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Abstract—Approximate Nearest Neighbour (ANN) search has become a popular approach for performing fast and efficient 

retrieval on very large-scale datasets in recent years, as the size and dimension of data grow continuously. In this paper, we 

propose a novel vector quantization method for ANN search which enables faster and more accurate retrieval on publicly 

available datasets. We define vector quantization as a multiple affine subspace learning problem and explore the quantization 

centroids on multiple affine subspaces. We propose an iterative approach to minimize the quantization error in order to create a 

novel quantization scheme, which outperforms the state-of-the-art algorithms. The computational cost of our method is also 

comparable to that of the competing methods.  
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I.  INTRODUCTION 

 

The Nearest Neighbor (NN) search aims to find a sample in a 

given dataset that is closest to a given query, which is called 

the nearest neighbor. It is widely used in different areas of 

signal processing such as information retrieval, computer 

vision, machine learning, pattern recognition and 

recommendation systems. However, the traditional NN 

search is not tractable for today’s very large-scale datasets. 

Both the search on the dataset and the distance calculation 

between sample pairs are computationally costly, considering 

the number of samples and the dimension of the feature 

space. In order to overcome these limitations of NN search 

and make it feasible for large-scale problems, Approximate 

Nearest Neighbor (ANN) search has been proposed [1]. 

ANN search uses com-pact representations in order to 

approximate pair-wise dis-tances between pairs of data 

points. It has proved to be a via-ble alternative and has so far 

achieved promising results [2].  

 

Many of the existing algorithms in this field rely on the 

concept of “hashing”. Hashing methods aim to create binary 

strings from sample vectors and compare those strings using 

the Hamming distance representing the proximity neighbor-

hood or some given similarity [3]–[7]. The binary string 

com-parison has also evolved from the simple Hamming 

distance to asymmetrical distance measures [8], [9] and the 

usage of look-up tables has enabled more accurate 

approximations, di-recting the research on ANN search 

towards vector quantiza-tion [2]. The focus of this paper is 

on vector quantization based approaches, and the reader is 

referred to [2] for a more detailed review on hashing.  

 

The idea of quantization goes back to 1980’s. Lloyd de-fined 

the concept of “good quantization” [10], which is closely 

related to the Κ-Means algorithm [11]. Yet Lloyd’s 

quantization method, or Κ-Means is not directly applicable to 

large-scale data, for very large number of centroids. For ex-

ample, considering a quantization using a binary string of 64-

bits, the desired number of centroids is 264. Obviously, it is 

neither possible to find nor to store such amount of data.  

 

A great improvement on Lloyd's approach for quantization 

has been proposed by Jegou et al. [12] for ANN. In their 

method called Product Quantization (PQ), the authors divide 

the sample vector into subvectors and quantize each of them 

independently using subquantizers. This makes the quantiza-

tion codebook a Cartesian product, where each centroid in 

this codebook is represented as a concatenation of the 

correspond-ing centroids from the subcodebooks. Therefore, 

for a small number of subquantizers, while each of them 

having a feasi-ble number of centroids, obtaining the desired 

total number of centroids is made possible. Referring to the 

example above, thanks to the Cartesian product, selecting the 

number of subquantizers as 8 and the number of centroids for 

each subquantizer as 256 would be enough to reach 264. This 

ap-proach however suffers from the statistical dependency of 

subvectors, since they are quantized independently.  

 

Another approach for efficient coding on high dimensional 

vectors has been proposed by Jegou et al. [6] and later by 
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Gordo et al. [8]. In both papers, the data is decorrelated by 

applying the Principal Component Analysis (PCA), and its 

di-mension is reduced to a desired value. Then, quantization 

is applied independently on each of the remaining principal 

components. This, with a Gaussian distribution assumption, 

solves the statistical dependency problem among the 

dimensions. As a result of PCA, the principal components 

are ranked in a decreasing order according to the 

corresponding variances, yet each component is quantized by 

two centroids only. Gong et al. [13] propose a two-step 

method called Iterative Quanti-zation (ITQ). In the first step, 

a PCA transformation is applied for dimension reduction as 

in [6], while in the second step, an orthogonal rotation on the 

data is applied iteratively for a bal-anced distribution of the 

variance among the principal com-ponents. The data are 

quantized on the principal components of the rotated space 

independently. While orthogonal rota-tions preserve the 

Euclidean distance between pairs of sam-ples, here again, the 

problem of statistical dependency reap-pears, since the 

dimensions are no longer decorrelated.  

