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Abstract— Recommender systems have become more important in various domains for lessening the issue of information
overload. Traditional Recommender Systems are Collaborative filtering method and Content based filtering method.However,
these recommendation methods suffer from data sparsity and cold start problem. So this paper proposes an ANN based
recommender system. Artificial Neural Network —Learning Vector Quantization (ANNLVQ) and Optimized Learning Vector
Quantization (ANNOLVQ) algorithms are used todevelop a multi-categorical classification model that predicts the class of a
rating in recommender systems. In this proposed research, the problem of predicting the rating as a multi-label classification
problem is considered where each rating has treated a label. Book dataset used for this proposed research. ANN recommender
systems accuracy compared with collaborative filtering method recommender system and ANN recommender systems predicts
more accuracy than traditional collaborative filtering method.

Keywords— Artificial Neural Network, collaborative filtering, Learning Vector Quantization, Book Recommendation,

Recommender systems.

l. INTRODUCTION

In the era of information overload, Internet users may find it
difficult to choose from the multitude of available products
and services. There is a requirement aimed at Recommender
systems (RSs) that create modified recommendations [1].
The idea behind RSs is not new. It is general to enquire
associates for references when one selects an eatery, film,
book, etc. To make a recommendation, an RS usually needs
user data, items, and user feedback on those items.
Subsequently generating a recommendation, user response
on the item is acquired either openly or indirectly [2].

The utilization of RSs in e-commerce has many benefits for
both sellers and consumers. The former’s objective is to
make their products available to concerned clients and to
achieve consumer satisfaction in addition to loyalty. Their
objective can be achieved when users regularly receive
products that meet their needs [3]. On the other hand,
consumers would receive a list of products they would be
most likely to find useful. They also save time, effort and
money they would spend trying to discover items they truly
appreciate [4].

Recommender systems are useful for internet users who may
find it hard to choose from the multitude of available
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products and services. RSs predict how likely the target user
is to be interested in an item which might have been
unknown to them [5]. This study deliberates book
recommender systems that could be beneficial in the public
library, schools, and on e-learning portals. Currently, with
the introduction of e-books, readers can access low-cost
resources using less effort. It was estimated that the
performance of reading for desire would turn out to be
prevalent, but statistics prove the opposite; it is declining,
mainly between young people.

Collaborative filtering (CF) methods most often consider the
user as a static entity whose interests are fixed in time.
Matrix factorization, for instance, utilizes all the ratings (or
implicit response) of a user to build a demonstration of its
familiar tastes, ignorant to the probable evolution of taste or
fading interests of the user [6]. To make recommendations,
CF only requires an item-user rating matrix, so it is simple to
develop. The rating matrix, however, can be sparse,
specifically in the instance of new items or new users; this is
named as cold startproblem. Sparsity may advance to poor
recommendations. CF has two other drawbacks. The gray
sheepissue happens when the system calculates the
preferences of a user who has a task dissimilar than other
users. The shilling attackissue happens once an item accepts
false evaluations as a form of promotion [7].
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A CB recommender is a classifier that studies the patterns in
addition to similarities in the buying history of a user to
forecast her future interests. A book’s content could check its
title, summary, outline, whole text or metadata, containing
author, year of publication, publisher, genre, page number,
etc. [8].Existing techniques for recommender systems [9-13]
mainly categorized into collaborative filtering and content-
based recommendations. Collaborative filtering depends
heavily on user activities, e.g., ratings of items according to
their preferences. The recommender functions under the
assumption of similar preferences among users and a
sufficient number of user ratings available in the system.

Collaborative filtering, however, has difficulty handling
items without sufficient numbers of user ratings and new
items that one has purchased or rated, i.e., the so-called cold
start problem. In particular, most books are seldom utilized
by many patrons according to library use statistics. Thus,
effective content-based recommendations become important
when these user activities are sparse. A content-based
method has been initially developed for book
recommendations. Its system, however, depends on a careful
feature selection process by labeling every book with values,
which is a labor-intensive task. Specific attributes of users
must also be provided in advance when evaluating
recommended  books.  Automated text-classification
approaches then employed for exploring content-based book
recommender systems. However, the relevance of the
recommendations only considered textual metadata, partially
extracted from the Internet, rather than actual book text. In
industrial applications, e.g., Google Books, full-text indexing
has been used commonly for book retrieval via search
queries.

