
 © 2019, IJCSE All Rights Reserved 90

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue-15, May 2019 E-ISSN: 2347-2693

Integrity Auditing and Data Sharing With Sensitive Information Hiding

for Secure Cloud Storage

Divya. U

1*
, Nagaveni. S

2
, Pooja. S

3
, Ramya. R

4
, Supritha. N

5

1,2,3,4,5
Department of Computer Science and Engineering, EWIT, Visvesvaraya Technological University, Karnataka, India

DOI: https://doi.org/10.26438/ijcse/v7si15.9098 | Available online at: www.ijcseonline.org

Abstract— Along with the development of cloud computing more and more applications are moved to the cloud. With cloud

storage services, users can remotely store their data to the cloud and realize the data sharing with others on the condition that

the sensitive information is hidden in order to guarantee the integrity and confidentiality of the data stored in the cloud. Remote

data integrity auditing is proposed to guarantee the integrity of the data stored in the cloud. In some common cloud storage

systems such as the electronic health records system, the cloud file might contain some sensitive information. The sensitive

information should not be exposed to others when the cloud file is shared. Encrypting the whole shared file can realize the

sensitive information hiding but will make this shared file unable to be used by others. How to realize data sharing with

sensitive information hiding in remote data integrity auditing scheme with time seal management still has not been explored In

order to address this problem, we propose a remote data integrity auditing scheme with appropriate time management thereby

providing limited access that realizes data sharing with sensitive information hiding in this paper. In this scheme, a sanitizer is

used to sanitize the data blocks corresponding to the sensitive information of the file and transforms these data blocks’

signatures into valid ones for the sanitized file. These signatures are used to verify the integrity of the sanitized file in the phase

of integrity auditing. As a result, our scheme makes the file stored in the cloud able to be shared and used by others on the

condition that the sensitive information is hidden, while the remote data integrity auditing is still able to be execute efficiently.

Meanwhile, the proposed scheme is based on Identity-based cryptography, which simplifies the complicated certificate

management and also solves key exposure problem. The security analysis and the performance evaluation show that the

proposed scheme is secure and efficient.

Keywords— Cloud storage, key management, Remote data Integrity, Confidentiality, Sensitive Information Hiding.

I. INTRODUCTION

Cloud storage, which is one of various cloud services, serves

as a practical tool and has made data outsourcing to the cloud

an emerging trend. The rapid development of such a cloud

service has various causes such as its on-demand outsourcing

function, ubiquitous network access, and location

independent resources [1]–[6]. For instance, data are no

longer local with cloud storage, ensuring that data owners

(DOs) do not have to worry about software or hardware

failures. In addition, overhead resulting from maintenance,

financial cost, time, and other resources would be greatly

reduced, relieving the burden on DOs and local devices.

However, data outsourced to the cloud are not kept securely

and still suffer from a variety of security attacks both internal

and external [7]–[12]. On the one hand, malicious network

attacks, which are external and familiar to Internet users,

threaten cloud data. Hackers might retrieve and steal cloud

users’ data or even corrupt and delete the data, destroying its

confidentiality, integrity, and availability. On the other hand,

the outsourced data might suffer from cloud service

providers’ (CSPs’) illegal behaviours. In particular, a CSP

could secretly delete some data in its storage cycle without

authorization to save space for other clients’ data. On top of

this, a CSP might attempt to obtain the data outsourced to the

cloud. Thus, whether the attacks are internal or external, the

confidentiality and integrity of cloud data are in danger.

Hence the design of Remote data Integrity auditing scheme

helps to solve the issues by providing efficient security for

the data.

In remote data integrity auditing schemes, the data owner

firstly needs to generate signatures for data blocks before

proving the cloud truly possesses these data blocks in the

phase of integrity auditing. And then the data owner uploads

these data blocks along with their corresponding signatures

to the cloud. The data stored in the cloud is often shared

across multiple users in many cloud storage applications,

such as Google Drive, Dropbox and iCloud. Data sharing as

one of the most common features in cloud storage, allows a

few users to share their data with others. However, these

shared data stored in the cloud might contain some sensitive

information. For instance, the Electronic Health Records

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 91

(EHRs) [9] storedand shared in the cloud usually contain

patients’ sensitive information (patient’s name, telephone

number and ID number, etc.) and the hospital’s sensitive

information (hospital’s name, etc.). If these EHRs are

directly uploaded to the cloud to be shared for research

purposes, the sensitive information of patient and hospital

will be inevitably exposed to the cloud and the researchers.

Besides, the integrity of the EHRs needs to be guaranteed

due to the existence of human errors and software/hardware

failures in the cloud. Therefore, it is important to accomplish

remote data integrity auditing on the condition that the

sensitive information of shared data is protected.

A potential method of solving this problem is to encrypt the

whole shared file before sending it to the cloud, and then

generate the signatures used to verify the integrity of this

encrypted file, finally upload this encrypted file and its

corresponding signatures to the cloud. This method can

realize the sensitive information hiding since only the data

owner can decrypt this file. However, it will make the whole

shared file unable to be used by others. For example,

encrypting the EHRs of infectious disease patients can

protect the privacy of patient and hospital, but these

encrypted EHRs cannot be effectively utilized by researchers

any more.