 

Brandt in [14] proposes a method called Transform Coding 

(TC), to balance the variance corresponding to each code 

sep-arately after PCA. TC is a special case of PQ, where 

each di-mension itself is a subvector. However, in TC, each 

dimen-sion is allocated a variable number of bits, and a 

scalar quan-tization is performed on each principal 

component inde-pendently. Following the rotation idea in 

[13], Optimized Product Quantization [15] (OPQ) and 

Cartesian Κ-Means (CKM) [16] both produce an 

improvement over PQ by apply-ing an iterative optimization 

process in order to balance the dimension variances. In [17] 

Heo et al. improve OPQ by en-coding the distances to 

centroids separately in their algorithm called Distance 

Encoded Product Quantization (DEPQ). Lo-cally Optimized 

Quantization (LOPQ) [18] introduces local optimization 

before OPQ and further improves the perfor-mance.  

 

Recently summation based multi-stage vector quantization 

methods such as Optimized Cartesian Κ-Means (OCK) [19], 

Additive Quantization (AQ) [20], Composite Quantization 

(CQ) [21] and (Optimized) Tree Quantization (OTQ) [22] 

which aim to use the summation of several dictionary items 

to represent the approximation of a vector, have been pro-

posed. These methods produce the state-of-the-art results alt-

hough the theory behind such quantization methods has been 

well studied in the past [23].  

 

II. METHODOLOGY 

 

Many of the proposed methods so far transform or project the 

data into a new (sub)space, where vector dimensions are 

reduced, reordered or rotated using PCA. Decorrelating the 

data using a single PCA step may not bring the desired statis-

tical independency among dimensions, especially if the data 

do not follow a Gaussian distribution, which is the core 

inher-ent assumption of PCA. A better transformation 

however, may be designed by representing the data with 

more than one subspace. Local-PCA [24], [25], Κ-Means 

Projective Cluster-ing [26] and Bayesian PCA [27] all 

propose different solu-tions to this problem based on PCA. In 

our recent study enti-tled M-PCA Binary Embedding 

(MPCA-E) [28], we have also shown that using traditional 

PCA based embedding ap-proaches, such as [6], [8], [13], 

[14], with multiple PCAs in-stead of only a single PCA, the 

performance is improved sig-nificantly. In this paper this 

result is taken one step further, by developing an iterative 

approach to obtain the affine sub-spaces and codebooks at 

the same time. In this way, the pro-posed method achieves 

lower quantization error, which leads to a better encoding 

scheme with state-of-the-art perfor-mance. The main 

contributions of the proposed method are the following:  

 

 Vector quantization is defined as a multiple sub-space 

learning problem, where the objective is to minimize the 

quantization error of the training samples in the learnt 

subspaces, while also mini-mizing the projection error of 

the samples to the corresponding subspaces.  

 An optimization problem that jointly minimizes both 

errors defined above is formulated as an iter-ative 

process.  

 A simple, yet effective scheme for faster sample 

encoding is proposed, by efficiently selecting a limited 

number of subspaces, thus decreasing the computational 

cost required for evaluating all possible encodings.  

The proposed approach is evaluated on publicly 

available datasets, and shown to achieve state-of-the-art 

performance 

 
Fig. 1: Bit allocation as given in TC [14], by d’Hondt and 

Modified d’Hondt methods. (left vertical axis: bits per 
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dimension, right vertical axis: standard deviation, horizontal 

axis: dimensions). 

 

As it can be seen in Fig. 1, the Modified d’Hondt method 

emphasizes more the dimensions with higher variances. 

Since there is a limited number of bits, assigning multiple 

bits to one dimension means that another dimension is 

discarded from quantization, so this dimension can also be 

removed from the subspace. In other words, the reduced 

number of dimensions 𝐿𝑘 for a subspace is the number of 

dimensions which has at least one allocated bit. 