In a recommendation systems context, metadata information
from analyses inscribed for businesses has infrequently
deliberated in traditional systems technologically advanced
with content-based in addition to collaborative filtering
methodologies [14]. Collaborative filtering, as well as
content-based  filtering, are common memory-based
techniques for endorsing innovative products to the users but
grieve from certain drawbacks and be unsuccessful to offer
practical recommendations in various circumstances. The
sparsity mentions to the enormous percentage of
nonappearance of ratings: individually user only has ratings
in a very restricted number of the accessible data. There is no
sufficient space for complete data [15].

This paper proposes a Classification Approach to develop a
multi-categorical classification model that predicts the class
of a rating using Artificial Neural Network LVQ and
OLVQin recommender systems and toenhance prediction
accuracy. In this proposed approach, the problem of
predicting the rating as a multi-label classification problem
considered where each rating has treated a label.
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Collaborative  Filtering  Cosine  Similarity  (CFCS)
recommender system compared with ANN recommender
systems for accuracy.

This paper is structured as: Section 2 explains the literature
review related to recommendation systems; Section 3 defines
the proposed methodology; Section 4 gives the results and
discussions followed by the conclusion in addition to future
scope in section 5.

Il. LITERATURE REVIEW

Suglia et al. (2017) [16] presented a modular and extensible
architecture exploiting deep neural networks to provide users
with content-based recommendations. The model was based
on LSTM networks, a particular class of RNNs particularly
able to deal with sequences of data of arbitrary length, as the
content describing the recommended items. Specifically, an
approach was developed which jointly learns two
embeddings on behalf of both items to be recommended as
well as user’s preferences. Given such representations,
recommendations were provided by exploiting a logistic
regression layer which calculates the likelihood that a user
will like a particular item. The results of the proposed
approach showed that the proposed deep architecture was
able to significantly overcome both algorithms based on
(shallow) neural networks as Word2Vec W2V and Doc2Vec
D2V as well as popular and well-performing techniques for
collaborative filtering and matrix factorization.

Devooght and Bersini (2017) [17] showed that recurrent
neural networks are a powerful tool aimed at collaborative
filtering, even external to the sparse session-based settings
where it first introduced. This method achieved the best
results using the categorical cross-entropy objective function.
RNNs performed exceptionally well on short-term
recommendations and adding noise to the training sequence
was observed (such as dropout and shuffling) improves its
triumph on long-term recommendations.

Yi et al. (2016) [18] suggested an expanded auto encoder
recommendation framework Supervised Neural
Recommendation (SNR). The stacked auto encoders model
was considered to excerpt input feature formerly
reconstruction of the input to make the recommendation.
Then the side information of objects was mixed in the
structure, and the Huber function based regularization was
implemented to enhance the performance  of
recommendation. The first innovation of current
recommendation framework was that the side information
was used to enlarge the framework. The presented scheme
was verified on a public dataset. Results indicated that the
recommendation framework has better performance than the
state-of-art recommendation methods.
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Veugen, T., & Erkin, Z. (2015) [19] developed a system for
recommending items in a privacy-preserving way by using a
content-based item similarity matrix. Compared to previous
solutions, the leakage of the divisors Vi was avoided which
contain information about the commercially sensitive item
similarities. The costs of introducing a secure division
protocol led to a doubling of the computational and
communication complexity, and a slight loss in
recommendation accuracy. However, the system neither
relied on trusted third parties nor requires interaction with
peer users. In addition, this proposal offered an efficient and
much more secure solution for this class of recommender
systems.

Shen et al. (2016) [20] suggested a novel CNN to make
personalized recommendations and attained a superior result.
The suggested procedure tested on a public dataset.
Outcomes specified in this recommendation procedure for
recommending new and unpopular learning resources was
practicable. The CNN-based model would show a vital role
in e-learning systems or intelligent tutoring systems. Even
though the application considered here was learning
resources recommendation, the technique was more usually
appropriate to news recommendation, and so on.