Distributing the decryption key to the researchers seems to

be a possible solution to the above problem. However, it is

infeasible to adopt this method in real scenarios due to the

following reasons. Firstly, distributing decryption key needs

secure channels, which is hard to be satisfied in some

instances. Furthermore, it seems very difficult for a user to

know which researchers will use his/her EHRs soon when

he/she uploads the EHRs to the cloud. As a result, it is

impractical to hide sensitive information by encrypting the

whole shared file. Thus, how to realize data sharing with

sensitive information hiding in remote data integrity auditing

with suitable time management is very important and

valuable. If the user seems to be untrusted a time seal is been

provided so that the authenticated users can access the file at

appropriate time intervals this may provide limited access.

II. RELATED WORK

A potential method of solving the security problem is to

encrypt the whole shared file before sending it to the cloud

and then generate the signatures used to verify the integrity

of the encrypted file.In order to verify the integrity of the

data stored in the cloud, many remote data integrity auditing

schemes have been proposed. To reduce the computation

burden on the user side, a Third-Party Auditor (TPA) is

introduced to periodically verify the integrity of the cloud

data on behalf of user. Atenieseet al. [13] firstly proposed a

notion of Provable Data Possession (PDP) to ensure the data

possession on the untrusted cloud. In their proposed scheme,

homomorphic authenticators and random sampling strategies

are used to achieve blockless verification and reduce I/O

costs. Juels and Kaliski [14] defined a model named as Proof

of Retrievability (PoR) and proposed a practical scheme. In

this scheme, the data stored in the cloud can be retrieved and

the integrity of these data can be ensured. Based on

pseudorandom function and BLS signature, Shacham and

Waters [15] proposed a private remote data integrity auditing

scheme and a public remote data integrity auditing scheme.

In order to protect the data privacy, Wang et al. [16]

proposed a privacy-preserving remote data integrity auditing

scheme with the employment of a random masking

technique.

Workuet al. [17] utilized a different random masking

technique to further construct a remote data integrity auditing

scheme supporting data privacy protection. This scheme

achieves better efficiency compared with the scheme in [16].

To reduce the computation burden of signature generation on

the user side, Guan et al. [18] designed a remote data

integrity auditing scheme based on the indistinguishability

obfuscation technique. Shen et al. [19] introduced a Third-

Party Medium (TPM) to design a light-weight remote data

integrity auditing scheme. In this scheme, the TPM helps

user generate signatures on the condition that data privacy

can be protected. In order to support data dynamics,

Atenieseet al. [20] firstly proposed a partially dynamic PDP

scheme. Erwayet al. [21] used a skip list to construct a fully

data dynamic auditing scheme.

Wang et al. [22] proposed another remote data integrity

auditing scheme supporting full data dynamics by utilizing

Merkle Hash Tree. To reduce the damage of users’ key

exposure, Yu et al. [23] and [24], and Yu and Wang [25]

proposed key-exposure resilient remote data integrity

auditing schemes based on key update technique [26]. The

data sharing is an important application in cloud storage

scenarios. To protect the identity privacy of user, Wang et al.

[27] designed a privacy-preserving shared data integrity

auditing scheme by modifying the ring signature for secure

cloud storage. Yang et al. [28] constructed an efficient

shared data integrity auditing scheme, which not only

supports the identity privacy but only achieves the identity

traceability of users. Fu et al. [29] designed a privacy-aware

shared data integrity auditing scheme by exploiting a

homomorphic verifiable group signature. In order to support

efficient user revocation, Wang et al. [30] proposed a shared

data integrity auditing scheme with user revocation by using

the proxy re-signature. With the employment of the Shamir

secret sharing technique, Luo et al. [31] constructed a shared

data integrity auditing scheme supporting user revocation.

The schemes all rely on Public Key Infrastructure (PKI),

which incurs the considerable overheads from the

complicated certificate management. To simplify certificate

management, Wang [32] proposed an identity based remote

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 92

data integrity auditing scheme in multi cloud storage. This

scheme used the user’s identity information such as user’s

name or e-mail address to replace the public key. Wang et al.

[33] designed a novel identity-based proxy oriented remote

data integrity auditing scheme by introducing a proxy to

process data for users. Yu et al. [34] constructed a remote

data integrity auditing scheme with perfect data privacy

preserving in identity-based cryptosystems. Wang et al. [35]

proposed an identity-based data integrity auditing scheme

satisfying unconditional anonymity and incentive. Zhang et

al. [36] proposed an identity-based remote data integrity

auditing scheme for shared data supporting real efficient user

revocation Other aspects, such as privacy-preserving

authenticators [37] and data deduplication [38], [39] in

remote data integrity auditing have also been explored.

