conversion of High Beam to Low Beam

After calculating the area of the number white pixels we

then compare it to our threshold value of 250. This

threshold value is calculated from a binary image in which

the vehicle is at a distance of 3000m for headlight detection

and at a distance of 150m for tail light detection. [3]

B. There are 7 steps in Tail light Detection Algorithm. They

are:

1. Image Acquisition

2. Extraction of Red Component
3. Noise Filtering

4. Image Binarization

5. Morphological operations to the image
6. Light Blob area calculation

7. Conversion of High Beam to Low Beam

1. Image Acquisition

 The video is taken at a fixed point without

changing the position of the camera. The video can be taken

at a lower resolution for reducing the processing time. The
video sequence is acquired from a web camera (VGA

Camera) since it has low resolution. It can be mounted on
the rear view mirror of the ego-vehicle. This results in

coverage of a large field of view and minimizes the

occlusions of the vehicles. A video sequence needs to be
sampled into multiple frames before applying the image

processing techniques and those set of frames are the inputs

to the subsequent stages of the system. Hence the built-in
function VideoReader () in Matlab was used to extract the

frames. The built-in function imread () in Matlab was used
to read and convert the extracted frames into readable form.

[2]

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 194

Organized by: City Engineering College, Bangalore, Karnataka - India

2. Extraction of Red Component

Our high beam can also affect the preceding vehicle,

since the glare can fall on its side view and rear view

mirrors. For detecting the tail light of the preceding vehicle,

we extract the red component of the image since all the tail

lights are red in color. We do this by acquiring the red, blue

and green components pixel values and ANDing them. The

function Vsize () is a built-in function in Matlab, which

returns the pixel values of the RGB Image. The red pixels

are compared with the green and blue pixels. If the red

pixels are significant in the image, then it is assumed that

the tail light is present. [3]

The remaining steps in the Tail light Detection

Algorithm are already discussed in the previous section.

III. FLOWCHART FOR HEADLIGHT DETECTION

We can implement this project using Digital Image

Processing Techniques. A camera can be fixed at the rear-
view mirror or at the dashboard, which records video at 25-
30 frames per second.

 Each frame can be input as an image. Each image
undergoes the below mentioned operations.

 Finally, area of the white pixels is calculated and

compared with the threshold value. If the area is greater than

the threshold value, then High-beam headlight is converted

to Low-beam; else High-beam is retained.

IV. FLOWCHART FOR TAIL LIGHT DETECTION

 High-beam headlight from the ego-vehicle can

cause temporary blindness to the driver of the preceding

vehicle, since the glare can fall on the rear-view mirror of

the preceding vehicle, thus affecting the driver’s eyes.

 Hence, in order to detect the tail light of the

preceding vehicle, red component of the image is extracted.

Then the image undergoes the below mentioned operations.

Finally, area of the white pixels is calculated and compared

with the threshold value, then High-beam headlight is

converted to Low-beam; else High-beam is retained.

 MATLAB Tool can be used to simulate all the

results on a computer. The simulation results performed

using Matlab are shown in section V.

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 195

Organized by: City Engineering College, Bangalore, Karnataka - India

V. SIMULATION RESULTS FOR HEADLIGHT

DETECTION

Fig. 1: ORIGINAL IMAGE FOR HEAD LIGHT DETECTION

Fig. 2: IMAGE CONVERTED FROM RGB (COLOR) TO GRAY

Fig. 3: NOISE FILTERED IMAGE

Fig. 4: THRESHOLDED IMAGE

Fig. 5: ORIGINAL IMAGE FOR TAIL LIGHT DETECTION

VI. SIMULATION RESULTS FOR TAIL LIGHT

DETECTION

Fig. 6: RED COMPONENT EXTRACTED IMAGE

Fig. 7: HOLES FILLED BINARY IMAGE

Fig. 8: DILATED IMAGE

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 196

Organized by: City Engineering College, Bangalore, Karnataka - India

VI. TIMING AND CONCLUSIONS

TABLE I: TIMING RESULTS

TYPE OF

DETECTION
HEADLIGHT

DETECTION OF

AN IMAGE

TAIL LIGHT

DETECTION OF AN

IMAGE
PROCESSING TIME 0.5079s 0.2134s

MAXIMUM

DISTANCE FOR

DETECTION

250-300m

100-150m

MEMORY

OCCUPIED

877B 897B

From the above table, it is seen that the processing

time is reduced significantly when compared to other

techniques such as using proximity sensors or photo-

sensors. Also the proximity sensors have limited range of

about 25m-40m. [4]

The memory required for the proposed method is

also less since we are dealing with a single image at any

instant of time.

