International Journal of
Computer Sciences and Engineering

Scholarly, Peer-Reviewed, and Pioneering Scientific Research Journal

Flash News 

Now Vol.5 , Issue.9 September 2017 edition has been published. Authors are cordially invited to submit papers for the upcoming edition through online submission system

Investigation of Soliton Propagation in Asymmetric metal-dielectric-metal Plasmonics Waveguide
Investigation of Soliton Propagation in Asymmetric metal-dielectric-metal Plasmonics Waveguide
M. Olyaee1 , M.B Tavakoli2 , A. Mokhtari3

Section:Research Paper, Product Type: Journal Paper
Volume-5 , Issue-3 , Page no. 6-10, Mar-2017

Online published on Mar 31, 2017

Copyright © M. Olyaee, M.B Tavakoli, A. Mokhtari . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 
View this paper at   Google Scholar | DPI Digital Library
  XML View PDF Download  
Citation

IEEE Style Citation: M. Olyaee, M.B Tavakoli, A. Mokhtari, “Investigation of Soliton Propagation in Asymmetric metal-dielectric-metal Plasmonics Waveguide”, International Journal of Computer Sciences and Engineering, Vol.5, Issue.3, pp.6-10, 2017.

MLA Style Citation: M. Olyaee, M.B Tavakoli, A. Mokhtari "Investigation of Soliton Propagation in Asymmetric metal-dielectric-metal Plasmonics Waveguide." International Journal of Computer Sciences and Engineering 5.3 (2017): 6-10.

APA Style Citation: M. Olyaee, M.B Tavakoli, A. Mokhtari, (2017). Investigation of Soliton Propagation in Asymmetric metal-dielectric-metal Plasmonics Waveguide. International Journal of Computer Sciences and Engineering, 5(3), 6-10.
           
Abstract :
In this paper, the propagation of soliton in metal-dielectric-metal (MDM) plasmonics waveguides was investigated for both nonasymmetric and asymmetric structures. Nonasymmetric effects such as Soliton are important for applications such as switching and wavelength conversion. In this paper, it was shown that field enhancement in nonasymmetric MDM waveguides can result in large enhancement of SOLITON magnitude compared to the literature values. Two different structures are considered here as plasmonics waveguide for generation of second harmonic. The first structure is a structure including of a Lithium Niobite as insulator sandwiched between two same metals. Thereafter, two different metals on both sides of the waveguide were used. Besides the structure has grating on both sides for more coupling between photons and plasmons. the wavelength The duration of grating per length unit (number of grooves) will be optimized to reach the highest second harmonic generation. To perform this optimization, the wavelength of operation of λ=458 nm is considered. It was shown that this asymmetric device results in more than two orders of magnitude enhancement in SOLITON compared to a structure with the same metals. It is also shown that the electric field of second harmonic depends on the thickness of crystal (insulator). So, its thickness is optimized to achieve the highest electric field.
Key-Words / Index Term :
Plasmonicss, Surface plasmons, Soliton
References :
[1]. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonics circuits,” MRS Bull. 37(08), 728–738, (2012).
[2]. Montasir Qasymeh, “Photorefractive Effect in Plasmonics Waveguides,” IEEE JOURNAL OF QUANTUM ELECTRONICS, 50(5), 327 – 333, (2014).
[3]. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonicss beyond the diffraction limit,” Nature Photon., 4, 83–91, (2010).
[4]. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonicss for extreme light concentration and manipulation,” Nature Mater., 9, 193–204, (2010).
[5]. S.A. Maier, “Plasmonicss, Fundamentals and Applications” Springer, New York, (2007).
[6]. E. Ozbay, “Plasmonicss: Merging photonics and electronics at nanoscale dimensions,” Science, 311(5758), 189–193, (2006).
[7]. N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonicss and Si-photonics,” IEEE Journal of Photonics, 3(2), 296–301, (2011).
[8]. D. S. LyGagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonics slot waveguides,” Journal of Nanophotonics, 1(1), 9–16, (2012).
[9]. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Applied Physics Letters, 84, 852-854, (2004).
[10]. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Optics Express, 13, 977-984, (2005).
[11]. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Physical Review B, 73, 035407, (2006).
[12]. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A, 21, 2442-2446, (2004).
[13]. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Physical Review Letters, 96, 097401, (2006).
[14]. Y. Kurokawa and H. T. Miyazaki, “Metal-dielectric-metal plasmon nanocavities: Analysis of optical properties,” Physical Review B, 75, 035411, (2007).
[15]. G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonics waveguides,” Applied Physics Letters, 87, 131102, (2005).
[16]. R. W. Boyd, Nonasymmetric Optics (Academic, 2008).
[17]. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V.Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Solitonin silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[18]. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
[19]. R. E. P. de Oliveira, M. Lipson, and C. J. S. de Matos, “Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation,” in CLEO: Science and Innovations (Optical Society of America, 2012).
[20]. T. Y. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient secondharmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37(20), 4269–4271 (2012).
[21]. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
[22]. M. I. Stockman, “Nanoplasmonicss: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[23]. W. S. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonasymmetric generation of light with plasmonicss,” Science 333(6050), 1720–1723 (2011).
[24]. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonasymmetric plasmonics nanoscale waveguides,” Opt. Express 17(22), 20063–20068 (2009).
[25]. S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonasymmetric frequency conversion processes in plasmonics slot waveguides,” J. Opt. Soc. Am. B 29(7), 1606–1611 (2012).
[26]. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Applied Physics Letters, 9(1), 72-74, (1966).
[27]. A. Yariv, “Phase conjugate optics and real-time holography," IEEE Journal of Quantum Electronics, 14(9), 650-660, (1978).