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Abstract— Large area land-cover monitoring scenarios, involving large volumes of data, are becoming more prevalent in 

remote sensing applications. Thus, there is a pressing need for increased automation in the change mapping process the land 

transformation Model (LTM), which couples geographic information systems (GIS) with artificial neural networks. The 

objective of this research presents the survey report based on compare the performance of three machine learning algorithms 

(MLAs) and prediction of land use changes in GIS. The change map generated using ARTMAP has similar accuracies to a 

human-interpreted map produced by the U.S. Forest Service in the southern study area (John Rogan et al 2007). ARTMAP 

appears to be robust and accurate for automated, large area change monitoring as it performed equally well across the diverse 

study areas with minimal human intervention in the classification process. GIS is used to develop the spatial, predictor drivers 

and perform spatial analysis on the results. The predictive ability of the model improved at larger scales when assessed using a 

moving scalable window metric. the individual contribution of each predictor variable was examined and shown to vary across 

spatial scales.At the smallest scales, quality views were the strongest predictor variable. We interpreted the multi-scale 

influences of land use change, illustrating the relative influences of site (e.g. quality of views, residential streets) and situation 

(e.g. highways and county roads) variables at different scales. 
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I.  INTRODUCTION  

Changes in land use result from the complex interaction of 

many factors including policy, management, economics, 

culture, human behavior, and the environment (Dale, 

O’Neill, Pedlowski, & Southworth, 1993; Houghton, 1994; 

Medley, Okey, Barrett, Lucas, & Renwick, 1995; Richards, 

1990; Vesterby & Heimlich, 1991; Wilder, 1985). An 

understanding of how land use changes occur is critical since 

these anthropogenic processes can have broad impacts on the 

environment, altering hydrologic cycles (Steiner & 

Osterman, 1988), biogeochemical dynamics (Flintrop et al., 

1996), size and arrangements of natural habitats such as 

forests (Dale et al., 1993) and species diversity (Costanza, 

Kemp, & Boynton, 1993). Changes to land use can also 

affect local and regional economies (Bingham et al., 1995; 

Burchell, 1996). This paper illustrates how combining 

geographic information systems (GIS)and artificial neural 

networks (ANNs) can aid in the understanding the complex 

process of land use change. A GIS-based Land 

Transformation Model — LTM (Pijanowski, Gage, Long, & 

Cooper, 2000) was developed to forecast land use change 

over large regions. This model can be configured to use a 

variety of socioeconomic, political and environmental inputs. 

The LTM can link changes in land use to ecological process 

models, such as groundwater flow and solute transport (Boutt 

et al., 2001) and forest cover change (Brown, Duh, & 

Drzyzga, 2000; Brown, Pijanowski, & Duh, 2001). It can 

also provide local land use planners and regional resource 

managers with information about the potential effects of land 

use change on the environment. The Holy Grail of (digital) 

change detection is still total automation and high accuracy.” 

(Loveland et al., 2002, p. 1098). Over the coming decades, 

the global effects of land-cover/use change may be as 

significant, or more so, than those associated with potential 

climate change (IPCC, 2000). In spite of this there is a lack 

of comprehensive information on the types and rates of land-

cover/use change, and even less evidence of natural and 

anthropogenic causes and consequences of such change 

(Turner et al., 1999). As a result, several large area land-

cover monitoring programs have been established over the 

past five years to comprehensively address this issue (Wulder 

et al., 2004). Monitoring programs, unlike most research-

oriented studies, employ change mapping methods that 

require processing and interpretation of large volumes of in 

situ, remotely sensed and ancillary data (Cilhar 2000; 

Franklin&Wulder, 2002).Very large data volumes and time-
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consuming data processing, integration and interpretation 

make automated and accurate methods of change mapping 

highly desirable (Aspinall, 2002; Dobson & Bright, 1994; 