Chen, L., & Wang, F. (2017) [21] presented a method of
implementing tradeoff-oriented explanations in preference-
based recommender systems. Through measuring users’
objective behavior and subjective perceptions as well as
collecting their free comments in both before-after and
within-subject’s experiments, several interesting findings: 1)
Incorporating feature sentiments into Pref-ORG can be
effective to increase users' product knowledge, preference
certainty, perceived information effectiveness,
recommendation clearness, and quality, and buying intention.
2) The explanation interface’s actual effectiveness was also
measured, which indicates almost half of users made better
choices after using SentiORG. 3) As for decision efficiency,
it shows users spent more time in making decisions in Senti-
ORG, which is consistent with related works of literature'
observation that efficiency is not necessarily correlated to
users' decision effectiveness and perceived system
competence. 4) Three design principles derived from the
experiment results. In particular, given that The majority of
users preferred mixture View, recommended explaining
products’ tradeoff properties (pros and cons) regarding both
feature sentiments and static specifications.

Paradarami  (2017) [22] technologically advanced an
innovative hybrid RS procedure that forms on the capabilities
provided through traditional methodologies similar to
collaborative filtering besides content-based filtering by
employing the metadata related with review text to train and
build an Artificial Neural Network (ANN). A multi-
categorical classification model was established that
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forecasts the class of a rating. LogLoss, a convex function,
was the cost function reduced by relating stochastic gradient
descent and prediction of accuracy was utilized to determine
the model’s efficacy. The effectiveness of the hybrid model
assessed by analyzing the percentage of observations with
correct predictions. The efficacy of these rating predictions
also assessed when translated to yes/no recommendations.

Tewari, A. S., & Barman, A. G. (2018) [23] stated that
almost all existing e-commerce recommendation systems had
put all their efforts in augmenting all exciting items of the
target user to their recommendation list, deprived of any
importance to the order of things in the recommendation list.
The suggested method meaningfully has exposed around
34% precision for top-n recommendations. The proposed
approach had its unique feature that finds the popularity of
items in the market using opinion mining. All these unique
features collectively help the proposed RS in creating
relevant smaller topn recommendations list for the target user
and also assist in alleviating item side cold start and gray
sheep problems. The investigational outcomes presented that
the suggested RS significantly outperformed the further
benchmark recommendation techniques.

Liu et al. (2018) [24] proposed an online activity
recommendation approach based on the dynamic adjustment
of a recommendation list be implemented on NiusNews, an
online news website. User preferences were derived by
studying the latent issues founded on Non-Negative Matrix
Factorization (NMF) and the hidden topics based on Latent
Dirichlet Allocation (LDA). The concerns of sparse data and
cold-start activities were alleviated by carrying out a possible
association study of news in addition to activities.
Furthermore, the current news was considered that the target
consumers were looking for capturing the current preferences
more precisely. To manage the concern of limited
recommendation layouts, the Most Frequently Pushed (MFP)
and Not Frequently Clicked (NFC) replacement approaches
were recommended for a dynamic variation of the
recommendation list. These strategies are critical for
practical purposes of online recommendations and not
considered in existing recommendation methods. The
proposed replacement approaches in addition to online
recommendation method offer probable solutions for
dynamically adjusting recommendation lists in online
recommender systems. The developed system was
dynamically adaptive to cost and efficiency. The suggested
approaches (FAR-ONHI and WAR-ONHI) integrate user
preference study and existing news interest study through the
activity replacement strategy to dynamically adjust the
recommendation lists. In the online experiment, the results
showed that the proposed method performed better than other
methods do. The online evaluations demonstrated that the
proposed approach considering the dynamic adjustment of
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recommendation lists could improve recommendation quality
for online recommendations.

I11. PROPOSED METHODOLOGY

The ANNLVQ and ANNOLVQ approach is introduced in
this section, starting with the intuition behind it, and then
continue to describe its details. While the proposed method is
general and can be used to recommend any consumer item, a
specific example domain for illustration is chosen. Providing
the most considered consumer domain, in the background of
recommendation, is that of books, henceforth, usage of the
book domain to present the proposed technique. In other
words, the suggested technique is present to recommend
books founded on customer reviews.