A vehicle which is approaching at a speed of 150kmph

towards us needs 9s to travel 375m. That means we have 9s

to detect the vehicle’s headlight and we are detecting it

within 0.6s which is highly efficient. If we use Lane

Detection Algorithm and Region of Interest false positive

light blobs in the images can be eliminated and very high

accuracy can be obtained. [5]

VII. FUTURE WORK

This project can be merged with Lane Detection

algorithm to make it more accurate. The method used here

for detecting tail lights can also be used to prevent Forward

Collision and issue a Forward Collision Warning (FCW) to

the driver. [6]

Our project was implemented and simulated on

MATLAB. This can be converted to C language and

implemented on a digital signal processor for real time

application of vehicle speed estimation and traffic law

enforcement. [7]

We can also pair the headlight for four wheelers by

using Pattern detection technique. By making use of the

frames in which light blob is present we can even calculate

the speed of the oncoming vehicle. [8]

ACKNOWLEDGMENT

On the very outset of this paper, we would like to

extend our sincere and heartfelt obligation towards all the

personages who have helped us in this endeavor. Without

their active guidance, help, co-operation and

encouragement, we would not have made headway in this

paper.

We are ineffably indebted to the Department of

Electronics and Communication, K S Institute of

Technology, Bangalore, for conscientious guidance and

encouragement to accomplish this assignment.

 We are extremely thankful and

pay our gratitude to our faculty, Mr. Sangappa S. B.,

Associate Professor and PRO, K.S. Institute of Technology,

for his valuable support and guidance in completion of this

paper in its present form.

REFERENCES

[1] Automatic headlight dimmer, a prototype for vehicles;

Muralikrishnan, B.E, Electrical and Electronics

Engineering, Sri Venkateswara College of

Engineering, Tamil Nadu, India. IJRET: International

Journal of Research in Engineering and Technology.

eISSN: 2319-1163 | pISSN: 2321-7308

[2] “Digital Image Processing”, by Rafael Gonzalez 2012.

[3] MATLAB 2012b, by MathWorks,

www.mathworks.com.

[4] Night-time Vehicle Detection for Intelligent Headlight

Control. Antonio L´opez, J¨org Hilgenstock, Andreas

Busse, Ram´on Baldrich, Felipe Lumbreras, and Joan

Serrat, Computer Vision Centre and Computer Science

Dept., Auton. Univ. of Barcelona, Volkswagen AG,

Group Research, Carmeq GmbH, Business Team

Surround Sensing, these authors are partially supported

by Spanish MEC research projects Consolider Ingenio

2010: MIPRCV (CSD200700018) and TRA2007-

62526/AUT. J. BlancTalon et al. (Eds.): ACIVS 2008,

LNCS 5259, pp. 113–124, 2008. Springer-Verlag

Berlin Heidelberg 2008

[5] A Novel Traffic-Tracking System Using

Morphological and Blob Analysis : Prabhakar

Telagarapu, Department of ECE, GMR Institute of

Technology, RAJAM- 532 127, AP, INDIA,

email:prabhakar.t@gmrit.org

[6] https://www.trw.com/integrated_systems/driver_assist

_systems/forward_collision_warning

[7] https://www.researchgate.net/post/How_to_convert_M

ATLAB_code_to_C_program_in_Image_Processing

[8] Enhancing Light Blob Detection for Intelligent

Headlight Control Using Lane Detection: Sungmin

Eum, Member, IEEE, and Ho Gi Jung, Senior

Member, IEEE (IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS,

VOL. 14, NO. 2, JUNE 2013).