 

TRAINING FOR K-SUBSPACE QUANTIZATION 

 
 

ENCODING A NEW SAMPLE 

 
 

The main difference between such methods and the proposed 

method is, while summation based methods require the 

addition of the code vectors from subcode books, in KSSQ, 

the most suitable one among them is selected, i.e., the one 

with the lowest quantization error, as given in (8). This is 

first of all, computationally advantageous because the 

summation based algorithms are usually computationally ex-

pensive. This is due to the limited constraints put on the 

generation and selection of code vectors in order to obtain 

better quantization performance.  

 

In the proposed method however, the constraints of many 

Cartesian product based approaches such as [12], [14], [16] 

are retained, which require much less computations. Thanks 

to the jointly optimized subspace generation approach, the 

assumptions of the given constraints are much more realistic 

for the given dataset, resulting in a quantization scheme with 

improved performance. 

 

 
Fig. 2: A comparison of the methods (a) K-Means, (b) TC, 

(c) PQ, (d) OPQ Parametric, (e) LOPQ and our method (f) 

KSSQ for 2-bit quantization, obtained by running the 

algorithms on a 2-D toy example. For LOPQ and KSSQ 

there are 2 sub quantizers and for K-Means obviously the 

number of centroids is 4. Gray arrows are the principal 

components. 

 

III. EXPERIMENTS 

 

The proposed approach is tested on two publicly available 

datasets, SIFT1M and GIST1M [12]. SIFT1M consists of 1 

Million samples of 128-dimensional SIFT vectors for test, 

100,000 vectors for training and 10,000 for queries. GIST1M 

consists of 1 Million samples of 960-dimensional GIST vec-

tors for test, 500,000 vectors for training and 1,000 queries.  

The proposed method is trained using the given training sets 

and exhaustive search is performed on both datasets for all 

queries. 𝐾=256 and 𝒦=16 for SIFT1M, and 𝐾=32 and 𝒦=8 

for GIST1M are selected, as later justified in Sec-tion 5. The 

proposed method (KSSQ) is compared with the recent state-

of-the-art methods from the literature such as, Transform 

Coding (TC*) [14], Product Quantization (PQ) [12], 

Cartesian K-Means/Optimized Product Quantization 

(CKM/OPQ) [15], [16], Distance Encoded Product Quanti-

zation (DEPQ) [17], an exhaustive implementation of Lo-

cally Optimized Product Quantization (E-LOPQ*) [18], Op-

timized Cartesian K-Means (OCK) [19], Additive Quantiza-

tion (AQ/APQ) [20], Composite Quantization (CQ) [21], 

Optimized Tree Quantization (OTQ) [22] and MPCA Binary 

Embedding (MPCA-E*) [28]. The results for most of the 
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competing methods are obtained from the figures in the 

original publications while our own implementations of TC*, 

DEPQ*, E-LOPQ* and MPCA-E* are used. For DEPQ*, 

𝐾=128 is selected and 1 bit is allo-cated for distance 

encoding as suggested in [17]. For E-LOPQ* an exhaustive 

version of LOPQ is developed for fair comparison with other 

exhaustive methods. 𝐾=256 is se-lected, allocating 8 bits for 

cluster index overhead. For MPCA-E, the multiple PCA 

version of the Transform Coding is selected as it provides the 

best retrieval performance [28]. For AQ/APQ, AQ is 

compared for 32-bits coding and APQ for 64-bits as 

suggested by the authors. NA indicates that the corresponding 

results are not presented in the original publi-cation for the 

corresponding method. 

 

IV. CONCLUSION 

 

In this study a novel vector quantization algorithm is pro-

posed for the approximate nearest neighbor search problem. 

The proposed method explores the quantization centers in af-

fine subspaces through an iterative technique, which jointly 

attempts to minimize the quantization error of the training 

samples in the learnt subspaces, while minimizing the projec-

tion error of the samples to the corresponding subspaces. The 

proposed method has proven to outperform the state-of-the-

art-methods, with comparable computational cost and addi-

tional storage. In this paper it is also shown that, dimension 

reduction is an important source of quantization error, and by 

exploiting subspace clustering techniques the quantization er-

ror can be reduced, leading to a better quantization perfor-

mance. 
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