Intuition and overview

The overall goal of RSs is to select the objects that could be
of concern to a user. In this proposed context, predicting
ratings for books to users, and recommending those books
with highest expected ratings to them, together with
reasonable and personalized explanations to improve the
transparency of the logic in the recommendations is
presented. Mentioning that the number of descriptive
attributes that typically utilized in content-based book
recommendation is limited and inadequate, the proposed
approach spontaneously extract adjective features from
external user reviews to describe individual features of items
besides user tastes that are capable to truthfully reflect the
users’ perception towards books at a higher and more
abstract level.

The proposed technique states the rating sparsity problem by
decomposing a singular user rating into multiple
measurements considered by extracted adjectives and then
converting a minor number of user ratings into a more
significant number of feature preferences. This permits to
comprehend user benefits well, and to choose their selected
items more precisely through each of their preferred features,
consequently alleviating the issue of item-level rating
sparsity. Furthermore, by explicitly listing out adjective
features that cause items to be endorsed, the user could be
competent to clarify the reason for the recommendations
instinctively to users, with the objective of addressing the
transparency problem.

Recommendation framework

The overview of the suggested book recommendation
framework is presented in Fig.1. The main components are
designed and implemented to realize the proposed
recommendation engine; they are Data Collection, Pre-
Processing, Feature Extraction , Recommendation using
Collaborative filtering method, Recommendation system
using ANNLVQ classification , Recommendation using
ANNQLVQ and Accuracy prediction.
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Dataset Collection

The dataset used for the proposed method is collected from
the database which has the details of the user ratings on
various books. The dataset contains both explicit and implicit
feedback. Datasets are generated in a .csv file, and it has the
details of book_id, best book, work_id, ISBN, Original
publication, average rating, rating count, work_rating and
work test review from comment.

Pre-processing

Data pre-processing is usually the initial stage of knowledge
discovery. Data pre-processing can influence simplification
performance of a classification algorithm. Most of the real
world datasets suffer from problems of missing values and
ambiguities; similar was the case with the proposed dataset.
So Pre-processing process is must for dataset.

First, all the rows or information on articles which didn't
belong to any class are removed. There was some amount of
user feedbacks in which article didn't belong to any class at
first, after removing all of them were left with around some
user feedbacks and classes. Next, ambiguities in the feature
‘classes' were removed, ambiguities like several classes were
referring to the same author or entity, it is replaced all of
them by a single class.

Dataset Collection for Input Process

v
Pre-Processing

v
Feature Extraction

!

Collaborative Filtering

!

Recommendation system using CFCS,
ANNLVQ and OLVQ classification

!

Accuracy Prediction

Fig. 1. The framework of the proposed book
recommendation system
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After the second step, all the classes which occurred only
once as classification requires the occurrence of each item
was removed at least twice so that one can be used in training
and other for testing. After the third step, it is rechecked if
there was any article still left which didn't belong to at least
one class. The process is stopped when a sufficient amount
of ambiguities and each article belonged to at least one class
were removed. After performing all the steps above, finally
left with a less number of user feedbacks and different
minimum classes.

Collaborative Filtering based Recommendation system

To obtain predictions and recommendations to collaborative
filtering a subset of active users is chosen to the criteria for
selecting a subset is based on the user’s similarity with active
users then the weighted aggregate is computed for their
rating to generate recommendations. Collaborative filtering
comprises of the three major steps. In initial step all users
will be weighted and similarity is computed with
corresponding to the active user. In the second step subsets
of user called as predictors will be designated. In the third
step rating is normalized and the weights of selected
neighbours are combined with rating to make prediction [25-
26].