However, all of existing remote data integrity auditing

schemes cannot support data sharing with sensitive

information hiding. In this paper, we explore how to achieve

data sharing with sensitive information hiding in identity-

based integrity auditing for secure cloud storage.

III. METHODOLOGY

 We design a practical Identity based shared data integrity

auditing scheme with sensitive information hiding for secure

cloud storage. A sanitizer is used to sanitize the data blocks

corresponding to the sensitive information of the file. The

proposed scheme introduces an efficient auditing scheme in

order to provide efficient integrity of the data and it also

simplifies the users task by auditing the integrity of the cloud

by providing the auditing challenge by the TPA and response

proof by the cloud. Also, key generation is also mandatory

where unique private keys are generated by private key

generator (PKG) based on the identity of the user.

A. NOTIONS AND PRELIMINARIESNOTIONS

We show some notations used in the description of our

scheme in Table shown below. These notations helps to

understand the meaning of the symbols used in equations and

theorems which may increase the simplicity and readability.

PRELIMINARIES

In this section, we review some preliminary cryptography

knowledge, including bilinear map, Computational Diffie-

Hellman (CDH) problem and Discrete Logarithm (DL)

problem.

1) Bilinear Map Let G1, G2 be two multiplicative cyclic

groups of large prime order p, and g be a generator of G1.

Bilinear map is a map e: G1 × G1->G2 with the following

properties:

a) Bilinearity: for all u, v €G1 and a, b € Z*p, e (u
a
, v

b
) =

e(u,v)
ab

.

b) Computability: there exists an efficiently computable

algorithm for computing map e.

c) Non-degeneracy: e (g, g) ҂1.

2) Computational Diffie-Hellman (CDH) Problem

For unknown x, y € Z
*
p, given g, g

x
andg

y
as input, output g

xy
€

G1.The CDH assumption in G1 holdsif it is computationally

infeasible to solve the CDH problem in G1.

3) Discrete Logarithm (DL) Problem

For unknown x € Z
*p

, given g, g
x
andg

y
as input, outputs x. The

DL assumption in G1 holds if it is computationally infeasible

to solve the DL problem in G1.

B. SYSTEM MODEL AND SECURITY MODEL

SYSTEM MODEL

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 93

Fig1: The System model.

The system model involves five kinds of different entities:

the cloud, the user, the sanitizer, the Private Key Generator

(PKG) and the Third-Party Auditor (TPA)

(1) Cloud: The cloud provides enormous data storage space

to the user. Through the cloud storage service, users can

upload

their data to the cloud and shares their data with others.

(2) User: The user is a member of an organization, which has

a large number of files to be stored in the cloud.

(3) Sanitizer: The sanitizer is in charge of sanitizing the data

blocks corresponding to the sensitive information (personal

sensitive information and the organization’s sensitive

information) in the file, transforming these data blocks’

signatures into valid ones for the sanitized file and uploading

the sanitized file and its corresponding signatures to the

cloud.

(4) PKG: The PKG is trusted by other entities. It is

responsible for generating system public parameters and the

private key for the user according to his identity ID.

(5) TPA: The TPA is a public verifier. It is in charge of

verifying the integrity of the data stored in the cloud on

behalf of users.

The user firstly blinds the data blocks corresponding to the

personal sensitive information of the file, and generates the

corresponding signatures. These signatures are used to

guarantee the authenticity of the file and verify the integrity

of the file. Then the user sends this blinded file and its

corresponding signatures to the sanitizer. After receiving the

message from the user, the sanitizer sanitizes these blinded

data blocks and the data blocks corresponding to the

organization’s sensitive information, and then transforms the

signatures of sanitized data blocks into valid ones for the

sanitized file. Finally, the sanitizer sends this sanitized file

and its corresponding signatures to the cloud. These

signatures are used to verify the integrity of the sanitized file

in the phase of integrity auditing. When the TPA wants to

verify the integrity of the sanitized file stored in the cloud, he

sends an auditing challenge to the cloud. And then, the cloud

responds to the TPA with an auditing proof of data

possession. Finally, the TPA verifies the integrity of the

sanitized file by checking whether this auditing proof is

correct or not. Also, the user can download the file once in

24hours only there by providing the limited access, it also

provides the user to access the file only at the appropriate

time intervals.

SECURITY MODEL

To formalize the security model, we indicate a game between

a challenger C and an adversary A to show how the adversary

A is against the security of an identity-based shared data

integrity auditing scheme with sensitive information hiding.

The data owner is viewed as a challenger C and the untrusted

cloud server is viewed as an adversary A in our security

model. This game includes the following phases:

1) Setup phase. The challenger C runs the Setup algorithm

to obtain the master secret key mskand the system public

parameters pp, and then sends the public parameters pp to the

adversary A.

2) Query phase. In this phase, the adversary A makes the

following two queries to the challenger C.

a) Extract Queries: The adversary A queries the private key

for the identity ID. The challenger C runs the Extract

algorithm to generate the private key skI D, and sends it to

the adversary A.

b) Sig Gen Queries: The adversary A queries the signatures

of the file F. By running the Extract algorithm, the

challenger C gets the private key. And then the challenger C

runs the Sig Gen algorithm to calculate the signatures of the

file F. Finally, the challenger C sends these signatures to the

adversary A.