Hansen et al., 2002; Rogan & Chen, 2004). Complex land 

change processes are of particular interest to researchers 

involved in large area monitoring (Roberts et al., 2002), 

where many different types of land-cover changes can occur 

and must be characterized (e.g., forest pest infestation, 

logging, wildfire, and suburbanization) (Rogan & Miller 

2006). Thus, increased automation can ensure that the 

classification process is objective and repeatable in 

processing large volumes of data over complex and 

phenologically diverse landscapes (DeFries & Chan 2000; 

Gong & Xu 2003). Consequently, classification algorithm 

selection and performance have become particularly 

important, because large area change monitoring can only 

realistically be achieved (i.e., low cost and generalizable 

results) through techniques that minimize timeconsuming 

human interpretation and maximize automated procedures 

for data analysis (Woodcock et al., 2001). There is now a 

large body of research that demonstrates the abilities of 

machine learning techniques, particularly classification trees 

and artificial neural networks, to deal effectively with tasks 

involving high dimensional data (Gahegan 2003). The 

increased interest in MLAs can be attributed to several 

factors: 

 Their non-parametric nature deals well with multi-

modal, noisy and missing data (Hastie et al. 2001), 

but see Simardet al. (2000) in the case of 

classification trees;   

 There is a significant reduction in computational 

demands when data measurement spaces are large 

and complex (Foody 2003);  

 They readily accommodate both categorical and 

continuous ancillary data (Lawrence & Wright 

2001);   

 Users can investigate the relative importance of 

input variables in terms of contribution to 

classification accuracy (Hansen et al., 1996; Foody 

& Arora 1997);  

 They are flexible and can be adapted to improve 

performance for particular problems (Lees & 

Ritman 1991)  And multiple subcategories per 

response variable can be accommodated (Gopal et 

al., 1999). 

II. LAND USE CHANGE MODELS 

Models of land use change serve as useful tools for (1) 

exploring the various mechanisms by which land use change 

occurs and the social, economic, and spatial variables that 

drive it (Batty & Longley, 1994; deKoning, Verburg, 

Veldkamp, & Fresco, 1999), projecting potential future 

environmental and economic impacts of land use change 

(Alig, 1986; Theobald, Miller, & Hobbes, 1997), and (3) 

evaluating the influence of alternative policies and 

management regimes on land use and development patterns 

(Bockstael, Costanza, Strand, Boyton, Bell, & Wagner, 

1995).  Although some approaches focus on modeling 

aggregate land use amounts within areal units, like counties 

(Alig & Healey, 1987), models that predict the spatial 

patterns of land use provide more information with which to 

evaluate the impacts of change. To address the multi-scale 

nature of land use change drivers, some models, like the 

CLUE model of de Koning et al. (1999), have used regional 

and global scale drivers to determine the aggregate amounts 

of change and geographic and landscape scale drivers to 

determine its pattern. This is the adopted approach for 

development of the Land Transformation Model. Artificial 

neural networks, are used to determine the location of land 

use change using landscape scale variables given a certain 

amount of change determined by regional and global scale 

variables. The variable values and actual instances of land 

use change are typically observed from historical data and 

used to establish functional relationships that can be used to 

extrapolate land use change probabilities into the future. The 

spatial transition models are an extension of the aspatial 

Markov technique and a form of stochastic cellular automata 

(CA; Theobald & Hobbs). 

Ten predictor variables and the exclusion zones were 

compiled in Arc/Info Grid format (Table 1; Fig. 3 using the 

LTM GIS Avenue interface. The agricultural density variable 

represents the amount of agriculture, from the 1980 land use 

database,within a 1 km radius surrounding each cell. This 

variable describes the degree 

 
 

Agriculture can beseen as an amenity on the landscape that 

attracts development. However, it is possible that agricultural 

land use can serve as an impediment to development, 

especially in this area where agricultural activities are 

specialized (vineyards and other fruit production) and 

profitable. For the variables of county roads distance, 

highway distance, shoreline distance, inland lake distance, 

and river distance, the minimum Euclidean distance to each 
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feature was calculated. These features serve to either 

improve the access of the site to larger urban areas (i.e. 

county roads and highways) or to increase the amenity value 

of a site (i.e.shoreline, inland lakes, rivers). The urban 

distance variable was the minimum distance of each cell to 

an urban cell, from the 1980 Grand Traverse County land use 

database. 