At that point the documents are represented as term vectors,
the comparability of the two documents relates to the
relationship between the vectors. This is evaluated as the
cosine of the point between vectors, that is, the so-called as
cosine similarity. Cosine similarity is a standout amongst the
most well-known similarity measure employed to text
documents.
Input-User and book ratings
Output-similarities between user and boolgls
Similarity = cos(8) = II.:IIIﬁAII = Elz:'A.LBL -
'\!'EEI:‘_A[‘-.'\!IEEI:‘_B["

)

The process steps are

1. Get the dot product of vectors ‘a’ and ‘b’

2. Multiply magnitude ‘a’ and magnitude ‘b’

3. Divide the dot product of vectors ‘a’ and ‘b’ by the
product of magnitude ‘a’ and magnitude ‘b’.

Accuracy prediction CFCS,ANNLVQ andANNOLVQ
classification

An ANN is a machine learning approach that uses a
combination of similar models to improve the outcomes
attained over a single model. In this paper, Collaborative
Filtering Cosine Similarity- ANN optimized Learnig Vector
Quantization Classification approach is used to predict the
class of the book based on the reviewer comments.

Vector quantization (VQ) is a common algorithm in the

fields of text and speech processing. Having N information
vectors, VQ algorithm groups them into a small number of
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clusters in an unsupervised methodology. VQ might be
considered as a clustering technique. Optimized Learning
Vector Quantization (OLVQ) is a neural network that joins
competitive learning with supervision. It very well may be
utilized for pattern classification [27]. Optimized LVQ joins
clustering and classification method dependent on feed
forward neural network. Input sources are stimulated through
a variable number of hidden layers to the output nodes.

Initially, the information space is distributed into non-
overlapping regions or clusters. Second these regions are
mapped to predefined classes. The initial step has been
sophisticated utilizing a competitive layer of the network that
works like the Self-Organizing Map (SOM). The layer
clusters the information vectors utilizing a table of vector
models known as a codebook. The quantity of codebook
vectors is substantially less than the quantity of input
information vectors. Nonetheless, it must be predefined by
the client. In the clustering task, each data vector is allocated
to the nearest codebook vector as per a predefined distortion
measure. The second step of optimized LVQ is practiced
utilizing the linear layer of the system that maps each
codebook vector to the object class. The design of
Kohonen*s Neural system that executes optimized LVQ
tasks. It consists of three layers; named input, hidden called
competitive, and output called linear layers. The weights of
the input-competitive links represent the codebook vectors.
They are M-dimensional vector, as the input vectors, that are
located in the input data space for identifying cluster regions.
Clusters borders are defined by a “Voronoi net” of hyper-
planes perpendicular to the linking line of two codebook
vector. Each neuron in the competitive layer represents one's
cluster. The linear layer maps the competitive layer's neurons
into target classification defined by the user. Multiple
neurons may be appropriate to the similar class, however, in
the data space, cluster regions equivalent to the similar class
in the M-dimensional space need not be contiguous. The
learning algorithm has to properly locate the competitive 's
neurons, codebook vectors, in the M-dimensional input space
and subordinate them to the correct linear neurons, class
labels [28].

Learning algorithms are all adaptive as the training samples
are presented one at a time in random order. The codebook
vectors gradually capture the fundamental statistical
properties of the training data. That is for avoiding both the
falling in local optima and the difficulty of gradient
calculation. As an outcome, optimized LVQ networks are
statistical classifiers, which quickly converge to a good
solution.

The initial step in the optimized LQV neural network design

is the parameters setting of both competitive and linear
layers. Then the presented input data vectors have to be
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separated into training and test groups. Learning algorithm
normally works as follows:

Initialization of Codebook:

For each target class, the number of codebook vectors has to
be relative to the number of incidence of that class and these
vectors are adjusted to the center of the input ranges.

Determination of the winner:
The Euclidean distance has to be evaluated between training
data vector and every codebook vector,
d =l w—xl = 20w —x) )
m, = arg min(d;) (3)

Codebook Adaptation:

Codebook vectors are optimized during the learning process.
They are all iterative gradient methods. The requirement for
finding the optimal codebook and avoid difficult gradient
calculations.

Optimized LVQL1 initiates by randomly chooses a training
vector X, discovers the nearest codebook vector mc which is
called the winner and transfers this winning neuron to the
training data vector if both of them belong to the same class,
if not the neuron will be moved away and all other neurons
are kept unchanged [29].

mt +1) = m_ (&) + s()a (@) x(E) —m ()] 4

m; () = m; (£) for ic.

Based on this the class of the books is classified based on the
reviewer comments.