3) Challenge phase. In this phase, the adversary A acts as a

prover and the challenger C plays the role of a verifier.

The challenger C sends the challenge chal= {i, vi} i€Ito the

adversary A, where I € {ᵞ1, ᵞ2, . . ., ᵞc} (ᵞj € [1, n], j €[1, c] and

c € [1,n]). Meanwhile, it requeststhe adversary A to provide a

data possession proof P for the data blocks {mᵞ1, mᵞ2, . . .,

mᵞc} under the chal.

4) Forgery phase. After receiving the challenge from the

challenger C, the adversary A generates a data possession

proof P for the data blocks indicated by chalto reply the

challenger C. If this proof P can pass the verification of the

challenger C with non-negligible probability, we say that the

adversary A succeeds in the above game. This represents the

final phase of the security model.

C. DESIGN GOALS

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 94

To efficiently support data sharing with sensitive information

hiding in identity-based integrity auditing for secure cloud

storage, our scheme is designed to achieve the following

goals:

1) The correctness:

a) Private key correctness: to ensure that when the PKG

sends a correct private key to the user, this private key can

pass the verification of the user.

b) The correctness of the blinded file and its corresponding

signatures: to guarantee that when the user sends a blinded

file and its corresponding valid signatures to the sanitizer, the

blinded file and its corresponding signatures he generates can

pass the verification of the sanitizer.

c) Auditing correctness: to ensure that when the cloud

properly stores the user’s sanitized data, the proof it

generates can pass the verification of the TPA.

2) Sensitive information hiding to ensure that the personal

sensitive information of the file is not exposed to the

sanitizer, and all of the sensitive information of the file is not

exposed to the cloud and the shared users.

3) Auditing soundness: to assure that if the cloud does not

truly store user’s intact sanitized data, it cannot pass the

TPA’s verification.

IV. THE PROPOSED SCHEME

In order to achieve data sharing with sensitive information

hiding, we consider making use of the idea in the sanitizable

signature [40] to sanitize the sensitive information of the file

by introducing an authorized sanitizer. Nonetheless, it is

infeasible if this sanitizable signature is directly used in

remote data integrity auditing. Firstly, this signature in [40]

is constructed based on chameleon hashes [41]. However, a

lot of chameleon hashes exhibit the key exposure problem.

To avoid this security problem, the signature used in [40]

requires strongly unforgeable chameleon hashes, which will

inevitable incur huge computation overhead [41]. Secondly,

the signature used in [40] does not support blockless

verifiability. It means that the verifier has to download the

entire data from the cloud to verify the integrity of data,

which will incur huge communication overhead and

excessive verification time in big data storage scenario.

Thirdly, the signature used in [40] is based on the PKI, which

suffers from the complicated certificate management.

In order to address above problems, we design a new

efficient signature algorithm in the phase of signature

generation. The designed signature scheme supports

blockless verifiability, which allows the verifier to check the

integrity of data without downloading the entire data from

the cloud. In addition, it is based on identity-based

cryptography, which simplifies the complicated certificate

management. In our proposed scheme, the PKG generates the

private key for user according to his identity ID. The user can

check the correctness of the received private key. When there

is a desire for the user to upload data to the cloud, in order to

preserve the personal sensitive information of the original file

from the sanitizer, this user needs to use a blinding factor to

blind the data blocks corresponding to the personal sensitive

information of the original file. When necessary, the user can

recover the original file from the blinded one by using this

blinding factor. And then this user employs the designed

signature algorithm to generate signatures for the blinded

file. These signatures will be used to verify the integrity of

this blinded file. In addition, the user generates a file tag,

which is used to ensure the correctness of the file identifier

name and some verification values.

The user also computes a transformation value that is used to

transform signatures for sanitizer. Finally, the user sends the

blinded file, its corresponding signatures, and the file tag

along with the transformation value to the sanitizer. When

the above messages from user are valid, the sanitizer firstly

sanitizes the blinded data blocks into a uniform format and

also sanitizes the data blocks corresponding to the

organization’s sensitive information to protect the privacy of

organization,and then transforms their corresponding

signatures into valid ones for sanitized file using

transformation value. Finally, the sanitizer uploads the

sanitized file and the corresponding signatures to the cloud.

When the data integrity auditing task is performed, the cloud

generates an auditing proof according to the challenge from

the TPA. The TPA can verify the integrity of the sanitized

file stored the cloud by checking whether this auditing proof

is correct or not. The details will be described in the

following subsection.

Fig2: The process of private key Generation.