 

Since access to urban services affects development patterns, it 

is expected that sites nearer to existing urban land uses would 

be more likely to develop. Distance from recreation sites, 

which were coded as point coverages, was also used as a 

predictor variable. For view quality, the height above lake 

level and the distance from the lakeshore were calculated for 

every location in the watershed. The sine of the angle of 

incidence of a line-of-sight from each location in the 

watershed to the lake was then calculated and used as a 

surrogate for quality of view. Larger angles represent 

locations that are highly elevated above the bay and are close. 

These locations are hypothesized to be in great demand for 

residential use. The exclusion zone for this execution of the 

model was composed of the following GIS layers: areas that 

were urban in 1980; locations of open water; locations of 

wetlands; locations of public land (e.g. local, state and federal 

parks) and locations of current transportation corridors. 

 

III. MACHINE LEARNING ALGORITHMS 

S-Plus classification tree (CT) The first classification tree 

routine tested was the one incorporated in the S-Plus 

statistical software package (Clark & Pregibon 1992), one of 

the most widely used tree algorithms in classification of land-

cover (Hansen et al., 1996, Wessels et al., 2004), which 

employs a deviance measure to partition data set. The 

reduction in deviance (e.g., increase in subset homogeneity 

using and entropy measure) (D) is calculated as: 

D=Ds−Dt−Du, 

Where s represents the parent node, and t and u are splits from 

s. When D is maximized, the best split is identified, and the 

data are divided at that value. The process is repeated onthe 

two new nodes of the tree. The deviance for nodes is 

calculated from  

 

where n is the number of observations in class k in node i and 

p is the probability distribution of node i and class k. S-Plus 

classification trees were pruned to an optimum size based on 

cross-validation using ten independent subsets of the training 

data. This resulted in a parsimonious tree model that did not 

over fit the training data, thus leading to more generalizable 

information (Franklin, 1998). While there is generally not a 

single solution to pruning for all applications of classification 

trees, and the decision of how much to prune can affect the 

results, researcher did not compare different pruning trials in 

this work, as has been suggested by Zambon et al. (2006). We 

refer to S Plus classification tree as CT. 

IV. EFFECT OF NOISE IN TRAINING SET  

Training data errors are likely in a large area context given the 

disparate sources of information used and the fact that class 

labels can become more confused as landscape heterogeneity 

increases. Several authors have noted that MLAs are 

adversely affected by noise, which can yield very different 

results when included in the training phase by causing intra-

class variability in the data (Simard et al., 2000; Miller & 

Franklin 2002). Conversely, Brodley and Friedl (1996) found 

classification trees to be tolerant of noisy data, and Paola and 

Schowengerdt (1995) found neural networks robust to 

training site heterogeneity. Therefore, it is instructive to 

examine the effect of noise in a change mapping context to 

provide more information on this topic, and to examine the 

level of robustness one may expect from MLA’s. 

 

V. CONCLUSION 

The effect of training set size on algorithm performance 

indicates that large numbers of training and test sites are 

important in change mapping using MLAs. Nonetheless, 

reasonable accuracies were achieved at certain levels of data 

reduction, implying that the quality, if not the quantity of 

sample data was adequate. Results suggest that below a 

certain size, a data set is less representative of the conditions 

it is supposed to represent, resulting in reduced map 

accuracy. It might also suggest that the data sets used here 

have few redundant observations, or else reducing the size 

would have less of an effect. Careful attention should be paid 

to training and test set selection in a MLA context. 

Variations in training and test site sample size had a 

significant effect on the behavior of each MLA. 
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