Accuracy Prediction

In accuracy evaluation of classification, there are Recall,
Precision and F-measure to evaluate the overall accuracy of
the classifier.

Recall

A recall is the fraction of the correctly classified instances for
one class of the overall instances in this class. For example,
if 900 books are classified to positive and 800 of them are
correct, and in the dataset, there are 1000 books which are
positive, then the recall for the positive class is 800/1000,
which equals to 0.8.

Precision

Precision is the fraction of the correctly classified instances
for one class of the overall instances which are classified to
this class. For example, if 900 books are classified to positive
and 800 of them are correct, and in the dataset, there are
1000 books which are positive, then the Precision for the
positive class is 800/900, which equals to 0.89.

F-measure
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To get a comprehensive evaluation of the classification, F-
measure is developed to integrate the Recall and the
Precision. The F-measure can be expressed as
Precision * recall
_ 2\ %
F, =(1+4°)

3% *Precision + recall
®)
This is a general form of F-measure, and the parameter P is

used to change the weights for Precision and Recall in
calculating the F-measure value.

IV. RESULTS AND DISCUSSIONS

The CFCS, ANNLVQ and ANNOLVQ classification based
recommender system is simulated in the environment of
Java.

Home page and Upload the Dataset:

Fig.2 describes the collecting and uploading of the book
recommendation dataset. Here, the dataset is a structured
dataset which is a .csv or SQL file.

= =T

Home

A Novel Recommendation System using CFCS-ANNLVQ Classification

==Next

nsProjects\Novel_Recommendation_SystemiDatasefinew\be.csv Select Data

Upload Dataset

Fig .2. Uploading the dataset

After selecting the data, that particular path will be displayed
in the text box. By clicking the uploaded dataset, the
response dialog box is open, and it is shown in fig.3 and
fig.4.

Message

0 Data Loading

0K

Fig. 3. Data uploading
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Message

Fig. 4. Successful updating of input dataset

After uploading the data, all data contents will be displayed
as shown in fig.5. It will view the uploaded dataset.

sNemt
W | boorid mestseo. worio books.en.  istm work_rah wosk it rategs_t | rafinga 2 raings 3 rangs 4 ram

- lBack it sest_boo_worid sosks_co_istn c eurk_ra work_fee_rings_1 raings 2 raings 3 ratn 9s5 |~

1 amrosa arerosz zmwarrs a2 53 l0s23ss 158254 66TIS  |1a7es el o

z ] 3 50T 4 AWSMTMOTRENIZ 1997 444 A60Q4TD 4900085 7SOOT  TSSO4 107676 4SSZ4 VIS 01S4)

3 41885 41865 1212258 226 [JWGOISAM99TME.12 2005 35T 3686830 301R24 95008  4SA131 |43SE02  THNNE  GTETY 1365438

4 267 2657 iS4 497 [BUGSY STEET2 1960 425 190671 334096 728 (0427 117415 446H35 100852 1714267

5 4O ATt Damase 136 [PANTIATOMES2 1025 380 MEMMAM VI8 41922 A4 107621  GOGISE 0012 94T

5 MBTDOSS 11STO0BS 10R2TAEZ 226 [SISATESITSTEeT2 012 426 7MSM08 26TBI0D VOT0 410 03Iz TS0 71 13T
ST S0 1540z wR BWISIOTITRESIZ 1937 4 271615 IFEI 40EI  TGTEA ZeESAR  66EI5 (11T

8 BT ST 03TH M0 (VWTESITTATEE12 1951 378 20424t 37 les20 (108383 18520 4SS0 BS1S1E  (TOBTTE

s e MMSE. 9742 2000 385 mount E5112 T4 1S40 4seaze  7ieses  (GaOTTS

00 MBS WPTENMISTEEMZ 1813 424 2005400 5 40152 B0 endes  cmeasa  soTss  [1iesers

o w2 s eom 6 sora0 s |0 zzeomz easiva e
] 13155 210 s easey oz s e wmew e (e
o s e sesw a0 etnes  BeS  oaTa sse ez
0 o e ) |72 oest ST e oses  [eaez
- s saess  suess o a1 orams 3 aws e o0 werse s e
0 aazanas zaavns [moeres zme a1 eoeens 34 m2sa  sass  Beost  cesend  sevias  |swsiso
” e e 43 wwm WS e 00z seTze s
0 s s a2z 8 asn e TS w00 71 Tl iesize Soma7 12eeeT
" u u 207 sm am eeen 1 om e 2o e [wanst
) 708 70N 0AED 29 OMCMOSTEVZ 200 403 IS0 0D 9821 0w s mmen  een TS