Description of the Proposed Scheme

1. Algorithm Setup(1k)

a) The PKG chooses two multiplicative cyclic groups G1 and

G2 of prime order p, a generator g of G1, a bilinear map e:

G1 ×G1 → G2 and a pseudorandom function f: Z∗ p × Z∗ p

→ Z∗p.

b) The PKG randomly chooses an element x ∈ Z∗ p,

elements µ, µ1, µ2..., µ l, u, g2 ∈ G1 and a cryptographic

hash function H: {0,1} ∗ → G1.

c) The PKG computes the public value g1=gx and the master

secret key msk= g2x. d) The PKG publishes system

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 95

parameters pp=(G1, G2, p, e, g, µ, µ1, µ2,...,µ l,u,g1,g2, H, f)

and holds the master secret key msk.

2. Algorithm Extract (pp, msk, ID)
a) After receiving the user’s identity ID = (ID 1, ID 2,...,ID l)

∈{ 0,1}l, the PKG randomly picks a value rID∈ Z∗ p and

computes skID = (skID,skID) = (g2x · (µlj=1 µj IDj

)rID,grID) as the private key of the user ID. The PKG sends

it to the user ID.

b) The user ID verifies the correctness of the received private

key skID by checking whether the following equation holds

or not. e (skID, g) = (g1, g2) ·e (µlj=1 µj IDj, skID).

If above equation does not hold, the user ID refuses the

private key skID; otherwise, accepts it.

3. Algorithm SigGen (F, skID, ssk, name)

a) The user ID randomly chooses a value r ∈ Z∗ p, and

calculates a verification value gr. Then the user ID randomly

chooses a seed k1 ∈ Z∗ p as the input secret key of pseudo-

random function f. The user ID employs the secret seed k1 to

calculate the blinding factor αi = fk1(i, name)(i∈ K1) which

is used to blind the data blocks corresponding to the personal

sensitive information, where name∈ Z∗ p is a random value

chosen as the file identifier.

 b) In order to preserve the personal sensitive information

from the sanitizer, the user ID should blind the data blocks

corresponding to the personal sensitive information of the

original file F before sending it to the sanitizer. The indexes

of these data blocks are in set K1. The user ID computes the

blinded data block m∗i =mi +αi for each block mi ∈ Z∗ p (i∈

K1) of the original file F. The blinded file is F∗=m∗ 1,

m∗2,..., m∗ n, where m∗i =mi only ifi∈ [1, n] and i / ∈ K1;

otherwise, m∗i =mi.

c) For each block m∗i∈ Z∗ p (i∈[1,n]) of the blinded file F∗,

the user ID calculates the signature σi on block m∗i as

follows: σi = g2x(µlj=1 µj IDj)rID(H(name||i)·um∗i)r. Let =

{ σi}1≤i≤n be the set of signatures for the blinded file F∗.

d) The user ID sets τ0 = name||grID||gr and calculates the file

tag by computing τ = τ0||SSigssk(τ0), where SSigssk(τ0) is

the signature on τ0 under the signing private key ssk.

e) The user ID calculates a transformation value β=ur which

is used to transform the signature in Sanitization algorithm.

He sends {F∗,,τ,K1} along with β to the sanitizer, and then

deletes these messages from local storage. In addition, when

the user ID wants to retrieve his file F, he can send a request

to the sanitizer. And then the sanitizer downloads and sends

the blinded file F∗ to the user. The user ID can recover the

original file F using the blinding factor.

4. Algorithm Sanitization(F∗, ᶲ)
a) The sanitizer checks the validity of the file tag τ by

verifying whether SSigssk(τ0) is a valid signature. If it is a

valid signature, the sanitizer parses τ0 to obtain file identifier

name name and verification values grID and gr, and then

does the following steps.

 b) The sanitizer respectively verifies the correctness of

signature σi (i∈ [1, n]) as follows: e(σi,g)=e(g1,g2)·e(µlj=1

µj IDj ,grID) ·e(H(name||i)·um∗i ,gr). (2) If the equation (2)

does not hold, the sanitizer thinks the signatures invalid;

otherwise, goes to the step c.

 c) The sanitizer verifies the correctness of the transformation

value β by checking whether e(u,gr) = e(β,g) holds or not.

If the above equation holds, the sanitizer will sanitize the

blinded data blocks and the data blocks corresponding to the

organization’s sensitive information. The indexes of these

data blocks are in sets K1 and K2. In SigGen algorithm, the

data blocks whose indexes are in set K1 have been blinded

by the user ID, which will make the contents of these data

blocks become messy code. In order to unify the format, the

sanitizer can use wildcards to replace the contents of these

data blocks. For example, in an EHR, Bob is a user’s name.

After blinded by the medical doctor, the contents of this

sector will become messy code. To unify the format, the

sanitizer replaces these messy code with ***. In addition, to

protect the privacy of organization, the sanitizer also

sanitizes the data blocks whose indexes are in set K2. For

example, in an EHR, the sanitizer replaces the information

such as hospital’s name with ***. And then the sanitizer

transforms the signatures of data blocks in sets K1 and K2

into valid ones for sanitized file F as follows:

d) The sanitizer sends {F,} to the cloud, and then sends the

file tag τ to the TPA. Finally, he deletes these messages from

local storage.