2 2z 2 W00 7T AIWIBOTIITEEIZ 2003 446 ITINE [1940S4B 2685 0S0B  BISTT  1GOZI0  4GAZ7 1134A06

Fig. 5. Displaying of the contents

Pre-processing

In pre-processing, initially, the input datasets are given which
consists of 5042 input records. This is given as an input. It
has some missing attributes. After pre-processing, missing
attributes are eliminated.
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As shown in the above fig.6, the total number of instances in
the recommendation system dataset is 5042 input records,
and the total number of cases after pre-processing is
observed as 4983. The number of attributes in
recommendation dataset is 16, and the quantity of missing
records is 60. The quantity of missing records is given as
shown below:

Number of missing records= (number of records before pre-
processing- the number of records after pre-processing)

Message

':9,:' Data Preprocessed

oK

Fig. 7. Data pre-processed

After the process of data pre-processing is completed, then a
dialog box is opened as shown in fig.7.

Collaborative Filtering

In the proposed system, Collaboration Filtering for
recommendation system through Cosine Similarity matrix as
shown in fig.8. Fig.9 shows the book recommendation status
of the system using datasets. Fig.10 shows the computation
of confusion matrix and Similarity Score By suing the
proposed recommendation system 78.359% accuracy
predicted through confusion matrix as shown in fig.11.

CFOgsi
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Fig.11. Accuracy prediction

ANN-OLVQ Classification
The Artificial Neural Network OLVQ classification system
is simulated through weka libraries. Fig.11 shows the
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precision-recall

and execution time of the proposed

ANNOLVQ and ANNLVQ recommender systemcompared
with traditional CF recommendation system.
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Fig.13. Number of instances vs. Accuracy

Fig.13 shows that, the predicted accuracy among Atrtificial
neural network LVQ, OLVQ and CF Recommendation based
on the number of instances. From this it is shown that,
ANNLVQ predicts high accuracy compared withANNOLVQ
and CF Recommendation systems.
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Fig.14. Number of instances vs. Error rate

Fig.14 shows that, the error rate among Artificial neural
network LVQ, OLVQ and CF Recommendation based on the
number of instances. From this it is shown that, ANNLVQ
predicts have low error rate compared CF and ANNOLVQ
Recommendation systems.
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Fig.15. Comparison of Recall vs. Precision

Fig.15 shows the comparison among Artificial neural
network LVQ, OLVQ and CF Recommendation based on the
precision and recall. From this it is shown that, LVQ predicts
have high precision vs recall characteristics compared with
OLVQ and CR recommendation systems.

Fig.16 shows the number of instances vs execution time
characteristics among Artificial neural network LVQ, OLVQ
and CF Recommendation based on the precision and recall.
From this it is shown that, LVQ predicts have low execution
time compared with CF and OLVQ.

Based on the results of the performance matrices depicted
fig.13- fig.16, it is stated that the proposed recommender
ANNOLVQ based recommender system effectively
classified the class of the book based on the reviewer
comments. The classification accuracy of the ANNOLVQ is
high while compared with the existing LVQ and CF
recommendation systems.
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Fig.16. Number of instances vs execution time characteristics
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V. CONCLUSION

This paper proposed Artificial Neural Network approach to
develop a multi-categorical classification model to predict
user ratings. In this proposed research, the problem of
predicting the rating as a multi-label classification problem
was considered where each rating had treated a label. From
the results, it is showed that the ANNLVQ classification
approach achieved a high prediction accuracy rate in the
book recommender systems. So artificial neural network
based recommender system better than traditional
recommender system In the future, the performance of the
proposed classification system will be analyzed with
dynamic datasets in the different application based on the
online reviews.
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