5. Algorithm ProofGen(F, ,chal)
 a) The TPA verifies the validity of the file tag τ. The TPA

will not execute auditing task if the file tag τ is invalid;

otherwise, the TPA parses τ0 to obtain file identifier name

name and verification values grID and gr, and then generates

an auditing challenge chal as follows:

i) Randomly picks a set I with c elements, where I⊆ [1, n].

ii) Generates a random value vi ∈ Z∗ p for each i∈ I.

iii) Sends the auditing challenge chal = {i,vi}i∈I to the cloud.

b) After receiving an auditing challenge from the TPA, the

cloud generates a proof of data possession as follows:

i) Computes a linear combination of data blocks λ=i∈Imivi.

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 96

ii) Calculates an aggregated signature σ = i∈I σ i vi. iii)

Outputs an auditing proof P ={λ,σ} to the TPA.

6. Algorithm Proof Verify(chal,pp,P)
The TPA verifies the correctness of auditing proof as

follows:

If the equation (3) holds, the sanitized file stored in the cloud

is intact; otherwise, it is not.

FLOW CHART

Flow charts are graphical representations of workflows of

stepwise activities and actions with support for choice,

iteration and concurrency. In the Unified Modeling

Language, the flowcharts can be used to describe the

business and operational step-by-step workflows of

components in a system. An flowchart shows the overall

flow of control.

Once the data owner or the third-party auditor login, the data

owner allow to upload public key into the cloud. Also data

owner upload the file into the cloud server. Before

uploading, data owner makes sure that the file is in encrypted

form in order to achieve data integrity and confidentiality.

Also the client details means who can view and who all are

accessible and who can upload the file into the cloud. Once

the third-party auditor login he receives OTP, if that OTP is

authenticates it allows to download a file and also he can

check file integrity by using sanitized signature during

auditing phase. otherwise received OTP is not authenticated

so that he should again login with proper authentication.

V. RESULTS AND DISCUSSION

We evaluate the performance of the proposed scheme by

several experiments. We run these experiments on a Linux

machine with an Intel Pentium 2.30GHz processor and 8GB

memory. All these experiments use C programming language

with the free Pairing-Based Cryptography (PBC) Library and

the GNU Multiple Precision Arithmetic (GMP) . In our

experiments, we set the base field size to be 512 bits, the size

of an element in Z*p to be |p| = 160 bits, the size of data file

to be 20MB composed by 1,000,000 blocks, and the length

of user identify to be 160 bits.

1) The Performance of Different Processes: To effectively

evaluate the performance in different processes, we set the

number of data blocks to be 100 and the number of sanitized

data blocks to be 5 in our experiment. The private key

generation and private key verification spend nearly the same

time, which are nearly 0.31s. The time consumed by the

signature generation is 1.476s. The time of signature

verification and that of sensitive information sanitization

respectively are 2.318s and 0.041s. So we can conclude that

in these processes, the signature verification spends the

longest time and the sensitive information sanitization spends

the shortest time.

To evaluate the performance of signature generation and

signature verification, we generate the signatures for different

number of blocks from 0 to 1000 increased by an interval of

100 in our experiment. The time cost of the signature

generation and the signature verification both linearly

increases with the number of the data blocks. The time of

signature generation ranges from 0.121s to 12.132s. The time

of signature verification ranges from 0.128s to 12.513s.

START

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 97

Fig3: The computation overhead in the process of signature

generation and signature verification.

Fig4: The computation overhead of the TPA in the phase of

integrity auditing.

Fig5: The computation overhead of the cloud in the phase of

integrity auditing.

2) Performance of Auditing: With the different number of

challenged data blocks, we respectively show the

computation overhead of the TPA and that of the cloud in

integrity auditing phase in Fig. 4 and Fig. 5. In our

experiment, the number of challenged data blocks varies

from 0 to 1,000. As shown in Fig. 9, we see the that the

computation overheads of challenge generation and proof

verification on the TPA side linearly increase with the

number of challenged data blocks. The computation

overhead of proof verification varies from 0.317s to 11.505s.

Compared with the time of proof verification, the time of

challenge generation increases slowly, just varying from

0.013s to 0461s. From Fig. 10, we have the observation that

the computation overhead of proof generation on the cloud

side varies from 0.021s to 3.981s. So we can conclude that,

with the more challenged data blocks, both the TPA and the

cloud will spend the more computation overheads.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, we proposed an identity-based data integrity

auditing scheme for secure cloud storage, which supports

data sharing with sensitive information hiding. In our

scheme, the file stored in the cloud can be shared and used by

others on the condition that the sensitive information of the

file is protected. Besides, the remote data integrity auditing

with time management is still able to be efficiently executed.

The security proof and the experimental analysis demonstrate

that the proposed scheme achieves desirable security and

efficiency. Also sanitization process further increases the

performance of the auditing scheme where the access of the

sanitized file is more difficult only the authorized users are

provided for the access.

ACKNOWLEDGEMENT

The completion of Project brings with great sense of

satisfaction, but it is never completed without thanking the

persons who are all responsible for its successful completion.

First and foremost, I wish to express our deep sincere

feelings of gratitude to my Institution, EAST WEST

INSTITUTE OF TECHNOLOGY, for providing me an

opportunity to do our education. I extend my deep sense of

sincere gratitude to Dr. K Channakeshavalu(Principal), I

express my heartfelt sincere gratitude to Dr. Arun

Biradar(HOD),I would like to thank my guide Mrs.

Supritha N Assistant Professor, Department of Computer

Science and Engineering. Finally, I would like to thank all

the Teaching, Technical faculty and supporting staff

members of Department of Computer Science and

Engineering, East West Institute of Technology, Bengaluru,

for their support

REFERENCES

[1] J. Yu, R. Hao, H. Xia, H. Zhang, X. Cheng, and F. Kong,

―Intrusionresilient identity-based signatures: Concrete scheme in

the standard model and generic construction,‖ Inf. Sci., vols. 442–

443, pp. 158–172, May 2018.

[2] W. Shen, G. Yang, J. Yu, H. Zhang, F. Kong, and R. Hao, ―Remote

data possession checking with privacy-preserving authenticators

for cloud storage,‖ Future Gener. Comput. Syst., vol. 76, pp. 136–

145, Nov. 2017.

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 98

[3] Y. Yu et al., ―Identity-based remote data integrity checking with

perfect data privacy preserving for cloud storage,‖ IEEE Trans.

Inf. Forensics Security, vol. 12, no. 4, pp. 767–778, Apr. 2017.

[4] J. Yu and H. Wang, ―Strong key-exposure resilient auditing for

secure cloud storage,‖ IEEE Trans. Inf. Forensics Security, vol.

12, no. 8, pp. 1931–1940, Aug. 2017.

[5] W. Shen, J. Yu, H. Xia, H. Zhang, X. Lu, and R. Hao, ―Light-weight

and privacy-preserving secure cloud auditing scheme for group

users via the third party medium,‖ J. Netw. Comput. Appl., vol.

82, pp. 56–64, Mar. 2017.

[6] J. Hur, D. Koo, Y. Shin, and K. Kang, ―Secure data deduplication

with dynamic ownership management in cloud storage,‖ IEEE

Trans. Knowl. Data Eng., vol. 28, no. 11, pp. 3113–3125, Nov.

2016.

[7] J. Li, J. Li, D. Xie, and Z. Cai, ―Secure auditing and deduplicating

data in cloud,‖ IEEE Trans. Comput., vol. 65, no. 8, pp. 2386–

2396, Aug. 2016.

[8] H. Wang, D. He, and S. Tang, ―Identity-based proxy-oriented data

uploading and remote data integrity checking in public cloud,‖

IEEE Trans. Inf. Forensics Security, vol. 11, no. 6, pp. 1165–1176,

Jun. 2016.

[9] G. Yang, J. Yu, W. Shen, Q. Su, Z. Fu, and R. Hao, ―Enabling

public auditing for shared data in cloud storage supporting identity

privacy and traceability,‖ J. Syst. Softw., vol. 113, pp. 130–139,

Mar. 2016.

[10] J. Yu, K. Ren, and C. Wang, ―Enabling cloud storage auditing with

verifiable outsourcing of key updates,‖ IEEE Trans. Inf. Forensics

Security, vol. 11, no. 6, pp. 1362–1375, Jun. 2016.

[11] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, ―Toward efficient

multikeyword fuzzy search over encrypted outsourced data with

accuracy improvement,‖ IEEE Trans. Inf. Forensics Security, vol.

11, no. 12, pp. 2706–2716, Dec. 2016.

[12] Q. Jiang, M. K. Khan, X. Lu, J. Ma, and D. He, ―A privacy

preserving three-factor authentication protocol for e-health

clouds,‖ J. Supercomput., vol. 72, no. 10, pp. 3826–3849, 2016.

[13] Z. Xia, X. Wang, X. Sun, and Q. Wang, ―A secure and dynamic

multikeyword ranked search scheme over encrypted cloud data,‖

IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352,

Feb. 2016.

[14] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, ―Achieving efficient

cloud search services: Multi-keyword ranked search over

encrypted cloud data supporting parallel computing,‖ IEICE

Trans. Commun., vol. 98, no. 1, pp. 190–200, 2015.

[15] J. Shen, H. Tan, S. Moh, I. Chung, Q. Liu, and X. Sun, ―Enhanced

secure sensor association and key management in wireless body

area networks,‖ J. Commun. Netw., vol. 17, no. 5, pp. 453–462,

2015.

[16] C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu,

―Symmetrickey based proofs of retrievability supporting public

verification,‖ in Computer Security—ESORICS. Cham,

Switzerland: Springer, 2015, pp. 203–223.

[17] J. Yu, K. Ren, C. Wang, and V. Varadharajan, ―Enabling cloud

storage auditing with key-exposure resistance,‖ IEEE Trans. Inf.

Forensics Security, vol. 10, no. 6, pp. 1167–1179, Jun. 2015.

[18] B. Wang, B. Li, and H. Li, ―Panda: Public auditing for shared data

with efficient user revocation in the cloud,‖ IEEE Trans. Serv.

Comput., vol. 8, no. 1, pp. 92–106, Jan./Feb. 2015.

[19] Y. Luo, M. Xu, S. Fu, D. Wang, and J. Deng, ―Efficient integrity

auditing for shared data in the cloud with secure user revocation,‖

in Proc. IEEE Trustcom/BigDataSE/ISPA, Aug. 2015, pp. 434–

442.

 [20] H. Wang, ―Identity-based distributed provable data possession in

multicloud storage,‖ IEEE Trans. Serv. Comput., vol. 8, no. 2, pp.

328–340, Mar./Apr. 2015.

[21] S. G. Worku, C. Xu, J. Zhao, and X. He, ―Secure and efficient

privacypreserving public auditing scheme for cloud storage,‖

Comput. Electr. Eng., vol. 40, no. 5, pp. 1703–1713, 2014.

[22] D. A. B. Fernandes, L. F. B. Soares, J. V. Gomes, M. M. Freire,

and P. R. M. Inácio, ―Security issues in cloud environments: A

survey,‖ Int. J. Inf. Secur., vol. 13, no. 2, pp. 113–170, Apr. 2014.

[23] L. F. B. Soares, D. A. B. Fernandes, J. V. Gomes, M. M. Freire,

and P. R. M. Inácio, Cloud Security: State of the Art. Berlin,

Germany: Springer, 2014.

[24] H. Shacham and B. Waters, ―Compact proofs of retrievability,‖ J.

Cryptol., vol. 26, no. 3, pp. 442–483, Jul. 2013.

[25] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou,

―Privacypreserving public auditing for secure cloud storage,‖

IEEE Trans. Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013

[26] M. Green, ―The threat in the cloud,‖ IEEE Security Privacy, vol.

11, no. 1, pp. 86–89, Jan./Feb. 2013.

[27] K. Yang and X. Jia, ―Data storage auditing service in cloud

computing: Challenges, methods and opportunities,‖ World Wide

Web, vol. 15, no. 4, pp. 409–428, 2012.

[28] B. Wang, B. Li, and H. Li, ―Oruta: Privacy-preserving public

auditing for shared data in the cloud,‖ in Proc. IEEE 5th Int. Conf.

Cloud Comput. (CLOUD), Jun. 2012, pp. 295–302.

[29] P. Mell and T. Grance, ―The NIST definition of cloud computing,‖

Nat. Inst. Standards Technol., vol. 53, no. 6, p. 50, 2011.

[30] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, ―Enabling public

auditability and data dynamics for storage security in cloud

computing,‖ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp.

847–859, May 2011.

[31] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,

―Cloud computing and emerging IT platforms: Vision, hype,and

reality for delivering computing as the 5th utility,‖ Future Generat.

Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[32] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, ―Dynamic

provable data possession,‖ in Proc. 16th ACM Conf. Comput.

Commun. Secur., 2009, pp. 213–222

[33] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, ―Scalable

and efficient provable data possession,‖ in Proc. 4th Int. Conf.

Secur. Privacy Commun. Netw., 2008, Art. no.9.

[34] G. Ateniese et al., ―Provable data possession at untrusted stores,‖

in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp.

598–609.

[35] A. Juels and B. S. Kaliski, Jr., ―Pors: Proofs of retrievability for

large files,‖ in Proc. 14th ACM Conf. Comput. Commun. Secur.,

2007, pp. 584–597.

[36] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik,

―Sanitizable signatures,‖ in Proc. 10th Eur. Symp. Res. Comput.

Secur. Berlin, Germany: Springer-Verlag, 2005, pp. 159–177.

[37] G. Ateniese and B. de Medeiros, ―On the key exposure problem in

chameleon hashes,‖ in Security in Communication Networks.

Berlin, Germany: Springer, 2005, pp. 165–179.

[38] Q. Jiang, J. Ma, and F. Wei, ―On the security of a privacy-aware

authentication scheme for distributed mobile cloud computing

services,‖ IEEE Syst. J., to be published.

[39] A. Fu, S. Yu, Y. Zhang, H. Wang, and C. Huang, ―NPP: A new

privacy-aware public auditing scheme for cloud data sharing with

group users,‖ IEEE Trans. Big Data, to be published, doi:

10.1109/TBDATA.2017.2701347.

 [40] H. Wang, D. He, J. Yu, and Z. Wang, ―Incentive and

unconditionally anonymous identity-based public provable data

possession,‖ IEEE Trans. Serv. Comput., to be published, doi:

10.1109/TSC.2016.2633260.

 [41] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, ―Enabling

efficient user revocation in identity-based cloud storage auditing

for shared big data,‖ IEEE Trans. Depend. Sec. Comput., to be

published, doi: 10.1109/TDSC.2018.2829880.

